Условия распада радиоактивных элементов. Общие свойства бета-распада

Радиоактивный распад - процесс, при котором элементарные частицы теряются ядром изотопа, из-за чего изотоп становится более стабильным элементом. Эти субатомные субстанции с огромной скоростью покидают атом. Распадаясь, изотоп испускает радиоактивное гамма- излучение, а также альфа- и бета-частицы. Объяснением данного процесса является то, что большинство ядер нестабильны. Изотопами называют разновидности одного и того же химического элемента с одним и тем же числом протонов, но с разным количеством нейтронов.

Виды радиоактивного альфа- и бета-распад. Далее подробнее о них. Во время альфа-распада выделяется гелий, которые еще называют альфа-частицей, при бета-распаде ядро атома теряет электрон, продвигаясь вперед по периодической таблице на одну позицию, а гамма-излучение - распад ядер с одновременным излучением фотонов, или гамма-лучей. В последнем случае процесс происходит с потерей энергии, но без видоизменения химического элемента.

Реакция радиоактивного распада протекает таким образом, что за определенный отрезок времени из ядра элементов исходит количество нуклонов, пропорциональное тому числу нуклонов, которое все еще остаются в ядре. То есть чем больше их все еще остается в атоме, тем больше их выйдет из него. Скорость распада атома определяет так называемая константа радиоактивности, которая также известна под названием постоянная радиоактивного распада. Однако обычно в физике измеряется не она. Вместо нее используют такую величину, как период полураспада - время, за которое ядро потеряет половину своих нуклонов. Оно зависит от вида вещества и может продолжаться от ничтожных долей секунды до миллиардов лет. Иными словами, некоторые ядра атомов могут существовать вечно, а некоторые - весьма незначительное время до распада.

Тот изотоп, который был исходным в процессе распада, называют материнским, а полученный результат - дочерним изотопом.

Радиоактивные элементы рождаются в подавляющем большинстве случаев в результате цепи из реакций деления атомов. Например: «материнское» (первичное) ядро распадается на несколько «дочерних», те, в свою очередь, также делятся. И эта цепочка не прерывается до тех пор, пока не будут образованы стабильные изотопы. Например: период полураспада урана составляет более четырех с половиной миллиардов лет. За это время в результате этого элемента сначала образуется торий, тот, в свою очередь, становится палладием, и в конце всей этой длинной цепочки будет свинец. Вернее, стабильный его изотоп.

Радиоактивный распад имеет ряд своих особенностей. Нельзя умалчивать и о его «побочных эффектах». Например, если возьмем образец какого-либо радиоактивного изотопа, в результате его распада получим ряд с разной массой ядра. Можно как примеры приводить множество цепочек деления. Радиоактивность - это, по большому счету, естественное явление. Ведь ядерный распад веществ происходил задолго до того, как человек открыл эти механизмы. Однако деятельность этого распада привела к увеличению радиоактивного фона всей планеты. В частности, из-за искусственного ускорения таких естественных процессов.

Радиоактивный распад для человечества оборачивается как новыми возможностями, так и опасностями. Стоит вспомнить хотя бы процесс Он, в частности, приводит к образованию радона-222. Этот газ в большом количестве встречается на планете. Сам по себе он опасности никакой не представляет, но лишь пока ядра его атомов не начинают распадаться на другие элементы. Продукты его деления, особенно в непроветриваемом помещении, вредят человеческому здоровью.

Радиоактивный распад как процесс может и принести пользу. Но лишь если правильно использовать его продукты. Например, радиоактивный фосфор, вводимый при помощи инъекций в организм, помогает получить информацию о состоянии костей пациента. Излучаемые им лучи фиксируются светочувствительной аппаратурой, что позволяет получить точные снимки с зафиксированными местами переломов. Степень его радиоактивности весьма мала и не может причинить какого-либо вреда человеку.

Второй случай рассмотрим на примере распада изотопа Хлора-17, схема которого приведена на рисунке Рис.7.

Из схемы видно, что собственно b -распад Хлора-17 может происходить по трем путям (синие линии).

В первом случае атом дочернего нуклида Аргон-18 образуется в основном состояниии. На этом акт единичного распада завершается.

Во втором случае атом дочернего нуклида образуется в возбужденном состоянии (энергия возбуждения составляет 2,170 МэВ). В возбужденном состоянии атом находится ограниченное время, после чего он переходит в основное состояние, испуская при этом g -квант. Энергия этого кванта в точности равна энергии возбуждения.

В третьем случае атом дочернего нуклида также образуется в возбужденном состоянии (энергия возбуждения составляет 3,77 МэВ). Однако, в отличие от второго случая здесь атом дочернего нуклида может перейти в основное состояние двумя путями.

Во-первых, атом может сразу перейти в основное состояние, испустив g -квант с энергией 3,77 МэВ. Вероятность такого перехода невелика и только 0,06% атомов "идут" по этому пути.

Во-вторых, (по этому пути идет подавляющее большинство атомов - 99,94%) атом может сначала испустить g -квант с энергией 1,60 Мэв и перейти в состояние с меньшей энергией возбуждения, а затем, по истечении некоторого времени, перейти в основное состояние, испуская g -квант с энергией 2,17 МэВ. Такое последовательное испускание g -квантов называется g -каскадом.

Очевидно, что энергетический спектр g -квантов в данном случае будет линейчатым . В спектре будет три линии с энергиями 1,60 МэВ, 2,17 МэВ и 3,77МэВ.

