Kako sešteti velike frakcije. Ulomki

§ 87. Seštevanje ulomkov.

Seštevanje ulomkov je veliko podobno seštevanju celih števil. Seštevanje ulomkov je dejanje, ki je sestavljeno iz dejstva, da se več danih števil (izrazov) združi v eno število (vsoto), ki vsebuje vse enote in ulomke enot izrazov.

Zaporedoma bomo obravnavali tri primere:

1. Seštevanje ulomkov z enakimi imenovalci.
2. Seštevanje ulomkov z različnimi imenovalci.
3. Seštevanje mešanih števil.

1. Seštevanje ulomkov z enakimi imenovalci.

Razmislite o primeru: 1/5 + 2/5.

Vzemimo segment AB (slika 17), ga vzemimo kot enega in ga razdelimo na 5 enakih delov, potem bo del AC tega segmenta enak 1/5 segmenta AB, del istega segmenta CD pa bo enak 2/5 AB.

Iz risbe je razvidno, da če vzamemo segment AD, bo ta enak 3/5 AB; vendar je segment AD natanko vsota segmentov AC in CD. Torej lahko zapišemo:

1 / 5 + 2 / 5 = 3 / 5

Ob upoštevanju teh členov in dobljene vsote vidimo, da smo števec vsote dobili s seštevanjem števcev členov, imenovalec pa je ostal nespremenjen.

Iz tega dobimo naslednje pravilo: Če želite sešteti ulomke z enakimi imenovalci, morate njihove števce sešteti in pustiti enak imenovalec.

Poglejmo primer:

2. Seštevanje ulomkov z različnimi imenovalci.

Seštejmo ulomke: 3 / 4 + 3 / 8 Najprej jih je treba zreducirati na najmanjši skupni imenovalec:

Vmesnega člena 6/8 + 3/8 ni bilo mogoče napisati; tukaj smo zapisali zaradi jasnosti.

Če želite torej sešteti ulomke z različnimi imenovalci, jih morate najprej reducirati na najmanjši skupni imenovalec, sešteti njihove števce in označiti skupni imenovalec.

Oglejmo si primer (nad ustreznimi ulomki bomo zapisali dodatne faktorje):

3. Seštevanje mešanih števil.

Seštejmo številki: 2 3/8 + 3 5/6.

Najprej spravimo ulomke naših števil na skupni imenovalec in jih ponovno zapišimo:

Sedaj zaporedno seštevamo cela in ulomka:

§ 88. Odštevanje ulomkov.

Odštevanje ulomkov je definirano na enak način kot odštevanje celih števil. To je dejanje, s pomočjo katerega se glede na vsoto dveh členov in enega od njiju najde drug člen. Oglejmo si tri primere zaporedoma:

1. Odštevanje ulomkov z enakimi imenovalci.
2. Odštevanje ulomkov z različnimi imenovalci.
3. Odštevanje mešanih števil.

1. Odštevanje ulomkov z enakimi imenovalci.

Poglejmo primer:

13 / 15 - 4 / 15

Vzemimo segment AB (slika 18), ga vzemimo kot enoto in ga razdelimo na 15 enakih delov; potem bo del AC tega segmenta predstavljal 1/15 AB, del AD istega segmenta pa bo ustrezal 13/15 AB. Odložimo še en segment ED, ki je enak 4/15 AB.

Od 13/15 moramo odšteti ulomek 4/15. Na risbi to pomeni, da je treba segment ED odšteti od segmenta AD. Posledično bo ostal segment AE, ki je 9/15 segmenta AB. Torej lahko zapišemo:

Primer, ki smo ga naredili, kaže, da smo števec razlike dobili z odštevanjem števcev, imenovalec pa je ostal enak.

Zato morate za odštevanje ulomkov z enakimi imenovalci odšteti števec odštevanca od števca manjšega in pustiti isti imenovalec.

2. Odštevanje ulomkov z različnimi imenovalci.

Primer. 3/4 - 5/8

Najprej zmanjšajmo te ulomke na najmanjši skupni imenovalec:

Vmesni 6 / 8 - 5 / 8 je zapisan tukaj zaradi jasnosti, vendar ga lahko pozneje preskočite.

Če želite torej od ulomka odšteti ulomek, ju morate najprej zreducirati na najmanjši skupni imenovalec, nato odšteti števec manjšega od števca manjšega in skupni imenovalec podpisati pod njihovo razliko.

Poglejmo primer:

3. Odštevanje mešanih števil.

Primer. 10 3/4 - 7 2/3.

Zmanjšajmo ulomke manjšega in odštevanca na najmanjši skupni imenovalec:

Celo smo odšteli od cele in od ulomka ulomek. Toda obstajajo primeri, ko je ulomek odštevanca večji od ulomka odmanjševalca. V takšnih primerih morate vzeti eno enoto iz celega dela minuenda, jo razdeliti na tiste dele, v katerih je izražen ulomek, in jo dodati ulomljenemu delu minuenda. In potem bo odštevanje izvedeno na enak način kot v prejšnjem primeru:

§ 89. Množenje ulomkov.

Pri preučevanju množenja ulomkov bomo upoštevali naslednja vprašanja:

1. Množenje ulomka s celim številom.
2. Iskanje ulomka danega števila.
3. Množenje celega števila z ulomkom.
4. Množenje ulomka z ulomkom.
5. Množenje mešanih števil.
6. Koncept obresti.
7. Iskanje odstotka danega števila. Razmislimo jih zaporedno.

