Почему отклоняются лучи света в поле тяготения. Портрет вселенной сквозь гравитационную линзу

Экспериментальные подтверждения ОТО

Эффекты, связанные с ускорением систем отсчёта

Первый из этих эффектов - гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле - Китинга, а также в эксперименте Gravity Probe A и постоянно подтверждается в GPS.

Непосредственно связанный с этим эффект - гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом). Гравитационное красное смещение было обнаружено в спектрах звёзд и Солнца и надёжно подтверждено уже в контролируемых земных условиях вэксперименте Паунда и Ребки.

Гравитационное замедление времени и искривление пространства влекут за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет Солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров.

С наибольшей на 2011 год точностью (порядка 7·10 −9) этот тип эффектов был измерен в эксперименте, проведённом группой Хольгера Мюллера из Калифорнийского университета. В эксперименте атомы цезия, скорость которых была направлена вверх по отношению к поверхности Земли, действием двух лазерных пучков переводились в суперпозицию состояний с различающимися импульсами. Вследствие того, что сила гравитационного воздействия зависит от высоты над поверхностью Земли, набеги фаз волновой функции каждого из этих состояний при возвращении в исходную точку различались. Разность между этими набегами вызывала интерференцию атомов внутри облака, так что вместо однородного по высоте распределения атомов наблюдались чередующиеся сгущения и разрежения, которые измерялись действием на облако атомов лазерными пучками и измерением вероятности обнаружения атомов в некой выбранной точке пространства.

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и, когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что на самом деле в ОТО угловой сдвиг направления распространения света в два раза больше, чем в ньютоновской теории, в отличие от предыдущего рассмотрения. Таким образом, это предсказание стало ещё одним способом проверки ОТО.



С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также с высокой точностью проверено радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.

Гравитационное линзирование происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z = 1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу - далёкую галактику (z = 0,36), лежащую между Землёй и квазаром» ] . С тех пор было найдено много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием. Например, известен так называемый Крест Эйнштейна, где галактика учетверяет изображение далёкого квазара в виде креста.

Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу), и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд - МАСНО, EROS (англ. ) и другие.

Чёрные дыры

Чёрная дыра - область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результатколлапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названногоизлучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрельце а* в центре нашей Галактики. Подавляющее большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются фермионные шары, бозонные звёзды и другие экзотические объекты.

Опыт 1919 г. по наблюдению отклонения световых лучей в гравитационном поле Солнца. Гравитационные линзы

Все материальные частицы, в силу теории тяготения Ньютона, должны притягиваться к Солнцу. С другой стороны, с позиций классической физики свет является волной , а не частицей - поэтому уравнения для распространения световой волны в гравитационном поле не отличаются от уравнений в его отсутствии. В результате световые лучи в классической физике в поле тяготения Солнца не искривляются. Дифракционными эффектами при наблюдении звезд вблизи солнечного диска можно пренебречь, поскольку радиус первой зоны Френеля (см. Дифракционный опыт Араго–Пуассона) составляет

где - длина волны света, - расстояние от Земли до Солнца, - радиус Солнца.

Заметим, что уравнения для распространения световой волны являются релятивистскими , так что отсутствие отклонения лучей в ньютоновском поле тяготения не есть результат применения нерелятивистского аппарата к движению со скоростью света. Действительно, если рассмотреть релятивистскую частицу с массой в том же поле тяготения, то, согласно специальной теории относительности, имеем уравнения движения:

т.е. тяготение, вообще говоря, искривляет траекторию движения. Масса пробной частицы сокращается, и тогда в ультрарелятивистском пределе мы получаем:

где - единичный вектор в направлении скорости. Для света , и мы получаем отсутствие искривления траектории!

Вот к такому интересному результату приводит последовательное рассмотрение задачи об отклонении лучей света в рамках специальной теории относительности. Если же мы хотим выдвинуть не нарушающее принцип эквивалентности обобщение ньютоновской теории гравитации, необходимо выбрать одну из двух альтернатив:

  1. Ни световые волны, ни ультрарелятивистские частицы не искривляют свой путь в гравитационном поле (пример - специальная теория относительности);
  2. Ультрарелятивистские частицы отклоняются гравитационным полем - но последнее отклоняет и волны. Наличие отклонения волн должно означать, что гравитационное поле создает в вакууме эффективный показатель преломления, из-за неоднородности которого и искривление лучей.