Если атомы дочернего нуклида образуются только в основном состоянии то в этом случае материнский нуклид будет чистым a - или b -излучателем, а g -излучения не будет.

Примером может служить распад Полония-210 (чистый a -излучатель), схема которого приведена на Рис.8.

При эмиссии g -квантов энергия квантов может находиться в пределах от 5 КэВ до 7МэВ, причем нижний предел находится в области характеристического рентгеновского излучения.

Ввиду того, что g -кванты не имеют ни электрического заряда, ни массы покоя испускание g -квантов не приводит к изменению числа нуклонов A и заряда ядра Z .

Кванту с энергией D E , равной разности энергий ядра дочернего нуклида в начальном (возбужденном) E 2 и E 1 конечном (основном или возбужденном с меньшей энергией возбуждения):

D E = E 2 - E 1 = E g

далеко не всегда удается покинуть атом.

Он часто взаимодействует с одним из электронов оболочек атома. Если энергия D E больше энергии связи электрона E св , то электрон имеет шанс покинуть атом. Такие электроны называются электронами конверсии . Очевидно, что энергия таких электронов будет также как и энергия g -квантов дискретной :

E е = E g - E св - E отд

где E отд энергия отдачи дочернего нуклида (см. Рис. 9).

Рис. 9 Пояснение понятия "отдача"

В большиестве случаев электронами конверсии являются электроны ближайшей к ядру К-оболочки. Если же энергия, отданная ядром, меньше E св для электронов К-оболочки, то электроны конверсии отщепляются от внешних оболочек (L, M), где энергия связи меньше.

После отщепления электрона конверсии образуется вакансия, которая заполняется электронами с внешних оболочек. При этом образуется соответствующее рентгеновское излучение, называемое характеристическим К a , К b , L a , ...

Характеристическое рентгеновское излучение может в свою очередь конвертироваться. Испускаемые при этом электроны называют по имени ученого их открывшего электронами Оже.

На Рис.10 приведена схема, поясняющая все сказанное.

Большинство атомных ядер нестабильно. Рано или поздно они самопроизвольно (или, как говорят физики, спонтанно ) распадаются на более мелкие ядра и элементарные частицы, которые принято называть продуктами распада или дочерними элементами. Распадающиеся частицы принято именовать исходными материалами или родителями. У всех нам хорошо знакомых химических веществ (железо, кислород, кальций и т. п.) имеется хотя бы один стабильный изотоп. (Изотопами называются разновидности химического элемента с одним и тем же числом протонов в ядре — это число протонов соответствует порядковому номеру элемента, — но разным числом нейтронов.) Тот факт, что эти вещества нам хорошо известны, свидетельствует об их стабильности — значит, они живут достаточно долго, чтобы в значительных количествах накапливаться в природных условиях, не распадаясь на составляющие. Но у каждого из природных элементов имеются и нестабильные изотопы — их ядра можно получить в процессе ядерных реакций, но долго они не живут, поскольку быстро распадаются.

Распад ядер радиоактивных элементов или изотопов может происходить тремя основными путями, и соответствующие реакции ядерного распада названы тремя первыми буквами греческого алфавита. При альфа-распаде выделяется атом гелия, состоящий из двух протонов и двух нейтронов, — его принято называть альфа-частицей. Поскольку альфа-распад влечет за собой понижение числа положительно заряженных протонов в атоме на два, ядро, испустившее альфа-частицу, превращается в ядро элемента, отстоящую на две позиции ниже от нее в периодической системе Менделеева . При бета-распаде ядро испускает электрон, а элемент продвигается на одну позицию вперед по периодической таблице (при этом, по существу, нейтрон превращается в протон с излучением этого самого электрона). Наконец, гамма-распад — это распад ядер с излучением фотонов высоких энергий, которые принято называть гамма-лучами. При этом ядро теряет энергию, но химический элемент не видоизменяется.

Однако сам по себе факт нестабильности того или иного изотопа химического элемента отнюдь не означает, что, собрав воедино некоторое число ядер этого изотопа, вы получите картину их одномоментного распада. В реальности распад ядра радиоактивного элемента чем-то напоминает процесс жарки кукурузы при изготовлении поп-корна: зерна (нуклоны) отпадают от «початка» (ядра) по одному, в совершенно непредсказуемом порядке, пока не отвалятся все. Закон, описывающий реакцию радиоактивного распада, собственно, только констатирует этот факт: за фиксированный отрезок времени радиоактивное ядро испускает число нуклонов, пропорциональное числу нуклонов, остающихся в его составе. То есть чем больше зерен-нуклонов всё еще остается в «недожаренном» початке-ядре, тем больше их выделится за фиксированный интервал времени «жарки». При переводе этой метафоры на язык математических формул мы получим уравнение, описывающее радиоактивный распад:

dN = λN dt

где dN — число нуклонов, испускаемых ядром с общим числом нуклонов N за время dt , а λ — экспериментально определяемая константа радиоактивности исследуемого вещества. Вышеприведенная эмпирическая формула представляет собой линейное дифференциальное уравнение, решением которого является следующая функция, описывающая число нуклонов, остающихся в составе ядра на момент времени t :

N = N 0 e -λt

где N 0 — число нуклонов в ядре на начальный момент наблюдения.

