Что такое солнечный парус. Солнечный парус: простая идея, которая поможет нам долететь до звезд

Кратко о статье: Раньше извозчики кричали: «Но, пошла!», летчики - «От винта!», а Гагарин ограничился лаконичным: «Поехали!». Вполне возможно, что через каких-нибудь 20-30 лет космонавты будут оглашать радиоэфир «морскими» возгласами типа: «Поднять грот, убрать бом-брамсели!», ведь солнечный парус - дешевое, доступное, и очень эффективное средство перемещения в космосе, которое сейчас рассматривается как один из лучших способов путешествия человека на Марс. Все, что вы хотели бы узнать об этом - в новой статье «Поднять паруса!».

Поднять паруса!

Солнечный парус - путь к звездам

Все с детства знают, что то-то и то-то невозможно. Но всегда находится невежда, который этого не знает. Он-то и делает открытие.

Альберт Эйнштейн

Парус - простейшее устройство, сотни лет исправно служившее людям. Земля осваивалась именно под парусами. Но в конце 19 века они уступили место сначала паровым машинам, затем - дизельным двигателям, а позже на службу человеку встали космические ракеты и атомная энергия. Казалось бы, парусные корабли навсегда “уплыли” в область спорта, отдыха богачей, дорогих исторических фильмов и авантюрных морских романов.

Как говорил Рабинович в известном анекдоте: “Не дождетесь!”. Ведущие специалисты в области исследования космоса уже не один десяток лет серьезно обсуждают вопрос о применении солнечного паруса в космосе. Многие из нас слышали этот термин и примерно представляют себе принципы работы солнечного паруса. Но что такое солнечный парус при ближайшем рассмотрении? Действительно ли он эффективнее химических ракетных двигателей?

Автора!

Почти 400 лет назад выдающийся немецкий астроном Иоганн Кеплер (1571-1630), наблюдая кометы, установил, что их хвосты постоянно направлены в сторону, противоположную от Солнца. Трактат “О кометах”, опубликованный им в 1619 году, объяснял это явление воздействием солнечного света (идея по тем временам не только бредовая, но и откровенно опасная). Так или иначе, Кеплер был первым, кто предположил, что солнечный свет оказывает давление на хвосты комет.

На протяжении нескольких последующих столетий космосом интересовались лишь астрономы, шарлатаны и шизофреники, причем первые исследовали его чисто академически - лететь туда они не собирались, а остальные уж и подавно не могли придумать способа использовать солнечный свет для путешествий к другим планетам.

Теория давления света в рамках классической электродинамики была выдвинута Джеймсом Кларком Максвеллом в 1873 году, который связал это явление с передачей импульса электромагнитного поля веществу.

Так уж сложилось - западные ученые в наше время крайне неохотно вспоминают о том, что некоторые великие научные открытия были сделаны в России. Они совершенно не связывают изобретение радио с Поповым, а лампочка накаливания никак не ассоциируется у них с Лодыгиным. Однако все без исключения исследователи признают, что пионерами в области разработок космического паруса являются наши соотечественники.

Так, давление света на твердые тела было впервые исследовано Петром Николаевичем Лебедевым (1866-1912) в 1899 году. В его опытах использовался вакуумированный (~10 в минус четвертой степени миллиметров ртутного столба) стеклянный сосуд, где на тонкой серебряной нити были подвешены коромысла крутильных весов с закрепленными на них тонкими дисками-крылышками из слюды (они-то и подвергались облучению). Именно Лебедев экспериментально подтвердил справедливость теории Максвелла о давлении света.

Солнечный парус как таковой был изобретен другим русским ученым - Фридрихом Артуровичем Цандером (1887 - 1933). Он впервые рассмотрел несколько конструкций этого устройства, наиболее целесообразная из которых была подробно описана им в 1924 году в неопубликованном варианте статьи “Перелеты на другие планеты”.

Солнечный парус, по замыслу ученого, должен был иметь площадь в 1 квадратный километр при толщине экрана 0,01 миллиметра и массу 300 килограммов. Парус должен был иметь центральную ось и некоторый набор силовых элементов, поддерживающих его форму. Цандер отмечал, что толщина экрана может быть еще меньше, так как Эдисону удалось изготовить никелевые листы толщиной 0,001 миллиметра и размером 3200 квадратных метров.

Ученый также попытался разработать основы теории движения космических аппаратов под солнечным парусом. Он считал целесообразным направлять на солнечный парус космического аппарата поток света, собранный вторым парусом, расположенным на некоторой промежуточной межпланетной станции. Эта его идея перекликается с современными предложениями об использовании для разгона космического аппарата искусственного лучистого (лазерного) ветра, обеспечивающего существенно большее давление на поверхность, чем солнечные лучи.

Это нтересно:
  • Кто изобрел парус, точно неизвестно. Однако 6000 лет назад египтяне уже уверенно пользовали прямой парус, плавая по Нилу.
  • Клипер “Проссейн”, построенный в начале 20 века гамбургской компанией “Лаэш”, имел самую большую в мире площадь парусов - 6500 кв. м.
  • Самые быстрые парусники в истории человечества - чайные клипера (конец 19 века) развивали скорость до 20 узлов (37 км/ч)
  • В теории космический парусник может разгоняться до 30% от скорости света и даже выше.
  • Давление солнечного света на орбите Земли составляет 9.12 µN/m 2 (меньше веса муравья).
  • “Солнечный парус” появился во втором эпизоде “Звездных войн” (“Звездные войны 2: Атака клонов”) на корабле графа Дуку (он же Саруман, он же Кристофер Ли).