В частности, если просто добавить в ньютоновскую силу тяготения множитель , ультрарелятивистские частицы начнут отклоняться, пролетая вблизи Солнца, - однако свет, описывающийся уравнениями Максвелла, будет продолжать распространяться по прямой. С одной стороны, это нарушает гипотезу де Бройля - свет, рассматриваемый как частица и как волна, должен распространяться по разным траекториям. С другой стороны, различие в траекториях светового луча и разогнанного почти до световой скорости электрона можно использовать, чтобы отличить действие гравитации от действия сил инерции - другими словами, нарушается принцип эквивалентности .

В общей теории относительности Эйнштейна избран второй из двух путей: свет действительно отклоняется в гравитационном поле - независимо от того, используется ли волновое или корпускулярное описание. Данный результат достигается автоматически, поскольку эйнштейновская теория - метрическая теория гравитации . Иными словами, гравитация воспринимается как кривизна пространства-времени, а сама кривизна определяется через задание расстояний между бесконечно-близкими его точками:

Материальные точки (в том числе безмассовые фотоны) в искривленном пространстве-времени движутся по траекториям наименьшей длины - геодезическим. Можно также показать, что по ним движутся и волновые пакеты - таким образом, корпускулярно-волновой дуализм не разрушается. Сама же кривизна пропорциональна отличию суммы углов маленького треугольника, построенного из отрезков геодезических, от 180 градусов. Ниже представлены срезы двумерных пространств с постоянной кривизной: пространство Лобачевского (гиперболоид, отрицательная кривизна) и пространство Римана (сфера, положительная кривизна).

Примерами пространства Лобачевского могут служить седло на лошади, а также чипсы Pringles (см. ниже).

Проверить наличие отклонения лучей в поле тяготения Солнца могли бы еще первые астрономы, если бы в том возникла необходимость. Поскольку конкуренция различных теорий гравитации (ньютоновской, эйнштейновской, теории Нордстрема и др.) обострилась только в начале XX века, первые наблюдения этого эффекта датируются только 1919 годом. Эта дата обусловлена также экспериментальными и историческими обстоятельствами. Во-первых, наблюдать звезды вблизи солнечного диска (т.е. днем!) реально только во время полного солнечного затмения. Во-вторых, начавшаяся Первая мировая война приостановила все исследования.

Интересно заметить, что еще Генри Кавендиш, исходя из современной ему физики, предсказал отклонение лучей вблизи Солнца. В 1801 году величина этого эффекта была вычислена Иоганном фон Сольднером (1776–1833). Это и неудивительно - ведь в нерелятивистской механике лучи должны отклоняться, как и любые другие тела. Тем не менее, Альберт Эйнштейн уже после создания специальной теории относительности провел то же самое вычисление, получив ненулевой результат (1907). Лишь в 1915 году, после глубокого анализа следствий принципа эквивалентности, приведшего его к формулировке общей теории относительности, Эйнштейн пересчитал отклонение лучей - и оно оказалось в два раза бо льшим. Итак, мы имеем следующие предсказания угла отклонения различных теорий:

Таким образом, в общей теории относительности Эйнштейна угол отклонения лучей составляет величину, в два раза большую нерелятивистского значения. Этот эффект приводит к сдвигу видимых положений звезд, находящихся рядом с солнечным диском, во время затмения. На рисунке ниже свет од звезды B наблюдателю A кажется идущим из точки B ` , отстоящей от B на угловое расстояние на небесной сфере.

Именно этот эффект и исследовал Артур Стэнли Эддингтон (1882–1944) во время затмения 1919 года: фотографии неба во время солнечного затмения сравнивались с фотографиями, сделанными ночью на полгода раньше (тогда Земля была точно так же обращена к небесной сфере). Наблюдения проводились независимо в разных точках земного шара, где наблюдалось полное солнечное затмение. Результаты экспериментов совпали предсказаниями Эйнштейна в пределах 25%. Дальнейшие эксперименты также подтвердили этот результат.

Ныне эффект отклонения лучей в гравитационном поле стал вполне привычным в астрономии: массивные скопления галактик создают вокруг себя гравитационное поле, которое действует как собирающая гравитационная линза . При этом эта линза отнюдь не является тонкой, поэтому изображения галактик за скоплением искажается. Один источник света может образовать после линзирования круг Эйнштейна (рис. 1), а также несколько копий одного и того же изображения, например, крест Эйнштейна (рис.2). Наконец, рис. 3 демонстрирует в виде анимации структуру кругов Эйнштейна вблизи черной дыры.

Еще Ньютон задавался вопросом: не подвержены ли световые лучи действию сил тяготения? В те времена на этот вопрос нельзя было ответить ни положительно, ни отрицательно, опытные данные итеоретические обобщения на этот счет не могли сказать ничего.