Константа радиоактивности, таким образом, определяет, насколько быстро распадается ядро. Однако физики-экспериментаторы обычно измеряют не ее, а так называемое время полураспада ядра (то есть срок за который исследуемое ядро испускает половину содержащихся в нем нуклонов). У различных изотопов различных радиоактивных веществ время полураспада варьируется (в полном соответствии с теоретическими предсказаниями) от миллиардных долей секунды до миллиардов лет. То есть некоторые ядра живут практически вечно, а некоторые распадаются буквально моментально (тут важно помнить, что по истечении времени полураспада остается половина совокупной массы исходного вещества, по истечении двух сроков полураспада — четверть его массы, по истечении трех сроков полураспада — одна восьмая и т. д.).

Что касается возникновения радиоактивных элементов, то рождаются они по-разному. В частности, ионосфера (верхний разреженный слой атмосферы) Земли подвергается постоянной бомбардировке космическими лучами, состоящими из частиц с высокими энергиями (см. Элементарные частицы). Под их воздействием долгоживущие атомы и расщепляются на неустойчивые изотопы: в частности, из стабильного азота-14 в земной атмосфере постоянно образуется неустойчивый изотоп углерода-14 с 6 протонами и 8 нейтронами в ядре (см. Радиометрическое датирование).

Но вышеописанный случай — скорее экзотика. Гораздо чаще радиоактивные элементы образуются в цепи реакций ядерного деления. Так называют череду событий, в ходе которых исходное («материнское») ядро распадается на два «дочерних» (также радиоактивных), те, в свою очередь, — на четыре ядра-«внучки» и т. д. Процесс продолжается до тех пор, пока не будут получены стабильные изотопы. В качестве примера возьмем изотоп урана-238 (92 протона + 146 нейтронов) со временем полураспада около 4,5 млрд лет. Этот период, кстати, приблизительно равен возрасту нашей планеты, что означает, что примерно половина урана-238 из состава первичной материи формирования Земли по-прежнему находится в совокупности элементов земной природы. Уран-238 превращается в торий-234 (90 протонов + 144 нейтрона), время полураспада которого равно 24 суткам. Торий-234 превращается в палладий-234 (91 протон + 143 нейтрона) со временем полураспада 6 часов — и т. д. После десяти с лишним этапов распада получается, наконец, стабильный изотоп свинца-206.

О радиоактивном распаде можно говорить много, но особо отметить нужно несколько моментов. Во-первых, даже если мы возьмем в качестве исходного материала чистый образец какого-то одного радиоактивного изотопа, он будет распадаться на разные составляющие, и вскоре мы неизбежно получим целый «букет» различных радиоактивных веществ с различными ядерными массами. Во-вторых, естественные цепочки реакций атомного распада успокаивают нас в том смысле, что радиоактивность — явление природное, существовала она задолго до человека, и не нужно брать грех на душу и обвинять одну только человеческую цивилизацию в том, что на Земле имеется радиационный фон. Уран-238 существовал на Земле с самого ее зарождения, распадался, распадается — и будет распадаться, а атомные электростанции ускоряют этот процесс, фактически, на доли процента; так что никакого особо пагубного влияния дополнительно к тому, что предусмотрено природой, они на нас с вами не оказывают.

Наконец, неизбежность радиоактивного атомного распада сопряжена как с потенциальными проблемами, так и с потенциальными возможностями для человечества. В частности, в цепи реакций распада ядер урана-238 образуется радон-222 — благородный газ без цвета, запаха и вкуса, не вступающий ни в какие химические реакции, поскольку он не способен образовывать химические связи . Это инертный газ, и он буквально сочится из недр нашей планеты. Обычно он не оказывает на нас никакого действия — просто растворяется в воздухе и остается там в незначительной концентрации, пока не распадется на еще более легкие элементы. Однако если этот безвредный радон будет долго находиться в непроветриваемом помещении, то со временем там начнут накапливаться продукты его распада — а они для здоровья человека вредны (при вдыхании). Вот так мы получаем так называемую «радоновую проблему».

С другой стороны, радиоактивные свойства химических элементов приносят людям и значительную пользу, если подойти к ним с умом. Радиоактивный фосфор, в частности, теперь вводится в виде инъекций для получения радиографической картины костных переломов. Степень его радиоактивности минимальна и не причиняет вреда здоровью пациента. Поступая в костные ткани организма вместе с обычным фосфором, он излучает достаточно лучей, чтобы зафиксировать их на светочувствительной аппаратуре и получить снимки сломанной кости буквально изнутри. Хирурги, соответственно, получают возможность оперировать сложный перелом не вслепую и наугад, а заранее изучив структуру перелома по таким снимкам. Вообще же, применениям радиографии в науке, технике и медицине несть числа. И все они работают по одному принципу: химические свойства атома (по сути, свойства внешней электронной оболочки) позволяют отнести вещество к определенной химической группе; затем, используя химические свойства этого вещества, атом доставляется «в нужное место», после чего, используя свойство ядер этого элемента к распаду в строгом соответствии с установленным законами физики «графику», регистрируются продукты распада.

Все атомные ядра можно разделить на две группы - стабильные и радиоактивные (нестабильные) ядра. Число стабильных изотопов и изотопов, имеющих период полураспада, сравнимый с временем существования Земли, ~ 350. Большинство ядер является нестабильными изотопами. Чтобы радиоактивное вещество удалось обнаружить в природе период полураспада должен быть не намного меньше возраста Земли или оно должно образовываться в результате распада другого радиоактивного вещества или в ядерной реакции. Наряду с α-, β-, γ-радиоактивностью, делением атомных ядер были открыты новые типы радиоактивного распада.
К более редким типам радиоактивного распада относятся

  • двойной β-распад,
  • протонная и двухпротонная радиоактивности,
  • нейтронная радиоактивность,
  • кластерная радиоактивность.