Что мы имеем?

Некоторые источники называют солнечный парус “световым” - чаще всего это происходит в тех случаях, когда в качестве источника света предлагается использовать не Солнце, а, например, лазер.

Принцип работы этого устройства прост до безобразия - космический корабль разворачивает большое полотно - парус, который либо отражает, либо поглощает (рассматриваются варианты и с черным парусом) фотоны света.

На орбите Земли (1 астрономическая единица расстояния от Солнца) парус массой 0,8 г/м 2 испытывает примерно такое же по силе воздействие солнечного света. Давление обратно пропорционально квадрату расстояния от Солнца. Заметим, что парус может быть гораздо тяжелее - и все равно он останется более-менее функциональным, хотя и не сможет самостоятельно раскрываться под действием солнечного ветра (придется разворачивать его механическим путем).

Главным неудобством солнечного паруса является то, что он может двигать корабль лишь в сторону от Солнца, а не к нему. Иногда высказывается мнение, что полет в направлении Солнца возможен, если идти галсами (здесь очевидна аналогия с зигзагообразным движением морского парусника против ветра). Изменяя угол наклона солнечного паруса относительно падающего на него света, можно легко управлять космическим кораблем, сколь угодно часто меняя его траекторию (удовольствие, недоступное для ракетных двигателей).

Основное и самое главное достоинство “парусного” способа перемещения в космическом пространстве - полное отсутствие топливных затрат. Альтернатив современным химическим ракетам на околоземном пространстве пока нет - они сравнительно дешевы и способны вывести на орбиту грузы в сотни тонн.

Однако когда речь заходит о межпланетных путешествиях, преимущества химических ракет заканчиваются. Они попросту не способны обеспечить кораблю постоянное ускорение (а, следовательно, сообщить ему как можно более высокую скорость) - ведь, по сути, свыше 90% их массы составляет стремительно расходуемое горючее. По самым скромным расчетам, для путешествия на Марс понадобится 900 тонн топлива - и это при том, что масса полезной нагрузки будет примерно в 10 раз меньше. Про ракеты еще говорят - “топливо везет само себя”.

На первый взгляд, космический парус очень медлителен. Да, действительно, начальные этапы его разгона будут напоминать гонки черепах. Однако не следует забывать, что ускорение действует постоянно (для паруса массой 0,8 г/м 2 начальное ускорение будет равно 1,2 мм/с 2). В условиях безвоздушного пространства это позволит достичь огромных скоростей за весьма короткие сроки.

К сожалению, обсуждение перспектив использования солнечного паруса в космосе не касается одного очень важного вопроса - как будет осуществляться торможение корабля на таких гигантских скоростях? Для межзвездных экспедиций ответ есть - за счет использования солнечного паруса, развернутого в противоположную сторону (однако это существенно увеличит время полета). А как быть с путешествием, допустим, на Марс? Везти с собой ракетное топливо неэффективно, а использование новых типов двигателей (например, разрабатываемых в настоящее время ионных) пока находится под вопросом.

Материя и форма

Материал, из которого сделаны солнечные паруса, должен быть максимально легким и прочным. В настоящее время наиболее перспективными являются полимерные пленки - милар и каптон (толщиной 5 микрон), алюминизированные (тончайший слой металла в 100 нанометров) с одной стороны, что придает им отражающую способность до 90%.

Здесь есть свои сложности. Милар очень дешев и легкодоступен (чуть более толстые пленки имеются в открытой продаже), но непригоден для длительного применения в космосе, так как разрушается под воздействием ультрафиолетового излучения. Каптон более устойчив, однако минимальная толщина такой пленки - 8 микрон, и это уменьшает ходовые качества такого паруса.

В настоящее время ученые надеются на развитие нанотехнологий - с их помощью можно будет создать легчайший и сверхэффективный солнечный парус из углеродных нанотрубок.

Форма (конструкция) парусов имеет едва ли не большее значение, чем материал, из которого они сделаны.

Самый простой и надежный (но более тяжелый, а, следовательно - не слишком быстрый) солнечный парус имеет каркасную конструкцию. Больше всего он напоминает воздушного змея - легкая крестообразная рама является несущей основой для четырех треугольных парусов, надежно закрепленных на ней. Форма каркаса может быть разной - даже круглой. Очевидное преимущество такой конструкции заключается в надежной фиксации парусов - они не смогут свернуться и ими легко управлять (поворачивать под разным углом к свету).

Существуют проекты парусов, не имеющих каркаса - так называемая “вращающаяся конструкция”. Эти модели выполнены в виде лент, закрепленных на космическом аппарате. Как следует из названия, раскрытие парусов этого типа обеспечивается вращением корабля вокруг своей оси. Центробежные силы (на концах лент закреплен небольшой груз) вытягивают их в разные стороны, позволяя обойтись без тяжелого каркаса. Теоретически, такая конструкция обеспечивает более высокую скорость передвижения в космосе, чем каркасная, за счет своего малого веса.