После установления связи между массой и энергией стало ясно, что свет должен обладать инертной массой, ведь давно известно, что световые волны переносят энергию. А если так, то, согласно принципу эквивалентности, свет должен иметь и тяжелую массу, т. е. закон всемирного тяготения должен распространяться и на лучи света. Пролетая мимо тяжелого тела, свет должен отклоняться от прямолинейного пути (рис. 37). Наблюдатель, находящийся в точке А, увидит источник света В не в направлении АВ, а в направлении АВ` . Впечатление будет такое, словно тяжелое тело С отталкивает находящиеся позади него источники света.

На это явление Эйнштейн указал еще в 1907 году; однако величина самого отклонения была им вначале вычислена неправильно. В последующих работах 1911 и 1915 гг. он внес необходимые исправления и обратился к астрономам с предложением попытаться проверить эти выводы.

Дело в том, что отклонение это весьма мало. Сразу же оказывается, что искривление световых лучей вблизи любого тела, находящегося в нашем распоряжении на земной поверхности, столь незначительно, что пытаться обнаружить его на опыте абсолютно безнадежно. Для этого массы всех этих тел чересчур малы. Единственное, что можно надеяться обнаружить — это искривление лучей света вблизи Солнца. Если бы можно было рядом с Солнцем увидеть звезды, то эффект отталки вания мог бы, в принципе, быть заметным.

Но как увидеть звезды рядом с Солнцем? Эта возможность осуществляется в моменты полных солнечных затмений. Ввиду того, что даже у самого края Солнца, несмотря на колоссальную его массу, смещения звезд все же чрезвычайно малы (примерно в тысячу раз меньше видимого углового диаметра Солнца), обнаружить их можно только фотографическим путем. Для этого следует с помощью подходящего астрономического инструмента сделать снимок прилегающей к Солнцу части неба в момент затмения, а затем, примерно через полгода, когда те же самые звезды будут видны ночью, произвести тем же самым инструментом по возможности в тех же условиях второй, контрольный снимок. Сравнивая их между собой под микроскопом (смещения звезд на пластинке составляют сотые доли миллиметра), можно попытаться обнаружить и измерить эффект Эйнштейна.


Первым опытам помешала начавшаяся мировая война, но в 1919 году двум астрономическим экспедициям посчастливилось получить сравнительно удачные снимки. После тщательных измерений и надлежащей, их обработки обнаружилось, что эффект отталкивания несомненно существует. Численная его величина оказалась чрезвычайно близкой к той, которую вычислил Эйнштейн.

Опубликование этих результатов в свое время произвело очень сильное впечатление. Теория относительности привлекла всеобщее внимание, О ней заговорили буквально все; очень скоро интерес к ней принял совершенно беспрецедентные размеры. Статьи по теории относительности печатались во всевозможных журналах, вплоть до медицинских и сельскохозяйственных. Эйнштейн стал одним из самых популярных Людей в мире.

Однако трезвая оценка результатов наблюдений эффекта Эйнштейна показала в дальнейшем, что результаты эти более чем скромны. Отклонение световых лучей вблизи Солнца действительно обнаруживалось. Но точное его измерение связано с целым рядом трудностей. Отклонение по своей величине весьма мало и близко к пределу точности астрономических измерений. Во время фотографирования солнечные лучи сильно воздействуют на приборы, нагревая и деформируя их важнейшие детали, в том числе зеркала и линзы. Контрольные снимки производятся всегда так или иначе в других условиях (например, при другой температуре). Все это в сильнейшей степени снижает надежность количественных результатов. Поэтому вывод о «блестящем подтверждении предсказаний теории относительности» в данном случае следует признать несколько поспешным.

После 1919 года попытки наблюдения эффекта Эйнштейна неоднократно повторялись, в том числе и советскими учеными (А. А. Михайлов), но положение улучшилось мало. Количественное согласие формулы Эйнштейна с опытом все еще находится под вопросом. Что же касается качественной стороны дела, то теперь можно считать с полной уверенностью, что вывод теории относительности об отклонении света под действием силы тяжести полностью подтвержден наблюдениями.

Любая теория справедлива в том случае, если ее следствия подтверждаются на опыте. Так было со многими известными теориями, в том числе с теорией ОТО Эйнштейна. Она была своевременным и необходимым этапом в физике и подтверждена многочисленными экспериментами. Существенным ее элементом было представление гравитации как искривление пространства, которое может быть описано различными метриками (геометрией пространства). Согласно искривлению пространства звездами, галактиками лучи света отклоняются гравитацией. Астрономические наблюдения блестяще подтвердили эту геометрическую концепцию. Искусственность ОТО до сих пор вызывает сомнение, неудовлетворенность у части физиков. Необходимо найти физическое обоснование наблюдаемым явлениям и вообще природе гравитации. Автором была высказана гипотеза о природе гравитации . Она основана на исследовании электрической компоненты структуры вакуума и в дальнейшем дополнена компонентой магнитного континуума. В таком виде физический вакуум представляет собой среду распространения электромагнитных волн (ЭМВ); рождения вещества при внесении в нее необходимой энергии; среду образования «разрешенных орбит» электронов в атомах, волновых свойств частиц и т.п.