Во всех видах радиоактивности (кроме гамма-радиоактивности) изменяется состав ядра - число протонов Z , массовое число А или и то и другое.
На характеристики радиоактивного распада оказывают существенное влияние взаимодействия, вызывающие распад. α-распад вызывается сильным взаимодействием. β-распад вызывается слабым взаимодействием, а гамма-распад – электромагнитным.
Существуют различные причины, в силу которых времена жизни нестабильных ядер могут изменяться на несколько порядков.
а) Испускание тяжелых положительно заряженных частиц сильно подавляется потенциальным (кулоновским) барьером.
б) Причиной больших времен жизни радиоактивных ядер может быть малая интенсивность взаимодействия, за счет которого происходит распад.
в) Время жизни радиоактивного ядра сильно зависит от энергии, выделяющейся при распаде. Если эта энергия мала, то время жизни резко возрастает. Особенно резкой зависимостью от энергии распада Q характеризуется слабое взаимодействие: τ ~ 1/Q 5 .
г) Время жизни радиоактивного ядра сильно зависит и от разности значений спинов исходного и конечного ядер.

Альфа-распад. Явление α-распада состоит в том, что тяжелые ядра самопроизвольно испускают α-частицы. При этом массовое число ядра уменьшается на четыре единицы, а атомный номер на две:

(A,Z) → (A-4,Z-2) + 4 He.

Перечислим характерные эмпирические особенности α-распада:
а) α-распад происходит на тяжелых ядрах с Z > 60.
б) Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182 W имеет T 1/2 > 8.3·10 18 лет, а изотоп протактиния 219 Pa имеет T 1/2 = 5.3·10 -8 c.

Для четно-четных изотопов зависимость периода полураспада от энергии α-распада Q α хорошо описывается эмпирическим законом Гейгера-Неттола

lg T 1/2 = A + B/√Q α ,

где A и B константы, слабо зависящие от Z . С учётом заряда конечного ядра Z связь между периодом полураспада T 1/2 и энергией α-распада может быть представлена в виде

lg T 1/2 = 9.54·Z 0.6 /√Q α − 51.37,

где период полураспада T 1/2 выражен в секундах, а Q α в МэВ. На рисунке показаны экспериментальные значения периодов полураспада для a радиоактивных четно-четных ядер (Z изменяется от 74 до 106) и их описание с помощью соотношения Гейгера-Неттола.
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но периоды полураспада в 2-1000 раз больше, чем для четно-четных ядер с теми же Z и Q α .

Э. Резерфорд, 1936 г. «В 1919 г. я показал, что при бомбардировке α-частицами легкие элементы могут разрушаться с испусканием протона, т. е. ядра водорода. Поэтому мы предположили, что протон должен быть одной из структурных единиц, из которых состоят ядра других атомов, а теоретики старались объяснить свойства ядра комбинациями протонов и отрица-тельных электронов. Однако очень трудно объединить медленный и тяжеловесный протон с легким и подвижным электроном в таком ограниченном пространстве, как ядро, и, когда Чедвик открыл существование незаряженной частицы — нейтрона, этот вопрос нашел, по-видимому, свое тео-ретическое решение. Тогда стало возможным предположить, что ядра всех атомов состоят из комбинации протонов и нейтронов, так что, например, кислород с зарядом 8 и массой 16 обладает 8 протонами и 8 нейтронами. Это была очень простая идея, значение которой состояло в том, что сос-тавляющие ядро частицы обладали одинаковой массой. Однако встал вопрос, как объяснить тот факт, что отрицательный электрон часто вылетает из ядра при радиоактивных превращениях и что положительный электрон проявляется при некоторых искусственных превращениях? В ответ на это теоретики предположили, что в ограниченном пространстве ядра, где силы взаимодействия между частицами огромны, протоны превращаются в нейтроны, и наоборот. Например, если нейтрон теряет отрицательный электрон, он переходит в протон, а если протон теряет положительный электрон, он становится нейтроном, так что в первом случае может испускаться отрицательная частица, а во втором — положительная. Электроны и позитроны не существуют в свободном состоянии в ядре, они связаны с нейтроном или протоном в зависимости от обстоятельств и могут высвобождаться лишь при определенных условиях, когда происходят большие измененияэнергии внутри ядра».

N-Z диаграмма атомных ядер. Тёмным цветом показаны стабильные изотопы.