Таковы основные варианты строения солнечного паруса. Предлагаются также и другие модели, например - полотна, свободно парящие в космосе и прикрепленные к кораблю при помощи тросов. Это - своеобразный “гоночный” вариант парусов - при всех их скоростных преимуществах они ненадежны и сложны в управлении.

Еще один вариант (хотя некоторые исследователи и склонны выводить его в отдельный класс транспортных средств будущего) - это так называемый “плазменный парус”.

Плазменные паруса будут представлять собой миниатюрную модель магнитного поля Земли. Точно так же, как наше магнитное поле прогибается под напором солнечного ветра, магнитное поле (диаметром 15-20 километров), окружающее космический корабль, будет отступать под давлением заряженных частиц.

Что день грядущий нам готовит?

9 августа прошлого года японский институт космонавтики (ISAS) произвел запуск и развертывание двух полноценных солнечных парусов на низких орбитах (122 и 169 км.).

Но страна восходящего солнца не стала первой в области испытаний солнечных парусов. Пальма первенства (с некоторыми оговорками) опять принадлежит России - 4 февраля 1993 года был проведен эксперимент “Знамя-2” с развертыванием 20-метровой тонкопленочной конструкции за счет использования центробежных сил на борту корабля “Прогресс М-15”, пристыкованного к орбитальной станции “Мир”.

Почему это первенство с оговорками? Дело в том, что основной задачей эксперимента было не испытание тяговых качеств этого полотна, а освещение участка земной поверхности отраженным светом - еще одна вполне реальная функция солнечных парусов.

На эту весну (предположительные сроки - нынешний месяц) был запланирован кластерный (на одной ракете класса “Днепр”) запуск спутников АКС-1 и АКС-2 компании “Космотранс”. Каждый из них весит около двух килограммов (контейнер 30х30х40 см.) и несет в себе солнечный парус размером с теннисный корт (толщина - 2 микрометра).

На поверхности пленки будут смонтированы позолоченные сенсоры, регистрирующие динамику распределения зарядов по площади паруса над сейсмоопасными районами Земли.

Помимо испытаний ходовых качеств космических парусников, предполагается провести ряд экспериментов по сверхчувствительному зондированию земной поверхности (предсказание землетрясений) и освещению ее пятном света диаметром в пять километров. Спутники будут выведены на 800-километровую орбиту и смогут находиться там на протяжении нескольких столетий.

Словом - если посмотреть на состояние дел в области развития космоплавания (Циолковский, кстати, называл космонавтику именно так), то освоение ближайших планет солнечной системы перестает быть научной фантастикой. В настоящее время солнечный парус - самый перспективное устройство для передвижения в космосе, имеющее целый ряд преимуществ перед химическими ракетными двигателями. Кто знает, может быть, через 20-30 лет мы с вами сможем купить билет на космический парусник и полететь в отпуск на Марс?

Как почитать?

“Солнечный ветер” , Артур Кларк - рассказ (и одноименная антология) о гонке космических парусников.

“Мошка в зенице Господней” , Ларри Нивен, Джерри Пурнелл - в книге показан инопланетный корабль, приводимый в движение при помощи солнечного паруса и лазера.

“Мир Роша” , Роберт Лалл Форвард - цикл романов, в котором описывается межзвездное путешествие на солнечном парусе, освещаемом лазером.

“Путь на Амальтею” , “Стажер” , А. Стругацкий, Б. Стругацкий - описан космический грузовик “Тахмасиб”, оснащенный генератором фотонов на термоядерной плазме и 750-метровым отражателем.

» (поток фотонов , именно он используется солнечным парусом) и «солнечный ветер » (поток элементарных частиц и ионов, который предполагается использовать для полётов на электрическом парусе - другой разновидности космического паруса).

Давление солнечного света чрезвычайно мало (на Земной орбите - около 5·10 −6 Н/м 2 ) и уменьшается пропорционально квадрату расстояния от Солнца . Однако солнечный парус совсем не требует ракетного топлива , и может действовать в течение почти неограниченного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя .

Солнечный парус в проектах звездолётов

Солнечный парус - самый перспективный и реалистичный на сегодня вариант звездолёта .

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволит увеличить полезную нагрузку по сравнению с космическим кораблем на реактивном движении.

Недостатком солнечного парусника является тот факт, что за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида. Данный проект ставит проблему точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Уже сейчас можно построить межзвёздный зонд, использующий давление солнечного ветра.

Существует 2 варианта солнечных парусников: на давлении электромагнитных волн и на потоке частиц.

Космическая регата

Солнечный парус диаметром 20 метров, разработанный в НАСА

Толщина солнечного паруса

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к Марсу. Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА , и получил первую премию конкурса .

Космические аппараты, использующие солнечный парус

Схема стабилизации космического аппарата

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса .

Первое развёртывание солнечного паруса

Первое развёртывание солнечного паруса в космосе было произведено на российском корабле «Прогресс» 4 февраля 1993 года в рамках проекта «Знамя» .