Скорость света не является постоянной в космическом пространстве. Это составляет основное отличие теории вакуума теорий А. Эйнштейна . На основе астрономических наблюдений и теории структуры вакуума предлагается следующая формула для зависимости скорости света от ускорения силы тяжести:

(1)

α –1 = 137,0359895 – обратная величина постоянной тонкой структуры излучения;

r = 1,39876·10 –15 м – дипольное расстояние электрической компоненты структуры вакуума;

g [м/с 2 ] – локальное ускорение силы тяжести;

E σ = 0,77440463 [a –1 m 3 c –3 ] – удельная электрическая поляризация вакуума;

S = 6,25450914·10 43 [a ·s ·m –4 ] – деформационная поляризация вакуума.

Зная скорость света, измеренную в условиях Земли как 2,99792458(000000)·10 8 м/с, определим скорость по формуле (1) в открытом космосе с 0 = 2,997924580114694·10 8 м/с. Она мало отличается от земной скорости света и определяется с точностью до 9 знака после запятой. При дальнейшем уточнении земной скорости света произойдет изменение указанной величины для открытого космоса. Из волновой теории света Френеля и Гюйгенса известно, что коэффициент преломления при переходе из среды со скоростью с 0 в среду со скоростью с е равен

В нашем случае угол падения луча к нормали поверхности Солнца равен i 0 =90°. Для оценки величины отклонения света Солнцем можно привести две модели распространения света.

1. Модель преломления света при переходе из «пустого» полупространства в полупространство с солнечным ускорением силы тяжести 273,4 м/с 2 . Естественно, эта простейшая модель даст заведомо неверный результат, а именно: согласно приведенному коэффициенту преломления угол определяется как

13,53" (угловых секунд).

2. Более точную модель необходимо рассчитывать дифференциально-интегральным способом, исходя из функции распространения луча, в поле нарастающего и спадающего по закону 1/R 2 гравитационного потенциала Солнца. Помощь пришла совершенно с неожиданной стороны – из сейсмологии. В сейсмологии решена задача определения хода луча упругих волн в Земле из источника (землетрясение, подземный атомный взрыв) на поверхности и его угла выхода вплоть до противоположной стороны Земли. Угол выхода и будет той искомой аналогией отклонения Солнцем луча от источника либо на сфере, включающей орбиту Земли, либо на большом удалении от Солнца. В сейсмологии есть простая формула для определения угла выхода сейсмической волны через постоянный параметр луча

p = [R 0 / V (R )] · cos(i ) = const , где:

R 0 – радиус Земли; V (R ) – функция скорости упругих волн в зависимости от расстояния (радиуса от центра Земли); i – угол выхода.

Преобразуем сейсмологическую формулу для космических расстояний и скорости света:

M s – масса Солнца. R – переменный радиус сферы, в центре которой находится Солнце, определяемый вдоль луча до источника света, проходящего в непосредственной близости от Солнца; 2,062648·10 5 – перевод радиан угла в секунды.

Возникает вопрос о константе в этой формуле. Он может быть разрешен на основании мировых фундаментальных констант, хорошо известных науке. Опытная величина угла отклонения составляет 1,75".

На основании этой величины определяем, что

const = Δt const (M x R 2 sun / M sun R x 2) / (π · 137,0359) 2 .

Число π и обратная величина постоянной тонкой структуры являются фундаментальным константами нашего современного мира. Число Δt const = 1[s ] необходимо для внесения размерности. Отношение (M x R 2 sun / M sun R x 2) – введено для всех возможных масс во Вселенной и их размеров так, как это принято в астрономии: приводить все массы и размеры к солнечным параметрам.

На рис. 1 приведена зависимость угла отклонения луча света Солнцем в зависимости от расстояния до его источника.

Рис. 1. Зависимость угла отклонения луча света Солнцем от расстояния до источника вдоль трассы, проходящей рядом с Солнцем

Получили полное соответствие с точными опытными данными. Любопытно, что при перемещении источника внутрь сферы, отвечающей траектории Земли, угол отклонения луча Солнцем уменьшается по графику рисунка. К предсказанию данной теории можно отнести то, что луч света от источника на поверхности Солнца или вблизи отклонится только на 1,25".