Г. Гамов, 1930 г.: «Уже открытое в конце прошлого века явление радиоактивности указывало на то, что ядро атома не есть простая единица, но имеет весьма сложную структуру. Частицы α и β, наблюдаемые при радиоактивном распаде элементов, были истолкованы Резерфордом, как составные части ядра, выбрасываемые из неустойчивых ядер тяжелых атомов, а наблюдаемое при распаде весьма жесткое излучение, γ-лучи - как электромагнитные возмущения, вызванные перестройкой ядер после распада. Дальнейшие опыты Резерфорда показали также возможность искусственного расщепления ядер обычно устойчивых элементов под влиянием внешних энергичных воздействий.
Открытие изотопов и исследования Астона, показавшего, что атомные веса их выражаются числами, весьма близкими к целым, сделало более чем вероятным предположение, что ядра всех элементов построены из протонов и электронов, причем весьма большую роль в строении ядра имеют образования, состоящие из четырех протонов и двух электронов (α-частицы) и обладающие весьма большой устойчивостью.
Весьма точное измерение атомных весов изотопов обнаружило небольшие отклонения от целых чисел (дефект массы), что привело к возможности определения полной энергии, связывающей отдельные структурные элементы ядра в одно целое.
Детальные исследования спектров γ-лучей, показавшие их линейчатую структуру - исследования, которыми мы обязаны главным образом Эллису и Мейтнер, - привели к заключению, что в ядре атома мы имеем дело с существованием определенных квантовых уровней энергии, вполне аналогичных тем, которые мы встречаем в электронной системе атома.
Наиболее удивительный факт, с которым мы сталкиваемся в, теории самопроизвольного распада ядер, это - те, зачастую неимоверно длинные, промежутки времени в течение которых неустойчивое ядро остается in statu quo, прежде чем выбросить α-или β-частицу. Средняя продолжительность жизни радиоактивных элементов варьирует от ничтожной доли секунды до необычайно длинных периодов во много миллионов лет и, для каждого данного элемента, является величиной вполне определенной.
Казалось весьма трудным найти причины, задерживающие вылет частицы на столь долгие промежутки времени, если частица имеет достаточно энергии, чтобы.покинуть ядро, - а между тем выбрасываемые из ядра α- и β-частицы несут весьма и весьма солидные запасы энергии.
Уже давно был известен факт существования вполне определенной зависимости между энергией выбрасываемой частицы и средним периодом ее пребывания в ядре в неустойчивом состоянии (периодом распада ядра). В 1912 г. Гейгер и Нэттол заметили, что если для элементов, обладающих распадом, мы будем откладывать на оси абсцисс энергию α-частиц, а на оси ординат логарифм соответствующей константы распада, то для данного радиоактивного семейства точки будут лежать приблизительно на прямой линии. Три известных нам радиоактивных семейства урана, тория и актиния представляются тремя параллельными прямыми.

Опыты Резерфорда и Чедвика показали, что в случае весьма близких столкновений α-частиц с ядрами легких элементов наблюдаются отклонения числа рассеянных частиц от формулы, выведенной в предположении Кулоновского взаимодействия. Наблюденные отклонения могут быть объяснены предположением существования указанных притягательных сил, - таким образом мы можем составить себе представление об области действия и законах этих сил. К сожалению, в настоящее время не имеется достаточно детального исследования аномального рассеяния α-частиц, и теоретические заключения сводятся, примерно, к следующему. Для легких элементов (Mg, A1) аномальные силы притяжения начинают сказываться на расстояниях порядка 10 -12 см, варьируя примерно обратно пропорционально четвертной или пятой степени расстояния и пересиливают Кулоновские отталкивания на расстоянии около 3∙10 -13 см от центра ядра, - на меньших расстояниях α-частица находится, очевидно, уже под влиянием суммарных притягательных сил. Для интересующих нас ядер тяжелых радиоактивных элементов, в виду их большого заряда, имеющиеся в нашем распоряжении α частицы не могут подойти на столь близкие расстояния и достигнуть области аномальных сил. Резерфорд и Чедвик в опытах с рассеянием α частиц в уране могли достигнуть (употребляя самые быстрые α-частицы) лишь расстояния 3∙10 -12 см и никаких отклонений от нормального рассеяния не было замечено— область притягательных сил, очевидно, лежит здесь гораздо ближе к ядру, чем 3∙10 -12 см.
Казалось бы, что результаты этих опытов с ураном весьма мало могут нам помочь - поскольку область притягательных сил не могла быть достигнута; в этих опытах и заключался ключ к разгадке явления α-распада.
При сопоставлении с данными о распаде самих ядер урана опыты эти приводят к парадоксу, совершенно необъяснимому с точки зрения классической механики. В самом деле: ядра атомов урана являются неустойчивыми и выбрасывают α-частицы с энергией около 6,8.10
-6 эрг. Согласно нашему предположе-нию о существовании притягательных сил вблизи ядра, α-частица, сидящая в ядре радиоактивного элемента, окружена своего рода потенциальным барьером, как показано на рисунке. Тот факт, что еще на расстояниях 3∙10 -12 см мы имеем лишь Кулоновские силы, указывает, что максимальная вышина барьера во всяком случае больше, чем

Как может α-частица урана с энергией всего лишь 6,8.10 -6 эрг „перекатиться" через такой барьер? Другими словами: если α-частицы RaG", употребляемые в опытах рассеяния в уране, «вкатываясь» по внешнему откосу барьера, далеко еще не могли достигнуть его вершины, как могут α-частицы урана, обладающие значительно меньшей энергией, перекатиться через барьер и вылететь наружу? С точки зрения классической механики α-частица, проходя через такой барьер, более высокий, чем ее полная энергия, должна была бы обладать внутри барьера «отрицательной кинетической энергией» и следовательно «мнимой скоростью».
Однако возможность такого явления, находящегося в резком противоречии с классической механикой, есть прямое следствие современной волновой механики. Подобно тому как в волновой оптике свет, падая на границу раздела двух сред под углом большим, чем угол полного внутреннего отражения, отчасти проникает во вторую среду - так же точно в волновой механике волны де Бройля-Шредингера могут отчасти проникать в область «мнимой скорости», давая возможность частицам «перекатиться» через барьер.
Переходя к вопросу о вылете α-частицы из ядра, окруженного некоторым потенциальным барьером, мы прежде всего должны знать форму этого барьера. Мы уже видели, что ход потенциала аномальных притягательных сил вблизи и внутри ядра (внутренний скат) точно неизвестен; с другой стороны, легко видеть, что точный ход потенциала на внутреннем крутом спуске барьера сравнительно мало влияет на его проницаемость. В этом случае. является самым рациональным сделать наиболее простые предположения о его форме; для последующих вычислений мы примем модель барьера, даваемую формулами