См. также

  • Космический парус
    • Магнитный парус

Примечания

Ссылки

  • Консорциум «Космическая регата» - Проекты - Солнечные паруса и рефлекторы

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Солнечный парус" в других словарях:

    Устройство (напр., в виде металлизированной пленки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Большой Энциклопедический словарь

    Устройство (например, в виде металлизированной плёнки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Энциклопедический словарь

    Солнечный парус - (тент) использовался летом в амфитеатрах для защиты от солнца во время многочасовых представлений. Надписи на стенах в Помпее, возвещающие о таких представлениях, снабжались особой пометкой: vela erunt имеется С. п. Археологами обнаружены … Словарь античности

    солнечный парус - Light Sailor Световой (солнечный) парус Система приведения в движение космического корабля, которая получает толчок от давления света, падающего на тонкую металлическую плёнку … Толковый англо-русский словарь по нанотехнологии. - М.

    Один из возможных движителей космического летательного аппарата (КЛА); представляет собой устанавливаемую на КЛА и развёртываемую в полёте непрозрачную плёнку (например, металлизированная полимерная) большой площади, способную сообщить… … Большая советская энциклопедия

    Солнечный парус - тент, использов. летом в амфитеатрах для защиты от солнца во время многочас. представл. Надписи на стенах в Помпее, возвещ. о таких представл., снабжались особой пометкой: имеется С. п. Археологами обнаруж. спец. конструкции для натягив … Древний мир. Энциклопедический словарь

    солнечный парус - Устройство в виде, например, металлизированной плёнки большой площади, служащее для перемещения в космосе объекта (тела) под действием светового давления солнечных лучей. В современной космонавтике это пока единственный нереактивный двигатель. E … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    Космос 1 Cosmos 1 Космос 1 (компьютерная модель) Производитель … Википедия

    У этого термина существуют и другие значения, см. Парус (значения). Парусное судно Парус ткань или пластина, прикрепляемая к средству передвижения и преобразующая энергию ветра в энергию поступательного движения … Википедия

    Форма двигателя для космического аппарата, использующая в качестве источника тяги импульс ионов солнечного ветра. Придуман в 2006 году доктором финского метеорологического института Пекка Янхуненым Власти Евросоюза проявляют повышеный интерес … Википедия

Книги

  • Солнечный парус. Фантастика или реальность космоплавания? С дополнениями. Solar Sail Motion in Near-Sun Regions. Русско-английский путеводитель по современной терминологии , Е. Н. Поляхова, В. В. Коблик. В настоящей книге отражены основные динамические принципы современной теории космоплавания, т. е. полета в космосе под солнечным парусом, движущимся под действием светового давления солнечных…

На смену романтики путешествий морских пришла романтика путешествий космических. Но, как ни странно, парусам – неизменному атрибуту и символу первооткрывателей, найдётся место и в космосе. Сегодня мы поговорим о космическом парусе.

Начиная с середины 18го века учёные всего мира (Эйлер, Френель, Бессель и др.) пытались измерить силу давления света. Впервые осуществить такие измерения удалось П. Лебедеву в 1899 году. Всем сразу стало ясно, что и солнечный свет давит на космические тела. Вскоре советскому учёному Ф. Цандеру пришла в голову идея солнечного паруса.

Солнечный парус – это приспособление, использующее давление света Солнца для перемещения в космическом пространстве.

История изучения природы света и светового давления. Старый, но очень понятный фильм.

Если поместить в космосе зеркальную металлическую пластинку, то поток света от Солнца будет «давить» на её поверхность. Подуйте с силой на свою ладонь - чувствуете, как воздух давит на кожу? Давление солнечного света будет действовать на металлическую пластинку в миллиард раз слабее того, что вы чувствуете. Вам кажется этого мало? Вовсе нет. Ведь в космосе нет силы сопротивления воздуха, какая есть на Земле.

Как работает солнечный парус

Если на орбите Земли поместить квадрат из фольги размерами всего лишь 100 на 100 метров, то каждые 10 секунд такой «парус» будет увеличивать свою скорость на сантиметр в секунду! Всего за 40 дней такой парус разгонится от первой до второй космической скорости, за полгода – до третьей космической скорости – скорости, достаточной для того, чтобы навсегда покинуть Солнечную систему. Но главное, что это произойдёт без расхода топлива двигателей, то есть даром. Воистину это бесценный подарок природы!


Макет космического аппарата «Икар» - типичный вид космического корабля с солнечным парусом

Почему это важно? Приведём только один пример. В разгонном блоке марсохода «Сuriosity» вес топлива составлял 21 тонну, что строго ограничивало массу самого марсохода – не более 900 килограмм. Вес научного оборудования на марсоходе вообще смешная цифра: 80 килограмм. А больше взять было нельзя: не хватит топлива долететь до Марса. Использование солнечного паруса наравне с обычными двигателями позволит взять чуть меньше топлива, а значит – увеличить вес приборов на марсоходе. Каждый сэкономленный килограмм в космосе – это ещё один научный прибор, ещё одна крупица бесценной информации об окружающем нас мире, ещё один шаг на пути прогресса. Подобных примеров множество.