1. Množenje ulomka s celim številom.

Množenje ulomka s celim številom ima enak pomen kot množenje celega števila s celim številom. Množenje ulomka (množnika) s celim številom (faktorjem) pomeni ustvariti vsoto enakih členov, v kateri je vsak člen enak množitelju, število členov pa je enako množitelju.

To pomeni, da če morate pomnožiti 1/9 s 7, lahko to storite takole:

Rezultat smo zlahka dobili, saj se je dejanje zmanjšalo na seštevanje ulomkov z enakimi imenovalci. torej

Upoštevanje tega dejanja pokaže, da je množenje ulomka s celim številom enakovredno povečanju tega ulomka za tolikokrat, kot je število enot, ki jih vsebuje celo število. In ker se povečanje ulomka doseže s povečanjem njegovega števca

ali z zmanjšanjem njegovega imenovalca , potem lahko bodisi pomnožimo števec s celim številom bodisi z njim delimo imenovalec, če je tako deljenje možno.

Od tu dobimo pravilo:

Če želite pomnožiti ulomek s celim številom, pomnožite števec s tem celim številom in pustite imenovalec enak ali, če je mogoče, delite imenovalec s tem številom, števec pa pustite nespremenjen.

Pri množenju so možne okrajšave, npr.

2. Iskanje ulomka danega števila. Obstaja veliko nalog, pri katerih morate najti ali izračunati del danega števila. Razlika med temi problemi in drugimi je v tem, da podajajo število nekaterih predmetov ali merskih enot in morate najti del tega števila, ki je tudi tukaj označen z določenim ulomkom. Za lažje razumevanje bomo najprej navedli primere tovrstnih problemov, nato pa predstavili metodo za njihovo reševanje.

Naloga 1. Imel sem 60 rubljev; 1/3 tega denarja sem porabil za nakup knjig. Koliko so stale knjige?

Naloga 2. Vlak mora prevoziti razdaljo med mestoma A in B, ki je enaka 300 km. Prevozil je že 2/3 te razdalje. Koliko kilometrov je to?

Naloga 3. V vasi je 400 hiš, 3/4 so zidane, ostale so lesene. Koliko zidanih hiš je skupaj?

To je nekaj od mnogih težav, ki vključujejo iskanje dela danega števila, s katerimi se srečujemo. Običajno se imenujejo naloge iskanja ulomka danega števila.

Rešitev problema 1. Od 60 rub. 1/3 sem porabil za knjige; To pomeni, da morate za ugotovitev cene knjig število 60 deliti s 3:

Reševanje problema 2. Bistvo problema je v tem, da morate najti 2/3 od 300 km. Najprej izračunajmo 1/3 od 300; to dobimo tako, da 300 km delimo s 3:

300: 3 = 100 (to je 1/3 od 300).

Če želite najti dve tretjini od 300, morate dobljeni količnik podvojiti, tj. pomnožiti z 2:

100 x 2 = 200 (to je 2/3 od 300).

Reševanje problema 3. Tukaj morate določiti število zidanih hiš, ki sestavljajo 3/4 od 400. Najprej poiščemo 1/4 od 400,

400: 4 = 100 (to je 1/4 od 400).

Za izračun treh četrtin od 400 je treba dobljeni količnik potrojiti, tj. pomnožiti s 3:

100 x 3 = 300 (to je 3/4 od 400).

Na podlagi rešitve teh problemov lahko izpeljemo naslednje pravilo:

Če želite poiskati vrednost ulomka iz danega števila, morate to število deliti z imenovalcem ulomka in dobljeni količnik pomnožiti z njegovim števcem.

3. Množenje celega števila z ulomkom.

Prej (§ 26) je bilo ugotovljeno, da je treba množenje celih števil razumeti kot seštevanje enakih členov (5 x 4 = 5+5 +5+5 = 20). V tem odstavku (1. točka) je bilo ugotovljeno, da množenje ulomka s celim številom pomeni iskanje vsote enakih členov, ki so enaki temu ulomku.

V obeh primerih je množenje obsegalo iskanje vsote enakih členov.

Zdaj preidemo na množenje celega števila z ulomkom. Tukaj bomo naleteli na primer na množenje: 9 2 / 3. Jasno je, da prejšnja definicija množenja v tem primeru ne velja. To je razvidno iz dejstva, da takšnega množenja ne moremo nadomestiti s seštevanjem enakih števil.

Zaradi tega bomo morali podati novo definicijo množenja, torej z drugimi besedami odgovoriti na vprašanje, kaj naj razumemo pod množenjem z ulomkom, kako to dejanje razumeti.

Pomen množenja celega števila z ulomkom je jasen iz naslednje definicije: množenje celega števila (množnika) z ulomkom (množnika) pomeni iskanje tega ulomka množenika.

Namreč pomnožiti 9 z 2/3 pomeni najti 2/3 od devetih enot. V prejšnjem odstavku so bili tovrstni problemi rešeni; zato je enostavno ugotoviti, da bomo na koncu imeli 6.

Toda zdaj se postavlja zanimivo in pomembno vprašanje: zakaj se tako na videz različne operacije, kot sta iskanje vsote enakih števil in iskanje ulomka števila, v aritmetiki imenujejo z isto besedo »množenje«?