Решение Шварцшильда:

Здесь R g = 2MG / c 2 – радиус Шварцшильда или гравитационный радиус.

Отклонение луча света i = 4MG / c 2 R = 1,746085", где R – прицельное расстояние, равное в нашем случае радиусу Солнца.

Формула (1) дает: i = 1,746054". Разница только в 5-м знаке.

  1. Полученные результаты свидетельствуют, по меньшей мере, о непротиворечивости предлагаемой концепции. Образование в космосе так называемых «гравитационных линз» также объясняются зависимостью скорости света от гравитации.
  2. В ОТО и в теории вакуума имеются одинаковые экспериментальные подтверждения.
  3. ОТО является скорее геометрической теорией, дополненной законом тяготения Ньютона.
  4. Теория вакуума имеет в своей основе только физические соотношения, которые позволили открыть гравитацию в виде поляризации вакуума в присутствии масс, которые испытывают притяжение структурой вакуума по законам индукции Фарадея.
  5. ОТО исчерпала себя в возможностях развития физики, теория вакуума открыла возможность исследования вакуума в качестве природной среды и открывает пути для прогресса физики и технологий, связанных со свойствами вакуума.

В заключение приношу глубокую признательность астрофизику П.А. Тараканову за очень полезное замечание относительно переменной массы в формуле для луча отклонения, где можно заменять массу Солнца любой другой известной науке массой.

Литература

  1. Рыков А.В. Начала натурной физики // ОИФЗ РАН, 2001 г., с. 54.
  2. Саваренский Е.Ф., Кирнос Д.П. Элементы сейсмологии и сейсмометрии // Гос. тех.-теор. Издат, М.: 1955, с. 543.
  3. Clifford M.Will. The Confrontation between General Relativity and Experiment // Preprint of Physical Reviewer (arXiv: gr- qc/ 0103036 v1 12 Mar 2001).

Наш предыдущий рассказ о космологии в пятом номере журнала за этот год закончился на том, что недавно титул самого далекого объекта Вселенной вновь поменял своего владельца. С помощью десятиметрового телескопа имени У.Кека (о.Гавайи) была открыта галактика, у которой красное смещение линий в спектре составляет z = 4,921. А это означает, что ее расстояние от нас около десяти миллиардов световых лет и что мы видим ее такой, какой она была десять миллиардов лет назад, то есть спустя совсем малое время после начала расширения Вселенной.

Весьма впечатляющее открытие. Его авторы — М.Франкс из университета в Гронингене (Нидерланды) и Г.Иллингворт из Калифорнийского университета в Санта-Круз (США), — понимая, что в руках у них уникальный объект, продолжили его исследование с помощью самой мощной астрономической техники. Когда изображение галактики-чемпиона было получено космическим телескопом имени Хаббла, оказалось, что эта звездная система имеет необычную дугообразную форму. Астрономы знают — таких галактик не бывает! Поэтому авторы открытия заявили, что реальная форма галактики искажена эффектом «гравитационной линзы». Что же это за «линза», сквозь которую мы можем рассматривать галактики?

«Конечно, нельзя надеяться на то, что удастся прямо наблюдать это явление.»
А.Эйнштейн, из статьи «Линзоподобное действие звезды при отклонении света в гравитационном поле», 1936 год

Эффект Эйнштейна

Отклонение луча света при его прохождении близ массивного тела — явление вполне очевидное, если только считать свет потоком корпускул, как это делали многие физики XVIII века. В таком случае для частиц света справедливы законы ньютоновой небесной механики. Используя их, немецкий ученый Зольднер рассчитал в 1801 году, что луч света от далекой звезды, проходящий вблизи поверхности Солнца, должен отклониться на 0,87 угловой секунды. Но вскоре, благодаря опытам Френеля, в физике утвердилась волновая теория света, и о работе Зольднера надолго забыли. Лишь в 1915 году, создавая общую теорию относительности, Альберт Эйнштейн вновь рассчитал отклонение света в поле Солнца (но уже в рамках новой физики) и получил вдвое больший угол: 1,75 угловой секунды. Это различие и стало одним из тестов для новой теории гравитации.

Ожидаемый Эйнштейном эффект был экспериментально подтвержден уже в 1919 году: тогда во время полного солнечного затмения экспедиция астрономов под началом Артура Эддингтона определила, что изображения звезд, видимые близ края солнечного диска, немного смещаются относительно своих обычных мест на небе. Искривляя лучи звезд, Солнце заставляет их изображения отступать от центра светила именно на ту ничтожную величину, которую предсказал Эйнштейн и которую (к счастью для него) астрономы с их легендарной «астрономической точностью» умеют измерять. Эффект едва заметен для чувствительнейших приборов, и мало кто мог ожидать тогда, что это тончайшее явление когда-нибудь породит важную научную методику.