Какие космические аппараты использовали солнечный парус?
На сегодняшний день было проведено всего лишь несколько успешных испытаний солнечного паруса. Первое в 1993м году в России. Тогда солнечный парус (20 метров в диаметре) прикрепили к космическому грузовику «Прогресс», отстыковавшемуся от станции «Мир». В эксперименте исследовалась способность освещения темной стороны Земли с помощью этого зеркала.


1993 г. - первый в истории человечества опыт создания солнечного паруса. Эксперимент “Знамя-2”

Затем в 2010м году американский аппарат NanoSail-D успешно раскрыл солнечный парус, находясь на околоземной орбите. Задача солнечного паруса была в том, чтобы столкнуть с орбиты спутник и «похоронить» его в плотных слоях атмосферы. Таки образом проверялась возможность самоликвидации отработавших свой ресурс спутников, чтобы они не болтались бесполезным космическим мусором вокруг Земли.

Видео: как раскрывался парус NanoSail-D

Третьим космическим аппаратом, бороздившим космос под парусами, стал запущенный в 2010м году японский «Икар» (ikaros). Мечтательно прикрывая глаза, учёные скромно надеялись, что аппарат хотя бы сможет раскрыть парус (в который были вшиты солнечные рули и солнечные батареи) без накладок. Зонд не только успешно расправил в космосе крылья 200 квадратных метров сверхтонкого космического паруса, но и отлично справился с регулировкой своей скорости и направления полёта. В январе 2012го года «Икар» отключился из-за недостатка энергии, проработав дольше любых ожиданий учёных.

Кадры движения японского "Икара"

Заключение или планы на будущее

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус, – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.

Как знать, быть может именно вы, стоя в центре управления полётами, однажды скомандуете: «Поднять паруса!» - и упрямый солнечный ветер погонит космический корабль на встречу неизведанному.

Дорогие друзья! Если вам понравился этот рассказ, и вы хотите быть в курсе новых публикаций о космонавтике и астрономии для детей, то подписывайтесь на новости наших сообществ

Научно-исследовательская работа

На тему

«Солнечный парус»

Выполнил:

Швец Николай Игоревич

Ученик 10 класса

МБОУ «СОШ №25»

Г. Тулун

Научный руководитель:

учитель физики

Татарникова Надежда Михайловна

ОГЛАВЛЕНИЕ

Введение………………………………………………………………………….3

Солнечный парус………………………………………………………………………………3

Область применения солнечного паруса……………………………………………………………………………..4

Конструкция СП…………………………………………………………………………...…….6

Расчет времени разгона, необходимого

для выхода из сферы притяжения земли……………………………………………………………………...……….8

МОБ(межорбитальный буксир) использующий СП……………………………………………………………………………...…..9

Заключение………………………………………………………………………12

Список литературы…………………………………….…………………………………13

ВВЕДЕНИЕ

Актуальность данной работы в том, что широкой публике мало что известно о солнечном парусе, эта тема поднимается очень редко, и интересна сама ее нетривиальность, не говоря уже о конкретной информации.

Целью исследования является определение эффективности использования СП в областях науки и техники, а так же сравнение эффективности СП с эффективностью традиционных космических аппаратов, доказать что преимущество КА под солнечным парусом по сравнению с КА на ракетном двигателе заключается в более высоком КПД. Для достижения поставленной цели, были определены следующие задачи исследования:

1. Рассмотреть вопросы, связанные с использованием СП и современным состоянием работ в этой области.
2. Рассчитать время полета до Марса на КА с СП

3. Рассмотреть конструкцию СП на основе пневмокаркасов.
4. Ознакомиться с расчетами времени разгона КА под солнечным парусом с круговой орбиты до второй космической скорости.
5. Предложить схему разгона МОБ под солнечным парусом с использованием вспомогательных орбитальных КА.

СОЛНЕЧНЫЙ ПАРУС

Идея солнечного паруса (СП), использующего в качестве движущей силы давление солнечного света не нова. Она впервые возникла в 20-х годах и в течение десятков лет рассматривалась различными авиа и космическими организациями. Наш соотечественник Ф. А. Цандер, известный своими многочисленными трудами в области космонавтики, предложил выводить на орбиту космические зеркала (отражатели) передающие световую энергию Солнца на поверхность Земли для непосредственного использования. Дальнейшее освоение космического пространства, осуществление межпланетных перелетов, вынуждает конструкторов искать принципиально новые решения в построении космических кораблей. Одним из вариантов межпланетного космического корабля является солнечный парус. Плюс солнечного паруса по сравнению с лазерным парусом - солнечный парус не зависит от источника света, а минус - солнечный свет слабее, чем лазерный свет. СП не расходует топливо для разгона; в космосе паруса наполняет не ветер, а давление частиц солнечного света - фотонов. Оно заставляет

парусник непрерывно разгоняться (или тормозить). КА с солнечным парусом будет ускоряться очень не спеша, но со временем сможет достичь невиданных скоростей. Давление фотонов достаточно велико, чтобы КА мог путешествовать между планетами - от Меркурия до Юпитера; для преодоления еще больших расстояний на парус можно направить лазерный луч, запитываемый опять-таки солнечной энергией. Аспекты приложения технологии СП достаточно широки: от удержания спутников в точке стояния на геостационарной орбите до дальних шаттлов, несущих грузы между планетами, астероидами и кометами. Подлетая близко к Солнцу, парусники будущего смогут разгоняться до огромных скоростей, что позволит им сближаться с любым объектом Солнечной системы или, как уже говорилось выше, летать к звездам. Выгоды СП огромны: в сообщении студии «Космос» говорится, что парусник теоретически может летать в 10 раз быстрее, чем станции Уоуадег-1 и -2, которые достигли третьей космической скорости.