To se zgodi zato, ker prejšnje dejanje (večkratno ponavljanje števila s členi) in novo dejanje (iskanje ulomka števila) dajeta odgovore na homogena vprašanja. To pomeni, da tukaj izhajamo iz tega, da se homogena vprašanja ali naloge rešujejo z istim dejanjem.

Da bi to razumeli, razmislite o naslednji težavi: »1 m blaga stane 50 rubljev. Koliko bo stalo 4 m takega blaga?

Ta problem se reši tako, da se število rubljev (50) pomnoži s številom metrov (4), to je 50 x 4 = 200 (rubljev).

Vzemimo isto težavo, vendar bo v njej količina blaga izražena kot ulomek: »1 m blaga stane 50 rubljev. Koliko bo stalo 3/4 m takega blaga?«

Tudi ta problem je treba rešiti tako, da se število rubljev (50) pomnoži s številom metrov (3/4).

Številke v njem lahko še večkrat spremenite, ne da bi spremenili pomen problema, na primer vzemite 9/10 m ali 2 3/10 m itd.

Ker imajo te naloge enako vsebino in se razlikujejo le po številkah, dejanja, ki se uporabljajo pri njihovem reševanju, imenujemo z isto besedo – množenje.

Kako pomnožiš celo število z ulomkom?

Vzemimo številke, ki smo jih našli pri zadnji težavi:

Po definiciji moramo najti 3/4 od 50. Najprej poiščemo 1/4 od 50 in nato 3/4.

1/4 od 50 je 50/4;

3/4 števila 50 je .

Zato.

Poglejmo še en primer: 12 5 / 8 =?

1/8 števila 12 je 12/8,

5/8 števila 12 je .

torej

Od tu dobimo pravilo:

Če želite pomnožiti celo število z ulomkom, morate celo število pomnožiti s števcem ulomka in narediti ta produkt števec, imenovalec tega ulomka pa podpisati kot imenovalec.

Zapišimo to pravilo s črkami:

Da bo to pravilo popolnoma jasno, si je treba zapomniti, da lahko ulomek obravnavamo kot količnik. Zato je koristno najdeno pravilo primerjati s pravilom za množenje števila s količnikom, ki je bilo določeno v 38. §.

Pomembno si je zapomniti, da morate pred izvajanjem množenja narediti (če je mogoče) zmanjšanja, na primer:

4. Množenje ulomka z ulomkom. Množenje ulomka z ulomkom ima enak pomen kot množenje celega števila z ulomkom, tj. pri množenju ulomka z ulomkom morate ulomek najti v faktorju iz prvega ulomka (množenika).

Namreč pomnožiti 3/4 z 1/2 (polovico) pomeni najti polovico 3/4.

Kako pomnožiš ulomek z ulomkom?

Vzemimo primer: 3/4 pomnoženo s 5/7. To pomeni, da morate najti 5/7 od 3/4. Najprej poiščimo 1/7 od 3/4 in nato 5/7

1/7 števila 3/4 bo izražena kot sledi:

5/7 številke 3/4 bodo izražene na naslednji način:

torej

Drug primer: 5/8 pomnoženo s 4/9.

1/9 od 5/8 je,

4/9 števila 5/8 je .

torej

Iz teh primerov je mogoče razbrati naslednje pravilo:

Če želite ulomek pomnožiti z ulomkom, morate števec pomnožiti s števcem in imenovalec z imenovalcem, pri čemer bo prvi produkt števec, drugi produkt pa imenovalec produkta.

To pravilo lahko zapišemo v splošni obliki na naslednji način:

Pri množenju je treba (če je mogoče) zmanjšati. Poglejmo si primere:

5. Množenje mešanih števil. Ker je mešana števila zlahka zamenjati z nepravilnimi ulomki, se ta okoliščina običajno uporablja pri množenju mešanih števil. To pomeni, da se v primerih, ko sta množitelj ali faktor ali oba faktorja izražena kot mešana števila, nadomestita z nepravilnimi ulomki. Pomnožimo na primer mešana števila: 2 1/2 in 3 1/5. Vsakega od njih spremenimo v nepravi ulomek in nato dobljene ulomke pomnožimo po pravilu za množenje ulomka z ulomkom:

Pravilo.Če želite pomnožiti mešana števila, jih morate najprej pretvoriti v neprave ulomke in jih nato pomnožiti po pravilu za množenje ulomkov z ulomki.

Opomba.Če je eden od faktorjev celo število, se lahko množenje izvede na podlagi distribucijskega zakona, kot sledi:

6. Koncept obresti. Pri reševanju nalog in izvajanju različnih praktičnih izračunov uporabljamo vse vrste ulomkov. Vendar se je treba zavedati, da številne količine zanje ne dopuščajo kakršnih koli, temveč naravne delitve. Na primer, lahko vzamete stotinko (1/100) rublja, to bo kopejka, dve stotinki je 2 kopejka, tri stotinke pa 3 kopejka. Lahko vzamete 1/10 rublja, to bo "10 kopeck ali kos za deset kopecks". Lahko vzamete četrt rublja, to je 25 kopecks, pol rublja, to je 50 kopecks (petdeset kopecks). Ampak praktično ne jemljejo, na primer 2/7 rublja, ker rubelj ni razdeljen na sedmine.