Гравитационная линза

Но астрономы сразу же обратили внимание на эффект Эйнштейна: ведь массивное тело отклоняет лучи света так же, как объектив телескопа — то есть по направлению к оптической оси. Следовательно, где-то далеко лучи должны собраться в точке фокуса. Расстояния эти действительно велики: ближайшая к Солнцу точка его фокуса расположена в 550 раз дальше Земли. Впрочем, большие расстояния не пугают астрономов, у которых «лабораторный стол» — это весь необъятный космос. Поэтому англичане О.Лодж и А.Эддингтон уже в 1919 — 1920 годах рассматривают свойства «гравитационных линз», но оптимистических выводов еще не делают.

Трудно представить, что в России тех лет кого-то могла взволновать эта экзотика, однако же в 1924 году гравитационные линзы обсуждает знаменитый петербургский профессор физики Орест Даниилович Хвольсон. В 1935 году ими заинтересовался ленинградский астроном Гавриил Адрианович Тихов, прочитавший в январе следующего года лекции о них в Ленинграде и Пулкове, а в 1938 году опубликовавший статью об этом в журнале «Природа».

Впрочем, в те годы интерес к гравитационным линзам уже ощутим. Сам Эйнштейн публикует в журнале «Science» сообщение, отмечая, как это видно из эпиграфа к нашей статье, весьма пессимистические перспективы практического использования таких «линз». Более поздние работы показали, что ситуация со звездой-линзой еще хуже, чем думал Эйнштейн: любое отклонение формы звезды от идеального шара, например, вызванное ее вращением, только затруднит обнаружение эффекта.

Вообще говоря, заметить эффект гравитационной линзы можно по характерному изображению находящегося за ней далекого источника. Если наблюдатель расположен точно на оптической оси идеальной линзы, то это изображение выглядит ярким кольцом (известным теперь как «кольцо Эйнштейна»), а когда наблюдатель смещается в сторону от оси, кольцо тускнеет и разрывается на две дуги, которые стягиваются в точки. Причем одна из них приближается к центру линзы, бледнеет и совсем пропадает, а вторая удаляется от линзы и становится неискаженным изображением источника. Если же гравитационное поле линзы не идеально сферическое, то изображение значительно усложняется и «разваливается» на много частей; распознать в нем указанный эффект становится уже совсем нелегко.

Не менее важно и то, что сама звезда-линза при этом является мощным источником света, расположенным к наблюдателю гораздо ближе изображаемого ею объекта. Ослепляющее действие такой линзы можно преодолеть только в том случае, если она значительно усиливает яркость изображения источника. Это, в принципе, возможно, но только в тот короткий момент, когда наблюдатель располагается точно на оптической оси линзы, попасть на которую случайно, да еще сидя на несущейся в пространстве Земле, шансы невелики.

Но где же те реальные объекты, которые могут играть роль подобных линз? Наше Солнце расположено слишком близко к нам — искривленные им лучи у Земли еще не фокусируются. А ближайшие из звезд так далеки, что размеры колец Эйнштейна вокруг них должны быть в сотые доли угловой секунды. Да и то лишь в том случае, если нам повезло и за одной из них спрятался яркий источник. Во времена Эйнштейна большинство астрономов воспринимали идею поиска такого теоретического изыска как пустую трату времени.

Космические миражи

Но все же нашелся один молодой ученый, весьма серьезно отнесшийся к затее с гравитационными линзами. Это был швейцарский астроном Фриц Цвикки (1898 -1974), проработавший большую часть жизни в США, в Калифорнийском технологическом институте. В 1937 году он высказал мысль, что искривлять световые лучи может не только одна звезда, но и группа звезд. Скажем, целая галактика или даже гигантское скопление галактик. Как раз тогда Цвикки обдумывал, как можно измерить массу скопления галактик, и понял, что искривление света — подходящий индикатор для этого.

Вообще, Фриц Цвикки был удивительно многогранный и плодовитый ученый: он высказал много предвидений, часть из которых подтвердилась еще при его жизни. Например, он предсказал, что при взрыве сверхновой должна рождаться нейтронная звезда, и в конце шестидесятых действительно стал свидетелем открытия нейтронных звезд на месте взрывов сверхновых. Но предсказанное им отклонение света галактиками впервые было обнаружено лишь в 1979 году, когда группа астрономов из Англии и США случайно нашла двойное изображение квазара, образованное, как выяснилось, гравитационной линзой, в качестве которой выступила эллиптическая галактика.