ОБЛАСТЬ ПРИМЕНЕНИЯ СОЛНЕЧНОГО ПАРУСА

Область применения солнечного паруса и солнечного парусного корабля огромна. Они могут использоваться для:
- обнаружения геомагнитных бурь,
- исследования нашей Солнечной системы,
- ретрансляции энергии, теле и радиосвязи,
- освещения отдельных районов Земли,
- очистки космоса от технологического «мусора»,
- межпланетных перелетов под солнечным парусом,
- создания крупных антенн в космосе для разведки полезных ископаемых и других полезных задач.

Солнечный парус и солнечный парусный корабль - прогрессивное направление Российской и мировой космонавтики. Его можно использовать в системах обнаружения плазменных штормов. Известно, что геомагнетические штормы могут быть причиной потери космических кораблей, сбоев в GPS (глобальная система позиционирования) сигналов, и даже сбоев наземных электрических сетей. Протоны с высокой энергией даже могут быть летальными для астронавтов, которые находятся в открытом космосе. Точное предсказание таких событий может быть сделано с помощью наблюдения за солнечным ветром. Такое наблюдение может быть осуществлено с помощью магнетометров и детекторов частиц на борту корабля, находящегося между Солнцем и Землей. Это можно сделать с помощью солнечного парусного корабля. Кроме того, СП можно использовать для межпланетных перелетов. Так, при полете к Марсу корабль выводится сначала ракетой - носителем на начальную низкую околоземную орбиту высотой около 200 км. Затем при помощи блока он переводится на стартовую орбиту высотой в несколько тысяч километров.

Продолжительность этих операций составит около 48 ч, после чего производится развертывание парусов, и под действием солнечного света корабль начинает разгон по спиральной траектории. Управляя ориентацией паруса, добиваются превращения орбиты в эллиптическую с постоянно возрастающим апогеем. Было рассчитано, что длительность разгона к Луне в этом случае составит около 120 суток. Время старта, а затем разгона выбирается так, чтобы парусник вышел в заданную область гравитационного поля Луны. Это позволит решить следующую задачу - перевести СПК на траекторию межпланетного полета к Марсу. Взаимное расположение Земли и Марса на этом этапе тоже подбирается так, чтобы вначале уменьшить период гелиоцентрической орбиты («торможение»), а затем афелий орбиты увеличить, чтобы достичь орбиты Марса («разгон»). Суммарное время, требуемое СПК для достижения Марса, составит около 1,9 года.

Обозначим давление света на орбите Земли Pо. Известно, что давление света меняется с расстоянием по закону: P ~ 1/R2. Найдем давление света посередине расстояния между Землей и Марсом: P 1/2 = Po (Rз/0.5(Rз+Rм)) 1/2 . Здесь Rз – радиус орбиты Земли = 1.5* 10 11 м, Rм – радиус орбиты Марса = 2.28 *10 11 м. Для простоты будем считать, что в течение времени движения космического аппарата от Земли до Марса Земля и Марс находятся на одной прямой, проведенной из центра Солнца. На самом деле это, конечно, не так. Будем считать, что на всем пути от Земли до Марса на парус действует постоянное давление света, равное P1/2 . Пусть площадь паруса равна S. Тогда сила, действующая на парус (т.е. на космический аппарат) F =P1/2 S. Из второго закона Ньютона найдем ускорение, с которым будет двигаться космический аппарат массы M: a = F/M = P1/2 S/M. Используя известное соотношение из курса физики (Механика) s = at2/2, где s – пройденный путь за время t (в нашем случае s= Rм – Rз) найдем время движения космического аппарата от Земли до Марса под действием давления солнечного света:

t = (2 (R м - R з)/ (P 1/2 S /M )) 1/2 = (2 (2,28*10 11 – 1,5*10 11)/0,0000045*10) 1/2 = 5887406с ~1,9 года

КОНСТРУКЦИЯ СП

Роторный солнечный парус состоит из восьми лопастей. Каждая в раскрытом виде представляет собой мембрану, натянутую на пневмокаркас трубчатого сечения диаметром 150 мм, изготовленный из полиэтишертерафталатной пленки толщиной 20 мкм и погонной массой 28 г/м2. Площадь натянутой на каркас мембраны 75 м2. Она изготовлена из металлизированной с одной стороны полиэтилтертерафталатной плёнки толщиной 5мкм и погонной массой 7 г/м2. Металлизированная поверхность мембраны обращена к Солнцу. Пневмокаркас служит для организации процесса развертывания лопасти СП, поддержания заданной формы и обеспечения жесткости при передаче сил и моментов от давления солнечного ветра на лопасть. Жесткость пневмокаркаса и его устойчивость обеспечивается остаточным давлением рабочего газа (азота) внутри пневмокаркаса, составляющим около 7000 Па. Лопасть развертывается из рулона и приобретает форму при срабатывании пирозамков.