Enota za težo, tj. kilogram, omogoča predvsem decimalno deljenje, na primer 1/10 kg ali 100 g. Takšni deli kilograma, kot so 1/6, 1/11, 1/13, niso pogosti.

Na splošno so naše (metrične) mere decimalne in omogočajo decimalno deljenje.

Vendar je treba opozoriti, da je zelo uporabno in priročno v najrazličnejših primerih uporabljati enak (enoten) način delitve količin. Dolgoletne izkušnje so pokazale, da je tako upravičena delitev na »stotinko«. Poglejmo več primerov, ki se nanašajo na najrazličnejša področja človeške prakse.

1. Cena knjig se je znižala za 12/100 prejšnje cene.

Primer. Prejšnja cena knjige je bila 10 rubljev. Zmanjšal se je za 1 rubelj. 20 kopejk

2. Hranilnice izplačajo vlagateljem med letom 2/100 zneska varčevanja.

Primer. 500 rubljev se položi v blagajno, dohodek od tega zneska za leto je 10 rubljev.

3. Število diplomantov ene šole je bilo 5/100 celotnega števila dijakov.

PRIMER Na šoli je bilo le 1200 dijakov, od tega jih je 60 maturiralo.

Stotinko števila imenujemo odstotek.

Beseda "odstotek" je izposojena iz latinščine in njen koren "cent" pomeni sto. Skupaj s predlogom (pro centum) ta beseda pomeni »za sto«. Pomen tega izraza izhaja iz dejstva, da je bilo prvotno v starem Rimu obresti ime za denar, ki ga je dolžnik plačal posojilodajalcu »za vsakih sto«. Besedo "cent" slišimo v tako znanih besedah: centner (sto kilogramov), centimeter (recimo centimeter).

Na primer, namesto da rečemo, da je tovarna v preteklem mesecu proizvedla 1/100 vseh svojih izdelkov kot pomanjkljivih, bomo rekli tole: v zadnjem mesecu je tovarna proizvedla en odstotek pomanjkljivih. Namesto da je obrat proizvedel 4/100 izdelkov več od postavljenega plana, bomo rekli: obrat je plan presegel za 4 odstotke.

Zgornje primere je mogoče izraziti drugače:

1. Cene knjig so se znižale za 12 odstotkov prejšnje cene.

2. Hranilnice plačujejo vlagateljem 2 odstotka letno od zneska, položenega v prihrankih.

3. Število maturantov ene šole je bilo 5 odstotkov vseh dijakov.

Za skrajšanje črke je običajno namesto besede "odstotek" napisati simbol %.

Ne pozabite pa, da pri izračunih znak % običajno ni zapisan, lahko je zapisan v izjavi o nalogi in v končnem rezultatu. Pri izračunih morate namesto celega števila s tem simbolom napisati ulomek z imenovalcem 100.

Celo število z označeno ikono morate znati zamenjati z ulomkom z imenovalcem 100:

Nasprotno pa se morate navaditi pisati celo število z navedenim simbolom namesto ulomka z imenovalcem 100:

7. Iskanje odstotka danega števila.

Naloga 1.Šola je dobila 200 kubičnih metrov. m drv, od tega 30 % brezovih drv. Koliko je bilo brezovih drv?

Pomen tega problema je v tem, da so brezova drva predstavljala le del drv, ki so bila dostavljena šoli, in ta del je izražen v razmerju 30/100. To pomeni, da imamo nalogo najti ulomek števila. Da bi jo rešili, moramo 200 pomnožiti s 30/100 (probleme iskanja ulomka števila rešujemo tako, da število pomnožimo z ulomkom.).

To pomeni, da je 30 % od 200 enako 60.

Ulomek 30/100, na katerega naletimo v tem problemu, je mogoče zmanjšati za 10. To zmanjšanje bi bilo mogoče izvesti od samega začetka; rešitev problema se ne bi spremenila.

Naloga 2. V taborišču je bilo 300 otrok različnih starosti. Otroci stari 11 let so predstavljali 21 %, otroci stari 12 let 61 % in končno 13 let stari otroci 18 %. Koliko otrok vsake starosti je bilo v taborišču?

V tej nalogi morate izvesti tri izračune, tj. zaporedno poiskati število otrok, starih 11 let, nato 12 let in nazadnje 13 let.

To pomeni, da boste morali tukaj trikrat najti ulomek števila. Naredimo to:

1) Koliko je bilo 11-letnih otrok?

2) Koliko je bilo 12-letnih otrok?

3) Koliko je bilo 13-letnih otrok?

Po rešitvi problema je koristno sešteti najdena števila; njihova vsota naj bo 300:

63 + 183 + 54 = 300

Upoštevati je treba tudi, da je vsota odstotkov, navedenih v izjavi o problemu, 100:

21% + 61% + 18% = 100%

To pomeni, da je bilo skupno število otrok v taborišču vzeto za 100 %.

3 a d a h a 3. Delavec je prejel 1200 rubljev na mesec. Od tega je 65 % porabil za hrano, 6 % za stanovanja in ogrevanje, 4 % za plin, elektriko in radio, 10 % za kulturne potrebe in 15 % prihranil. Koliko denarja je bilo porabljenega za potrebe, navedene v problemu?

Če želite rešiti to težavo, morate najti ulomek 1200 5-krat.