Если в начале нынешнего века отклонение света в поле тяготения едва удавалось заметить, то к концу века этот тонкий эффект превратился в мощный инструмент астрономии. Сейчас с его помощью пытаются решить загадку темной материи, окружающей галактики и проявляющей себя гравитационным полем, но, по-видимому, не излучающей электромагнитных волн.

Роль удаленного источника излучения, просвечивающего гравитационную линзу, обычно играют квазары — объекты гигантской мощности, вероятно, активные ядра молодых, а значит, очень далеких галактик. Роль линзы при этом исполняет более близкая к нам массивная галактика или целое их скопление. За неполные два десятилетия астрономы обнаружили уже более двадцати гравитационно линзированных квазаров, чьи изображения сильно искривлены или даже расщеплены в поле массивного, но сравнительно тусклого объекта. Именно искаженные изображения позволяют выявлять гравитационные линзы, ведь их оптические свойства весьма далеки от совершенства: они не столько фокусируют лучи, сколько переиначивают их ход.

Квазары в комнате смеха

Если бы массивная галактика была идеально круглая, а квазар лежал прямо на ней, то его точечное изображение превратилось бы в «кольцо Эйнштейна». Однако галактики имеют сложную форму, а квазары могут располагаться как угодно, поэтому их изображения в гравитационной линзе обычно представляют систему из нескольких, в простейшем случае — из двух тесно расположенных пятен. Отличить два изображения одного квазара от двух видимых по соседству разных квазаров помогает их высокая активность и переменность блеска: если два изображения мигают синхронно, значит они принадлежат одному квазару.

Правда, иногда одно изображение повторяет «подмигивания» другого с некоторым запаздыванием во времени. Если изображений несколько, то у каждого из них своя временная задержка, поскольку свет каждого изображения добирается до нас своим путем. Измеряя задержку между одинаковыми колебаниями яркости у двух изображений квазара, составляющую от нескольких месяцев до нескольких лет, легко можно вычислить разницу в длине путей светового луча. А если удастся определить форму галактики, то по задержке времени можно найти ее истинный размер. Сравнив его с наблюдаемым угловым размером галактики, легко узнать расстояние до нее, а по положению линий в ее спектре — скорость удаления от нас. Наконец, поделив эту скорость на расстояние, астрономы определяют постоянную Хаббла — фундаментальную величину, описывающую важнейшее свойство Вселенной.

Все это легко в теории, но на практике такая работа требует высочайшего мастерства наблюдателей, причем не только во владении телескопом, но и в применении мощных математических методов обработки изображений. Изучить галактику, выступающую в роли гравитационной линзы, гораздо сложнее, чем обнаружить искаженное ее влиянием изображение квазара. Слабое изображение галактики тонет в ярком свете квазара (хотя по земным меркам оба они суперслабые: не ярче настольной лампы, зажженной на Луне). И все же астрономы взялись за эту задачу.

Недавно группа Фредерика Курбина (Институт астрофизики, Льеж, Бельгия) исследовала на Европейской южной обсерватории (Ла-Силла, Чили) квазар НЕ 1104 -1805, подвергшийся гравитационному линзированию. Отклоняющую свет галактику удалось обнаружить в инфракрасном диапазоне спектра, поскольку именно в этот диапазон сдвинут за счет эффекта Доплера максимум в спектре излучения удаляющейся от нас звездной системы. Квазар же с красным смещением z = 2,3 и раздвоенным гравитационной линзой изображением был открыт в 1993 году. Наблюдения в оптическом диапазоне позволили в 1995 году заметить между изображениями квазара слабый объект неясной природы. И только в 1997 году с помощью новой техники и математических методов обработки изображений удалось понять природу этого объекта.

Получив серию снимков в инфракрасном диапазоне и использовав новый алгоритм для повышения качества изображений, астрономы добились углового разрешения 0,27 угловой секунды, которое прежде было доступно лишь космическому телескопу. Правда, и при этом получить спектр слабой галактики, зажатой между двумя яркими изображениями квазара, не удается. Но поскольку в спектре квазара видны линии поглощения с красным смещением z = 1,66, то совершенно очевидно, что они принадлежат лежащей перед ним галактике. Так удалось узнать ее красное смещение, которое соответствует скорости удаления от нас около двухсот тысяч километров в секунду и расстоянию от шести до девяти миллиардов световых лет.

Если галактика-линза действительно расположена на таком расстоянии, то задержка во времени между вариациями блеска двух изображений квазара должна составлять три-четыре года. Измерив эту величину, астрономы надеются через несколько лет существенно уточнить постоянную Хаббла. Так, шаг за шагом, мы приближаемся к разгадке тайны Вселенной.