Эта модель характеризуется двумя неизвестными величинами: радиусом ядра r 0 и внутренним потенциалом U. Вопрос о вылете α-частицы из пространства, окруженного потенциальным барьером, сводится к реше-нию волнового уравнения, дающего вне ядра разбегающуюся сферическую волну. Эта задача приводит к ряду дискретных (квантовых) энергий α частицы, сидящей внутри барьера, и к ряду соответствующих вероятностей вылета.
В настоящем очерке мы, однако, не будем останавливаться на точном решении задачи и удовлетворимся приближенным выводом, вполне однако достаточным для сравнения с опытными данными. Ввиду большой высоты барьера мы можем в первом приближении рассматривать движение частицы внутри ядра, как заключенной между бесконечно высокими стенками, забывая о том, что через миллиона два лет частица все же вылетит. Нас будет интересовать лишь состояние наименьшей энергии (основная орбита), так как сейчас можно считать более чем вероятным, что все α-частицы в ядре имеют квантовое число - единицу.
Вероятность вылета λ может быть вычислена приближенно, как произведение числа столкновений α-частицы с барьером на его проницаемость

.

Казалось бы, что явление β-распада должно быть легко объяснено на тех же общих основаниях, как и α-распад.
В самом деле, явление выбрасывания ядерного электрона во многих отношениях аналогично выбрасыванию α-частицы. Мы встречаемся здесь с теми же весьма длинными периодами и с количественно той же зависимостью между энергией и периодом распада: более медленным β частицам соответствуют более долгие периоды жизни ядра.
Существенным отличием, однако, является факт размытости спектра β-частиц.
Исследованиями Эллиса вполне достоверно установлено, что β частицы покидают ядра со скоростями, варьирующими в весьма широких пределах; с другой стороны, совершенно отсутствует какой-либо процесс, могущий скомпенсировать эту размытость энергий и подвести баланс общей энергии ядра. Согласно закону сохранения энергии, ядра, получающиеся после β-распада, должны были бы иметь самый разнообразный запас энергии, а между тем дискретность скоростей -частиц и линейчатость γ-спектров указывает на вполне определенную дискретную энергию ядер.
Мы приходим, таким образом, к заключению, что для находящихся внутри ядра и вылетающих из него электронов закон сохранения энергии оказывается неприложимым.
Это и целый ряд других затруднений, связанных с вопросом о движении электронов внутри ядра, указывают, что здесь мы натолкнулись на что-то совершенно новое, не могущее быть объясненным на основании современных теоретических представлений. Несомненно, что все эти трудности квантования частиц, двигающихся со скоростью весьма близкой к скорости света, находятся в непосредственной связи с теми фундаментальными противоречиями, которые встретила современная теоретическая физика в попытках обобщения волновой механики на случаи релятивистского движения. Исследование свойств электронов в ядре является в настоящее время единственной областью, могущей дать экспериментальный материал для дальнейшего развития основных принципов теоретической физики».

β-распад. Упомянутая проблема несохранения энергии при β-распаде была решена Паули, предположившим, что в β-распад одновременно с электроном образуется нейтрино. Общая энергия β-распада распределяется между электроном и нейтрино Поэтому регистрация энергии только электрона приводит к кажущемуся несохранению энергии β-распада. Недостающую энергию уносит нейтрино, регистрация которого представляет собой чрезвычайно сложную проблему.
Изучение β-распада сыграло чрезвычайно большую роль в понимании процессов, происходящих в атомных ядрах. Явление β-распада состоит в том, что ядро (A,Z) самопроизвольно испускает лептоны 1-го поколения - электрон (позитрон) и электронное нейтрино (электронное антинейтрино), переходя в ядро с тем же массовым числом А, но с атомным номером Z, на единицу бòльшим или меньшим. При e- захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино. В литературе для e-захвата часто используется термин EC (Electron Capture).
Существуют три типа β-распада β - -распад, β + -распад и е-захват.
β - : (A, Z) → (A, Z+1) + e - + e ,
β + : (A, Z) → (A,Z-1) + e + + ν e ,
е: (A, Z) + e - → (A,Z-1) + ν e .
Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад − процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон. Происходящие при этом внутри ядра превращения нуклонов и энергетические условия β-распада имеют вид (массу нейтрино полагаем нулевой):
β - (n → p + e - + e), M(A, Z) > M(A, Z+1) + m e ,
β + (p → n + e + + ν e), M(A, Z) > M(A, Z-1) + m e ,
e-захват (p + e - → n + ν e), M(A, Z) + m e > M(A, Z-1).

β-Распад, так же как и α-распад, происходит между дискретными состояниями начального (A,Z) и конечного (A,Z±1) ядер. Поэтому долгое время после открытия явления β-распада было непонятно, почему спектры электронов и позитронов, вылетающих из ядра при β-распаде были непрерывными, а не дискретными, как спектры α-частиц.
Экспериментальные факты казались несовместимыми с законами сохранения энергии, импульса, момента количества движения. Так, суммарная энергия электрона и ядра, образовавшегося в результате распада, была меньше энергии начального ядра. Для того чтобы спасти законы сохранения В.Паули в 1930 г. в письме участникам физической конференции в г. Тюбингене высказал предположение, что в процессе β - -распада наряду с электроном должна рождаться еще одна очень легкая (неуловимая) частица с нулевым электрическим зарядом и спином J = 1/2.