1) Koliko denarja je bilo porabljenega za hrano? Problem pravi, da je ta strošek 65% celotnega zaslužka, torej 65/100 od števila 1200. Naredimo izračun:

2) Koliko denarja ste plačali za stanovanje z ogrevanjem? S podobnim razmišljanjem kot prejšnji pridemo do naslednjega izračuna:

3) Koliko denarja ste plačali za plin, elektriko in radio?

4) Koliko denarja je bilo porabljenega za kulturne potrebe?

5) Koliko denarja je delavec privarčeval?

Za preverjanje je koristno sešteti števila, ki jih najdete v teh 5 vprašanjih. Znesek mora biti 1200 rubljev. Vsi zaslužki so vzeti kot 100 %, kar je enostavno preveriti tako, da seštejete odstotne številke, navedene v izjavi o problemu.

Rešili smo tri probleme. Kljub temu, da so se ti problemi nanašali na različne stvari (dostava drv za šolo, število otrok različnih starosti, stroški delavca), so jih reševali na enak način. To se je zgodilo, ker je bilo pri vseh nalogah potrebno najti nekaj odstotkov danih števil.

§ 90. Delitev ulomkov.

Ko preučujemo deljenje ulomkov, bomo obravnavali naslednja vprašanja:

1. Deli celo število s celim številom.
2. Deljenje ulomka s celim številom
3. Deljenje celega števila z ulomkom.
4. Deljenje ulomka z ulomkom.
5. Deljenje mešanih števil.
6. Iskanje števila iz njegovega danega ulomka.
7. Iskanje števila po odstotku.

Razmislimo o njih zaporedno.

1. Deli celo število s celim številom.

Kot je bilo navedeno v razdelku o celih številih, je deljenje dejanje, ki sestoji iz dejstva, da se glede na zmnožek dveh faktorjev (dividend) in enega od teh faktorjev (delitelj) najde drug faktor.

V razdelku o celih številih smo si ogledali deljenje celega števila s celim številom. Tam smo naleteli na dva primera deljenja: deljenje brez ostanka oziroma »v celoti« (150 : 10 = 15) in deljenje z ostankom (100 : 9 = 11 in 1 ostanek). Lahko torej rečemo, da na področju celih števil natančna delitev ni vedno mogoča, saj dividenda ni vedno zmnožek delitelja s celim številom. Po uvedbi množenja z ulomkom lahko štejemo za možne vse primere deljenja celih števil (izključeno je le deljenje z ničlo).

Na primer, deljenje 7 z 12 pomeni iskanje števila, katerega produkt z 12 bi bil enak 7. Takšno število je ulomek 7/12, ker je 7/12 12 = 7. Drug primer: 14: 25 = 14 / 25, ker je 14 / 25 25 = 14.

Torej, če želite deliti celo število s celim številom, morate ustvariti ulomek, katerega števec je enak dividendi in imenovalec enak delitelju.

2. Deljenje ulomka s celim številom.

Delite ulomek 6/7 s 3. V skladu z definicijo deljenja, podano zgoraj, imamo tukaj produkt (6/7) in enega od faktorjev (3); potrebno je poiskati drugi faktor, ki bi, če bi ga pomnožili s 3, dal dani produkt 6/7. Očitno bi moral biti trikrat manjši od tega izdelka. To pomeni, da je bila pred nami postavljena naloga zmanjšati ulomek 6/7 za 3-krat.

Vemo že, da lahko ulomek skrajšamo tako, da zmanjšamo njegov števec ali povečamo njegov imenovalec. Zato lahko napišete:

V tem primeru je števec 6 deljiv s 3, zato je treba števec zmanjšati za 3-krat.

Vzemimo drug primer: 5/8 deljeno z 2. Tukaj števec 5 ni deljiv z 2, kar pomeni, da bo treba imenovalec pomnožiti s tem številom:

Na podlagi tega je mogoče narediti pravilo: Če želite deliti ulomek s celim številom, morate števec ulomka deliti s tem celim številom.(če je možno), pustite enak imenovalec ali pa pomnožite imenovalec ulomka s tem številom in pustite enak števec.

3. Deljenje celega števila z ulomkom.

Naj bo treba 5 deliti z 1/2, tj. poiskati število, ki bo po množenju z 1/2 dalo produkt 5. Očitno mora biti to število večje od 5, saj je 1/2 pravi ulomek , pri množenju števila pa mora biti produkt pravilnega ulomka manjši od produkta, ki ga množimo. Da bo to bolj jasno, zapišimo svoja dejanja takole: 5: 1 / 2 = X , kar pomeni x 1/2 = 5.

Takšno številko moramo najti X , kar bi, če bi ga pomnožili z 1/2, dalo 5. Ker množenje določenega števila z 1/2 pomeni iskanje 1/2 tega števila, potem je torej 1/2 neznanega števila X je enako 5 in celo število X dvakrat toliko, tj. 5 2 = 10.

Torej 5: 1/2 = 5 2 = 10

Preverimo:

Poglejmo še en primer. Recimo, da želite 6 deliti z 2/3. Najprej poskusimo najti želeni rezultat s pomočjo risbe (slika 19).