Отсутствие фактов — тоже факт

Гравитационная линза быстро становится рабочим инструментом астрофизики. Можно даже сказать — рутинным инструментом, поскольку важным фактом считается не только обнаружение эффекта линзы, но и его отсутствие в некоторых обстоятельствах. Например, недавно, проанализировав данные орбитальной гамма-обсерватории «Комптон», ученые США открыли протяженное гало из жесткого излучения, окружающее нашу Галактику. Для объяснения этого явления было предложено несколько версий.

Во-первых, гамма-кванты могут порождаться космическими лучами, частицы которых при столкновении с оптическими или инфракрасными фотонами передают им свою энергию и превращают их в кванты жесткого гамма-излучения (кстати, этот эффект, как и спутник-обсерваторию, называют именем Комптона). Вокруг некоторых галактик ореол из таких квантов наблюдается. Но в нашей Галактике для этого, как полагают, маловато космических лучей.

Источником гамма-квантов могли бы быть и нейтронные звезды — пульсары. Но для обеспечения наблюдаемой интенсивности их количество в гало Галактики должно быть огромным. И вот тут на сцену выходит эффект гравитационного линзирования: если в гало Галактики так много пульсаров, то почему они не проявляют себя в качестве гравитационных микролинз? Это серьезный аргумент против данной идеи.

Поэтому ученые склоняются к самому экзотическому объяснению гамма-короны Галактики: возможно, облако из гамма-квантов является косвенным доказательством существования во Вселенной «скрытой массы» в виде гипотетических сверхмассивных элементарных частиц. В гало нашей Галактики давно уже подозревается наличие такой «скрытой массы». А гамма-лучи могут возникать при столкновениях этих неизвестных частиц друг с другом.

Похоже, астрономы уже смирились с мыслью, что светящееся вещество Вселенной — все ее звезды и облака межзвездного газа — это лишь светлая «пенка» на поверхности черного, невидимого «кофе» из скрытой массы. Поняв же, стали нащупывать пути обнаружения и изучения этого загадочного невидимого вещества. Пока ясно одно: темное вещество, во всяком случае, является источником гравитации — по этому признаку его и надо искать. Для этой цели как нельзя более подходят гравитационные линзы. Как это часто случается, классики ошиблись в оценке перспектив своих открытий — у гравитационных линз большое будущее.

Невидимые галактики?

В конце 1997 года использование гравитационных линз для поиска скрытого вещества, похоже, принесло первые плоды. Астроном М.Хокинс (Королевская обсерватория, Эдинбург) заявил о том, что одним из невидимых массивных компонентов Вселенной, возможно, являются галактики, лишенные звезд. Свое утверждение он основывает на изучении парных изображений гравитационно линзированных квазаров. При исследовании восьми таких пар Хокинсу только в двух случаях удалось обнаружить отклоняющие свет звездные системы. У остальных шести раздвоенных изображений квазаров оптических следов гравитационной линзы-галактики не обнаружено. А судя по искажению изображений, по массе эти линзы не уступают нашей Галактике.

Хокинс и его коллеги считают, что им посчастливилось открыть таким образом «несостоявшиеся галактики», лишенные звездного населения и состоящие только из газа. Какая же причина помешала этому газу претерпеть гравитационный коллапс и сжаться в звезды? Возможно, виной этому быстрое исходное вращение протогалактического облака: центробежная сила остановила сжатие галактики еще до того, как из газа смогло начаться формирование звезд. Если это действительно так, то астрономы могут торжествовать: им удалось обнаружить еще одного «невидимого зверя Вселенной» — темные галактики. Решит ли это открытие (если оно состоялось) загадку скрытой массы, покажет будущее.

1 Как меру скорости далеких объектов астрономы используют красное смещение линий в их спектре, то есть относительное изменение длины волны линий за счет эффекта Доплера. Поскольку все далекие объекты удаляются от нас, смещение линий всегда происходит в сторону красной части спектра. С учетом релятивистских эффектов красному смещению z = 1 соответствует скорость 180 000 километров в секунду; при z = 2 скорость 214 300 километров в секунду; при z = 3 скорость 233 300 километров в секунду и при z = 4 скорость 245 500 километров в секунду. При хаббловском расширении Вселенной чем дальше объект, тем быстрее он удаляется от наблюдателя; поэтому красное смещение служит также мерой расстояния до далеких галактик и квазаров. Однако простой связи тут нет, поскольку она зависит от истории расширения Вселенной.



Понравилась статья? Поделитесь с друзьями!