В.Паули, 1930 г.: «Дорогие радиоактивные дамы и господа. Имея в виду... непрерывный β спектр, я предпринял отчаянную попытку спасти обменную статистику и закон сохранения энергии. Именно, имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином 1/2. Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0,01 массы протона. Непрерывный β-спектр тогда стал бы понятным, если предположить, что при распаде вместе с электроном испускается ещё и «нейтрон» таким образом, что сумма энергий «нейтрона» и электрона остаётся постоянной».

После открытия в 1932 г. нейтрона Э. Ферми предложил называть частицу В.Паули «нейтрино». В 1933 г. на Сольвеевском конгрессе В.Паули выступил с докладом о механизме β-распада с участием нейтральной частицы со спином J = l/2. Гипотеза Паули спасла не только закон сохранения энергии, но и законы сохранения момента количества движения и импульса. Были отвергнуты последние сомнения в том, что надежно зарекомендовавшие себя в классической физике законы сохранения в квантовых процессах нарушаются. В 1934 г. Э. Ферми построил теорию β-распада, основанную на законе сохранения энергии и предположении, что из ядра одновременно вылетают электрон и нейтрино. Ферми объяснил наблюдаемый энергетический спектр электронов и связал скорость β-распада с максимальной энергией электронов, вылетающих при β-распаде. Наиболее важным элементом теории β-распада Ферми было утверждение, что в ядре нет электронов.

Электрон и нейтрино возникают в момент β-распада атомного ядра.

Этот распад аналогичен испусканию света атомом. Световой квант не существует в атоме, а возникает в результате изменения состояния атома. Нейтрино было экспериментально обнаружено в 1956 г. в экспериментах Ф.Райнеса и К.Коэна.

Основные характеристики электрона

Основные характеристики электронного нейтрино

Характеристика Численное значение
Спин J, ћ 1/2
Масса m ν c 2 , эВ < 3
Электрический заряд, Кулон 0
Магнитный момент, eћ/2m e c < 10 -10
Время жизни / Масса, сек/эВ > 7·10 9 (солнечные нейтрино)
> 300 (реакторные нейтрино)
Лептонное число L e +1
Лептонные числа L μ , L τ 0

1924 г. В. Паули предложил принцип Паули

(от лат. Radio – «излучаю» radius – «луч» и activus – «действенный») – явление спонтанного превращения неустойчивого изотопа химического элемента в другой изотоп (обычно другого элемента) (радиоактивный распад) путем излучения гамма-квантов, элементарных частиц или ядерных фрагментов.
Символ, используемый для обозначения радиоактивных материалов Радиоактивность открыл в 1896 г. Антуан Анри Беккерель. Произошло это случайно. Ученый работал с солями урана и завернул свои образцы вместе с фотопластинки в непрозрачный материал. Фотопластинки оказались зажженными, хотя доступа света к ним не было. Беккерель сделал вывод о невидимом глазу излучение солей урана. Он исследовал это излучение и установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу урана.
В 1898 г. Пьер Кюри и Мария Склодовская-Кюри открыли излучения тория, позднее были открыты полоний и радий. в 1903 году супругам Кюри была присуждена Нобелевская премия. На сегодня известно около 40 природных элементов, обладающих радиоактивностью.
Установлено, что все химические элементы с порядковым номером, большим 83 – радиоактивные.
Естественная радиоактивность – спонтанный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность – спонтанный распад ядер элементов, полученных искусственным путем, через соответствующие ядерные реакции.
Эрнест Резерфорд экспериментально установил (1899), что соли урана излучают 3 типа лучей, которые по-разному отклоняются в магнитном поле:
Спектры?-и?-излучений прерывистые («дискретные»), а спектр?-излучения – непрерывный.
?-распад
Беккерель доказал, что?-лучи представляют собой поток электронов. ?-распад – проявление слабого взаимодействия.
?-распад – внутришньонуклонний процесс, т.е. происходит превращение нейтрона в протон с вылетом электрона и антинейтрино с ядра:

+ ?.

После?-распада атомный номер элемента меняется и он смещается на одну клетку в таблице Менделеева.
?-распад
?-распадом называют самопроизвольный распад атомного ядра на ядро-продукт и?-частицу (ядро атома ).
?-распад является свойством тяжелых ядер с массовым числом А >= 200. Внутри таких ядер за счет свойства насыщения ядерных сил образуются обособления?-частицы, состоящие из двух протонов и двух нейтронов. Образована таким образом?-частица сильнее ощущает кулоновское отталкивание от других протонов ядра, чем отдельные протоны. Одновременно на?-частицу меньше влияет ядерное мижнуклонне притяжения за счет сильного взаимодействия, чем на остальные нуклонов.
Правило смещения Содди для?-распада:

В результате?-распада элемент смещается на 2 клетки к началу таблицы Менделеева. Дочернее ядро, образовавшееся в результате?-распада, обычно также оказывается радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивные ядро, которым чаще всего является ядра свинца или висмута.
?-распад
Гамма лучи это электромагнитные волны с длиной волны, меньше размеры атома. Они образуются обычно при переходе ядра атома из возбужденного состояния в основное состояние. При этом количество нейтронов или протонов в ядре не меняется, а значит ядро остается прежним элементом. Однако излучение гамма-лучей может сопровождать и другие ядерные реакции.
При радиоактивном распаде происходят превращения ядер атомов. Энергии частиц, которые при этом образуются, намного больше энергии, выделяемых в типичных химических реакциях. Поэтому эти процессы практически не зависят от химического окружения атома и от соединений, в которые этот атом входит. Радиоактивный распад происходит спонтанно. Это означает, что невозможно определить момент, когда распадется то или иное ядро. Однако для каждого типа распада является характерное время, за которое распадается половина всех радиоактивных ядер. Это время называется периодом полураспада. Для разных радиоактивных изотопов период полураспада может лежать в очень широких пределах – от наносекунд до миллионов лет. Изотопы с малым периодом полураспада очень радиоактивны, но быстро исчезают. Изотопы с большим периодом полураспада слабо радиоактивные, но эта радиоактивность сохраняется очень долгое время.