Slika 19

Narišimo odsek AB, ki je enak 6 enotam, in vsako enoto razdelimo na 3 enake dele. V vsaki enoti so tri tretjine (3/3) celotnega segmenta AB 6-krat večje, tj. e. 18/3. Z majhnimi oklepaji povežemo 18 nastalih segmentov 2; Segmentov bo samo 9. To pomeni, da je ulomek 2/3 9-krat vsebovan v 6 enotah, ali z drugimi besedami, ulomek 2/3 je 9-krat manjši od 6 celih enot. torej

Kako do tega rezultata brez risbe samo z izračuni? Recimo takole: 6 moramo deliti z 2/3, tj. odgovoriti moramo na vprašanje, kolikokrat 2/3 vsebuje 6. Ugotovimo najprej: kolikokrat 1/3 vsebuje 6? V celi enoti so 3 tretjine, v 6 enotah pa 6-krat več, to je 18 tretjin; da bi našli to število, moramo 6 pomnožiti s 3. To pomeni, da je 1/3 vsebovana v b enotah 18-krat, 2/3 pa je vsebovana v b enotah ne 18-krat, ampak polovico manj, tj. 18: 2 = 9 Zato smo pri deljenju 6 z 2/3 naredili naslednje:

Od tu dobimo pravilo za deljenje celega števila z ulomkom. Če želite celo število deliti z ulomkom, morate to celo število pomnožiti z imenovalcem danega ulomka in tako, da je ta produkt števec, ga deliti s števcem danega ulomka.

Zapišimo pravilo s črkami:

Da bo to pravilo popolnoma jasno, si je treba zapomniti, da lahko ulomek obravnavamo kot količnik. Zato je koristno najdeno pravilo primerjati s pravilom za deljenje števila s količnikom, ki je bilo navedeno v 38. §. Upoštevajte, da je bila tam pridobljena ista formula.

Pri delitvi so možne okrajšave, npr.

4. Deljenje ulomka z ulomkom.

Recimo, da moramo 3/4 deliti s 3/8. Kaj pomeni število, ki nastane pri deljenju? Odgovoril bo na vprašanje, kolikokrat je ulomek 3/8 vsebovan v ulomku 3/4. Da bi razumeli to težavo, naredimo risbo (slika 20).

Vzemimo odsek AB, ga vzemimo kot enega, ga razdelimo na 4 enake dele in označimo 3 take dele. Odsek AC bo enak 3/4 segmenta AB. Razdelimo zdaj vsakega od štirih prvotnih segmentov na pol, potem bo segment AB razdeljen na 8 enakih delov in vsak tak del bo enak 1/8 segmenta AB. Povežimo 3 takšne segmente z loki, potem bo vsak od segmentov AD in DC enak 3/8 segmenta AB. Risba kaže, da je segment, enak 3/8, vsebovan v segmentu, ki je enak 3/4, točno 2-krat; To pomeni, da lahko rezultat deljenja zapišemo takole:

3 / 4: 3 / 8 = 2

Poglejmo še en primer. Recimo, da moramo 15/16 deliti s 3/32:

Lahko sklepamo takole: najti moramo število, ki bo po množenju s 3/32 dalo produkt enak 15/16. Zapišimo izračune takole:

15 / 16: 3 / 32 = X

3 / 32 X = 15 / 16

3/32 neznana številka X so 15/16

1/32 neznanega števila X je,

32/32 številke X pobotati se .

torej

Torej, če želite deliti ulomek z ulomkom, morate števec prvega ulomka pomnožiti z imenovalcem drugega in imenovalec prvega ulomka s števcem drugega in prvi produkt narediti števec, drugi pa imenovalec.

Zapišimo pravilo s črkami:

Pri delitvi so možne okrajšave, npr.

5. Deljenje mešanih števil.

Pri deljenju mešanih števil jih je treba najprej pretvoriti v neprave ulomke, nato pa nastale ulomke deliti po pravilih za deljenje ulomkov. Poglejmo primer:

Pretvorimo mešana števila v nepravilne ulomke:

Zdaj pa razdelimo:

Če želite deliti mešana števila, jih morate torej pretvoriti v neprave ulomke in nato deliti po pravilu za deljenje ulomkov.

6. Iskanje števila iz njegovega danega ulomka.

Med različnimi težavami z ulomki so včasih tudi takšne, v katerih je podana vrednost nekega ulomka neznanega števila in to število morate najti. Ta vrsta problema bo inverzna problemu iskanja ulomka danega števila; tam je bilo podano število in bilo je treba najti del tega števila, tukaj je bil podan del števila in zahtevano je bilo najti to število samo. Ta ideja bo postala še bolj jasna, če se bomo posvetili reševanju tovrstnih problemov.

Naloga 1. Prvi dan so steklarji zasteklili 50 oken, kar je 1/3 vseh oken zgrajene hiše. Koliko oken je v tej hiši?

rešitev. Problem pravi, da 50 zastekljenih oken predstavlja 1/3 vseh oken v hiši, kar pomeni, da je vseh oken 3x več, tj.

Hiša je imela 150 oken.

Naloga 2. V trgovini so prodali 1500 kg moke, kar je 3/8 celotne zaloge moke v trgovini. Kakšna je bila začetna zaloga moke v trgovini?

rešitev. Iz pogojev problema je razvidno, da 1500 kg prodane moke predstavlja 3/8 celotne zaloge; to pomeni, da bo 1/8 te rezerve 3-krat manjša, tj. da jo izračunate, morate 1500 zmanjšati za 3-krat:

1.500 : 3 = 500 (to je 1/8 rezerve).