Схема запуска солнечного паруса

на примере cosmos -1

Аппарат с СП, наряду с разгонной двигательной установкой (РДУ) и защитным кожухом, входит в состав головного блока (ГБ) ракеты-носителя. Конструктивная основа КАСП - приборная платформа, на которой крепятся РДУ с смонтированной на ней системой отделения, защитный кожух, блок парусов, приборное оборудование и служебные системы. Приборная платформа устанавливается на адаптер (раму) РН и соединяется с ним пирозамками. На ее герметичном днище размещаются узлы крепления РДУ, антенна 400 МГц, антенна GPS, антенны S-диапазона, солнечные датчики, две фотокамеры, газовые сопла системы ориентации и стабилизации, а также панели фотоэлектрических преобразователей. На оставшееся свободное пространство днища с наружной и внутренней стороны нанесены покрытия с оптическими свойствами, обеспечивающими требуемый тепловой режим. С внутренней стороны платформы размещаются радиокомплексы ДМ и S-диапазонов, приемник GPS, бортовой компьютер, датчик микроускорений, блок ДУСов, аккумуляторная батарея, два газовых баллона, ресивер и арматура СОиС. На верхнем фланце платформы установлен блок парусов - стойка, на которой размещены сборки парусов приводами, системой наполнения, механизмы фиксации и расчековки. До выведения на рабочую орбиту КАСП закрыт защитным радио-прозрачным кожухом. Масса КАСП перед включением апогейного двигателя составляет 130 кг, перед раскрытием солнечного паруса - 63.7 кг.


РАСЧЕТ ВРЕМЕНИ РАЗГОНА, НЕОБХОДИМОГО ДЛЯ ВЫХОДА ИЗ СФЕРЫ ПРИТЯЖЕНИЯ ЗЕМЛИ

В качестве примера рассмотрим разгон до параболической скорости КА, снабженного солнечным парусом при отлете с геостационарной орбиты. Пусть стартовая масса КА равна 2000 кг, площадь СП равна 10000 м2 , погонная масса материала СП = 7 г/м2 . Тогда имеем: mпар= S · СП = 10000 м2 · 7 г/м2= 70000 г = 70 кг

Полная сила, действующая на СП равна F= S · p = 10000 · 10 -5 = 0,1 H; Определим ускорение КА F = m · а;


Найдем характеристическую скорость, которую должен развить КА для выхода из сферы притяжения Земли


Вычислим время разгона


МОБ(межорбитальный буксир) ИСПОЛЬЗУЮЩИЙ СП

МОБ использующий солнечный парус - это космический аппарат нового типа с массой в несколько сотен килограммов и площадью парусов в несколько гектаров, движущихся под действием солнечного света, разгоняемый и управляемый автономно, без затрат рабочего тела двигателя. Его конструкция имеет два кольцевых бескаркасных, вращающихся в разные стороны пленочных паруса, поддерживающих свою форму под действием центробежных сил. Управляется и ориентируется корабль за счет использования гироскопических сил. Для этого корабля, осуществляющего полет в космосе, не требуется огромной энергии. Маленькие силы могут медленно и устойчиво разгонять транспортное средство до огромных скоростей. Поскольку энергия имеет массу, солнечный свет, попадающий на тонкую пленку - солнечный парус, обеспечивает такую силу. Притяжение Солнца обеспечивает другую силу. Давление света и гравитация могут носить космические корабли в любое место Солнечной системы. После ускорения в течение года солнечный парус может достичь скорости сто километров в секунду, оставляя сегодняшние ракеты далеко позади. В связи с тем, что такой корабль не может стартовать с Земли, солнечный парус необходимо строить в космосе. Хотя каркас и будет занимать огромную площадь, он (вместе с материалами) будет достаточно легок, чтобы вывести его на орбиту за 1-2 полета космического челнока. При движении по орбите вокруг Земли парус может разгонять КА только на одной половине оборота, на второй половине (встречное по отношению к Солнцу движение) оборота парус необходимо разворачивать вдоль направления солнечных лучей, чтобы избежать торможения. Данный недостаток МОБ на солнечном парусе можно избежать, если использовать дополнительные КА, которые будут собирать солнечный свет и направлять его с помощью передающей антенны на солнечный парус МОБ. Используя несколько таких вспомогательных, постоянно действующих КА с площадью приемных антенн существенно большей, чем у МОБ, можно обеспечить постоянный разгон МОБ. При одинаковом направлении исходных лучей света и сфокусированного луча передающей антенны суммарный импульс, действующий на вспомогательные КА будет равен нулю. Если же направления лучей не совпадают, то возникает необходимость использования на вспомогательных КА реактивных двигателей, например ЭРД, для компенсации неуравновешенного импульса.


Схема полета МОБ под солнечным парусом. 1- Вспомогательный КА. 2- Антенны приема солнечного излучения. 3- Передающая антенна. 4- Приемная антенна МОБ. 5- МОБ.