Детектирования радиоактивных излучения основано на его действия на вещество, в частности ее ионизации. Исторически впервые радиация была зарегистрирована благодаря почернение облученной фотопластинки. Фотоэмульсии, в которых под действием радиации происходят химические реакции, до сих пор остаются одним из методов детектирования. Другой принцип детектирования используется в счетчиках Гейгера – возникновение несамостоятельного электрического разряда в облученном газе. Дозиметры, которые регистрируют не отдельные акты пролета быстрой заряженной частицы, часто используют изменение свойств, например проводимости, облученного материала
Радиоктивнисть зависит от количества нестабильных изотопов и времени их жизни. Система СИ определяет единицей измерения активности Беккерель – такое количество радиоактивного вещества, в которой за секунду происходит один акт распада. Практически эта величина не очень удобна, поэтому чаще используют внесистемные единицы – Кюри. Иногда употребляется единица Резерфорд.
Относительно воздействия радиоактивного излучения на облученные вещества, то используются те же единицы, что и для рентгеновского излучения. Единицей измерения дозы поглощенного йонизуючи излучения в системе Си является Грей – такая доза, при которой в килограмме вещества выделяется один Джоуль энергии. Единицей биологического действия облучения в системе СИ является Зиверт. Внесистемная единица выделенной при облучении энергии – советов.
Такая единица, как рентген является мерой не выделенной энергии, а ионизации вещества при радиоактивном облучении. Для вимирювавння биологически действия облучения используется биологический эквивалент рентгена – бэр.
Для характеристики интенсивности облучения используют единицы, описывающие скорость набора дозы, например, рентген в час.
Радиоактивное облучение приводит к значительному повреждению ткани. Ионизация химических веществ в биологической ткани создает возможность химических реакций, которые несвойственны для биологических процессов, и к образованию вредных веществ. Повреждения радиацией ДНК вызывает мутации. Работа с радиоактивными веществами требует тщательного соблюдения правил техники безопасности. Радиоактивные вещества помечаются специальным символом, приведенным вверху страницы.
Радиоактивные вещества хранятся в специальных контейнерах, сконструированных таким образом, чтобы поглощать радиоактивное излучение. Большой проблемой является захоронение радиоактивных отходов атомной энергетики.
Радиоактивные вещества можно использовать для получения энергии в условиях, когда другие источники энергии недоступны, например, на космических аппаратах, предназначенных для полетов в отдаленных планет Солнечной системы. Энергия, выделяемая при радиоактивном распаде в таких устройствах может быть преобразована в электрическую с помощью термоэлементов.
В медицине радиоактивное облучение используется при лечении некоторых форм рака, рассчитывая на то, что раковые клетки, которые быстро делятся, чувствительны к облучению, а потому вражатимуться быстрее.
Метод меченых атомов позволяет провести анализ обмена веществ в организме и помогает при диагностике заболеваний.
Датировка за радиоактивными изотопами помогает установить возраст предметов и пород и применяется в геологии, археологии, палеонтологии.
Радиоактивность и радиоактивные вещества также широко используются в различных областях научных исследований.
Все виды радиоактивных излучений, сопровождающих радиоактивность, называют йонизуючи излучениями. Йонизуючи излучения – процесс возбуждения и ионизации атомов вещества при прохождении через них гамма-квантов и частиц, образовавшихся вследствие?-и?-распада. При прохождении, например, гамма-квантов сквозь вещество, кванты превращаются в пар электрон-позитрон при условии, что энергия гамма-кванта превышает энергию этих двух частиц (> 1 МэВ). ?-частицы быстро теряют всю энергию, поскольку возбуждают все атомы, которые встречаются на их пути (1-10 см на воздухе, 0,01-0,2 мм в жидкостях). ?-частицы менее эффективно взаимодействуют с веществами (2-3 м на воздухе, 1-10 мм в жидкостях). ?-кванты обладают наибольшей проникающей способностью. Нейтроны, не имеющие электрического заряда, непосредственно не йонизують атомы. Однако в результате взаимодействия нейтронов с ядрами возникают быстрые заряженные частицы и гамма-кванты, которые являются йонизуючи частицами. При длительному пребыванию человека в зоне радиоактивного излучения происходит ионизацию и возбуждение ее клеток. В результате клетки вступают в новые химические реакции и образуют новые химические вещества, нарушающие нормальное функционирование организма. Мерой действия йонизуючи излучений является поглощенная доза излучения (Грей), равный отношению переданной йонизуючи излучениями энергии к массе вещества (D = E / m). Мощность дозы излучения измеряется отношение поглощенной дозы излучения до времени (Pв = D / t). Радиоактивное излучение используют при рентгенологическом обследовании.



Понравилась статья? Поделитесь с друзьями!