Očitno bo celotna ponudba 8-krat večja. torej

500 8 = 4000 (kg).

Začetna zaloga moke v trgovini je bila 4000 kg.

Iz obravnave tega problema je mogoče izpeljati naslednje pravilo.

Če želite najti število iz dane vrednosti njegovega ulomka, je dovolj, da to vrednost delite s števcem ulomka in rezultat pomnožite z imenovalcem ulomka.

Rešili smo dve nalogi iskanja števila po danem ulomku. Takšne težave, kot je še posebej jasno razvidno iz zadnjega, se rešujejo z dvema dejanjema: deljenjem (ko najdemo en del) in množenjem (ko najdemo celo število).

Ko pa smo se naučili deliti ulomke, lahko zgornje probleme rešimo z enim dejanjem, in sicer z deljenjem z ulomkom.

Na primer, zadnjo nalogo je mogoče rešiti z enim dejanjem, kot je ta:

V prihodnje bomo naloge iskanja števila iz njegovega ulomka reševali z enim dejanjem – deljenjem.

7. Iskanje števila po odstotku.

V teh nalogah boste morali najti število, ki pozna nekaj odstotkov tega števila.

Naloga 1. V začetku tega leta sem od hranilnice prejel 60 rubljev. dohodek od zneska, ki sem ga privarčeval pred enim letom. Koliko denarja sem dal v hranilnico? (Blagajne dajejo vlagateljem 2-odstotni donos na leto.)

Pomen problema je v tem, da sem dal določeno vsoto denarja v hranilnico in tam ostal eno leto. Po enem letu sem od nje prejel 60 rubljev. dohodka, kar je 2/100 denarja, ki sem ga položil. Koliko denarja sem vložil?

Posledično, če poznamo del tega denarja, izražen na dva načina (v rubljih in frakcijah), moramo najti celoten, še neznan znesek. To je navaden problem iskanja števila glede na njegov ulomek. Z delitvijo se rešujejo naslednji problemi:

To pomeni, da je bilo v hranilnici položenih 3000 rubljev.

Naloga 2. Mesečni načrt so ribiči v dveh tednih izpolnili za 64 % in ulovili 512 ton rib. Kakšen je bil njihov načrt?

Iz pogojev problema je razvidno, da so ribiči izpolnili del načrta. Ta del znaša 512 ton, kar je 64% načrta. Ne vemo, koliko ton rib je treba pripraviti po načrtu. Iskanje te številke bo rešitev problema.

Takšne težave se rešujejo z delitvijo:

To pomeni, da je po načrtu treba pripraviti 800 ton rib.

Naloga 3. Vlak je šel iz Rige v Moskvo. Ko je prevozil 276. kilometer, je eden od potnikov vprašal mimovozečega sprevodnika, koliko poti so že prevozili. Na to je sprevodnik odgovoril: "Prevozili smo že 30% celotne poti." Kakšna je razdalja od Rige do Moskve?

Iz pogojev problema je jasno, da je 30% poti od Rige do Moskve 276 km. Najti moramo celotno razdaljo med temi mesti, tj. za ta del najti celoto:

§ 91. Vzajemna števila. Zamenjava deljenja z množenjem.

Vzemimo ulomek 2/3 in nadomestimo števec namesto imenovalca, dobimo 3/2. Dobili smo inverzijo tega ulomka.

Če želite dobiti obratni ulomek, morate njegov števec postaviti namesto imenovalca in imenovalec namesto števca. Na ta način lahko dobimo recipročno vrednost katerega koli ulomka. Na primer:

3/4, vzvratno 4/3; 5/6, vzvratno 6/5

Dva ulomka, ki imata to lastnost, da je števec prvega imenovalec drugega, imenovalec prvega pa števec drugega, imenujemo medsebojno obratno.

Zdaj pa pomislimo, kateri ulomek bo recipročna vrednost 1/2. Očitno bo 2/1 ali samo 2. Z iskanjem inverznega ulomka danega smo dobili celo število. In ta primer ni osamljen; nasprotno, za vse ulomke s števcem 1 (ena) bodo recipročne vrednosti cela števila, na primer:

1/3, hrbtna stran 3; 1/5, vzvratno 5

Ker smo se pri iskanju vzajemnih ulomkov srečali tudi s celimi števili, v nadaljevanju ne bomo govorili o vzajemnih ulomkih, temveč o vzajemnih številih.

Ugotovimo, kako zapisati inverzno celo število. Za ulomke je to mogoče preprosto rešiti: namesto števca morate postaviti imenovalec. Na enak način lahko dobite inverzno število za celo število, saj ima lahko vsako celo število imenovalec 1. To pomeni, da bo inverzno število 7 1/7, ker je 7 = 7/1; za število 10 bo obratno 1/10, saj je 10 = 10/1

To idejo je mogoče izraziti drugače: recipročno vrednost danega števila dobimo tako, da ena delimo z danim številom. Ta trditev ne velja le za cela števila, ampak tudi za ulomke. Pravzaprav, če moramo zapisati inverzijo ulomka 5/9, potem lahko vzamemo 1 in ga delimo s 5/9, tj.

Zdaj pa poudarimo eno stvar premoženje recipročne številke, ki nam bodo koristile: produkt vzajemnih števil je enak ena. Prav zares:

Z uporabo te lastnosti lahko najdemo recipročna števila na naslednji način. Recimo, da moramo najti obratno število 8.