ЗАКЛЮЧЕНИЕ

Идея СП, за почти 100 лет своего существования претерпела определенные изменения. Перспектива в ближайшем будущем запустить высокотехнологичный межзвездный зонд на солнечном парусе со скоростью выше 0,01 с очень интригующая. Стоимость зонда на солнечных парусах на много порядков ниже чем стоимость зонда с ракетным двигателем. Теоретически, корабль с солнечным парусом способен достичь скорости в100000 км/с и даже выше. Если бы в 2010 году запустили в космос такой зонд, то (в идеальных условиях) в 2018 он догнал бы “Вояджер-1”, которому для этого путешествия потребовался бы 41 год. В настоящее время “Вояджер-1” (запущенный в 1977) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем. Это лишний раз доказывает, что космический аппарат с СП на порядок эффективнее традиционных КА.

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Возможно, самой волнующей миссией с использованием СП в ближайщее время сможет стать отправка космического аппарата, который раскроет парус вблизи орбиты Венеры или даже Меркурия, а затем отправится за пределы Солнечной системы и за несколько десятилетий достигнет гелиопаузы. Этот аппарат сможет на месте наблюдать взаимодействие солнца с галактикой. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.

Впервые солнечный парусник появился на страницах фантастического романа Жоржа ле Фора и Анри де Граффиньи «Необыкновенные приключения русского ученого» (1888−1896), еще до того как Петр Николаевич Лебедев доказал реальность предсказанного Максвеллом светового давления. Идею солнечной яхты подхватил русский фантаст Борис Красногорский. За книгой «По волнам эфира» (1913) последовали написанные в соавторстве с историком астрономии Даниилом Святским «Острова эфирного океана» (1914). В середине 1920-х солнечные паруса пропагандировали Циолковский и Фридрих Цандер.

В 1951 году американский инженер Карл Уайли напечатал в литературном журнале Astounding Science Fiction статью «Космические клипперы», где вполне серьезно обсуждалась возможность межпланетных путешествий на солнечной тяге. Семь лет спустя физик из корпорации IBM Ричард Гарвин и сотрудник Лос-Аламосской национальной лаборатории Тед Коттер опубликовали первые технические работы, посвященные солнечным парусам (кстати, именно Гарвин ввел в обращение термин solar sailing). В 1960-х на космических парусниках путешествовали герои таких известных писателей-фантастов, как Кордвейнер Смит, Пьер Буль, Артур Кларк.

От теории к практике

В последние десятилетия солнечные паруса из красивой, но чисто теоретической идеи стали превращаться в реальность. Пока речь идет о довольно скромных экспериментах с разворачиванием солнечного паруса на околоземной орбите (разворачивание паруса и поддержание его в развернутом состоянии — одни из основных проблем концепции). Первый из таких экспериментов был проведен в 1993 году, когда на российском грузовом корабле «Прогресс М-15» было успешно развернуто двухметровое тонкопленочное зеркало. В 2001 году спутник Cosmos-1, запущенный на средства Американского планетарного общества, должен был впервые сманеврировать на орбите с помощью 15-метрового паруса из металлизированного майлара. К сожалению, этому помешал сбой в работе одной из ступеней ракеты-носителя «Волна», так что спутник так и не достиг орбиты. В 2004 году к исследованиям подключилась Япония: во время суборбитального полета ракеты S-310 были опробованы две различные конструкции солнечного паруса. Однако, несмотря на эти успехи, от экспериментов до полноразмерных парусных космических кораблей еще очень, очень далеко.

Полевые паруса

Когда говорят о космическом солнечном парусе, обычно имеют в виду легкое зеркало, которое отражает световые лучи, тем самым ускоряя аппарат-носитель. Оно может быть жестким и гибким, стационарным и съемным. Но солнечным парусом можно назвать также устройство, отбрасывающее не свет, а солнечный ветер — поток быстрых заряженных частиц (в основном протонов, ионов гелия и электронов), покинувших солнечную атмосферу. Эта возможность впервые обсуждалась 400 лет назад в письме Кеплера к Галилею. Кеплер обратил внимание на то, что хвосты комет всегда направлены в сторону от Солнца. Он выдвинул предположение, что их сносит «космический бриз», и предсказал появление небесных кораблей, оснащенных парусами, надуваемыми этим ветром.

Электрический парус

В 2004 году сотрудник Финского метеорологического института Пекка Янхунен выдвинул концепцию электрического паруса. Частицы солнечной плазмы отклоняются проводящей сетью площадью в несколько сотен километров, на которую от корабельных генераторов подается положительный потенциал. Такая сеть станет отражать массивные частицы солнечного ветра, то есть протоны и ионы, которые тоже несут положительный заряд (при этом придется каким-то образом отбрасывать солнечные электроны, иначе они нейтрализуют электрическое поле паруса). Для обеспечения оптимальной тяги экипаж корабля будет отслеживать скорость и плотность солнечного ветра и регулировать напряжение, подаваемое на сетку-парус. По мнению Янхунена, такие паруса смогут разогнать космический корабль до скорости порядка 100 км/с.



Понравилась статья? Поделитесь с друзьями!