Označimo ga s črko X , nato 8 X = 1, torej X = 1/8. Poiščimo drugo število, ki je obratno od 7/12 in ga označimo s črko X , nato 7/12 X = 1, torej X = 1: 7 / 12 ali X = 12 / 7 .

Tu smo predstavili koncept recipročnih števil, da bi nekoliko dopolnili informacije o deljenju ulomkov.

Ko število 6 delimo s 3/5, naredimo naslednje:

Posebej bodi pozoren na izraz in ga primerjaj z danim: .

Če vzamemo izraz ločeno, brez povezave s prejšnjim, potem je nemogoče rešiti vprašanje, od kod izvira: iz deljenja 6 s 3/5 ali iz množenja 6 s 5/3. V obeh primerih se zgodi isto. Zato lahko rečemo da lahko deljenje enega števila z drugim nadomestimo z množenjem dividende z inverzno vrednostjo delitelja.

Primeri, ki jih navajamo spodaj, v celoti potrjujejo to ugotovitev.

Otrok težko razume ulomke. Večina ljudi ima težave z. Pri preučevanju teme "seštevanje ulomkov s celimi števili" otrok pade v stupor in težko reši problem. V mnogih primerih je treba pred izvedbo dejanja izvesti vrsto izračunov. Na primer, pretvorite ulomke ali pretvorite nepravilni ulomek v pravi ulomek.

Otroku to jasno razložimo. Vzamemo tri jabolka, od katerih bosta dve celi, tretje pa razrežemo na 4 dele. Od narezanega jabolka ločimo eno rezino, preostale tri pa položimo poleg dveh celih sadežev. Na eno stran dobimo ¼ jabolka, na drugo pa 2¾. Če jih združimo, dobimo tri jabolka. Poskusimo zmanjšati 2 ¾ jabolka za ¼, to pomeni, da odstranimo še eno rezino, dobimo 2 2/4 jabolka.

Oglejmo si podrobneje operacije z ulomki, ki vsebujejo cela števila:

Najprej si zapomnimo računsko pravilo za ulomke s skupnim imenovalcem:

Na prvi pogled je vse enostavno in preprosto. Vendar to velja le za izraze, ki ne zahtevajo pretvorbe.

Kako najti vrednost izraza, kjer so imenovalci različni

Pri nekaterih nalogah morate poiskati pomen izraza, kjer so imenovalci različni. Poglejmo konkreten primer:
3 2/7+6 1/3

Poiščimo vrednost tega izraza tako, da poiščemo skupni imenovalec dveh ulomkov.

Za številki 7 in 3 je to 21. Cele dele pustimo enake, ulomke pa pripeljemo do 21, za to prvi ulomek pomnožimo s 3, drugi s 7, dobimo:
6/21+7/21, ne pozabite, da celih delov ni mogoče pretvoriti. Kot rezultat dobimo dva ulomka z enakim imenovalcem in izračunamo njuno vsoto:
3 6/21+6 7/21=9 15/21
Kaj pa, če je rezultat seštevanja nepravilen ulomek, ki že ima celo število:
2 1/3+3 2/3
V tem primeru seštejemo cele in delne dele, dobimo:
5 3/3, kot veste, je 3/3 ena, kar pomeni 2 1/3+3 2/3=5 3/3=5+1=6

Iskanje vsote je vse jasno, poglejmo odštevanje:

Iz vsega povedanega sledi pravilo za operacije z mešanimi števili:

  • Če morate od ulomka odšteti celo število, vam drugega števila ni treba predstaviti kot ulomek; dovolj je, da izvedete operacijo samo na celih delih.

Poskusimo sami izračunati pomen izrazov:

Oglejmo si podrobneje primer pod črko "m":

4 5/11-2 8/11 je števec prvega ulomka manjši od drugega. Da bi to naredili, si sposodimo eno celo število iz prvega ulomka, dobimo,
3 5/11+11/11=3 celo 16/11, odštej drugi od prvega ulomka:
3 16/11-2 8/11=1 celota 8/11

  • Bodite previdni pri izpolnjevanju naloge, ne pozabite pretvoriti nepravilnih ulomkov v mešane ulomke in poudariti cel del. Če želite to narediti, morate vrednost števca deliti z vrednostjo imenovalca, nato pa tisto, kar se zgodi, nadomesti celoten del, ostanek bo števec, na primer:

19/4=4 ¾, preverimo: 4*4+3=19, imenovalec 4 ostane nespremenjen.

Povzemite:

Preden se lotimo naloge, povezane z ulomki, je treba analizirati, za kakšen izraz gre, kakšne transformacije je treba narediti na ulomku, da bo rešitev pravilna. Poiščite bolj racionalno rešitev. Ne pojdite na težji način. Načrtujte vsa dejanja, jih najprej rešite v osnutku, nato pa jih prenesite v šolski zvezek.

Da bi se izognili zmedi pri reševanju ulomkov, morate upoštevati pravilo doslednosti. Vse se odločite previdno, brez hitenja.

Kot vemo iz matematike, je ulomek sestavljen iz števca in imenovalca. Števec je na vrhu, imenovalec pa na dnu.

Povsem preprosto je izvajati matematične operacije seštevanja ali odštevanja ulomkov z enakim imenovalcem. Številke v števcu (zgoraj) moraš znati sešteti ali odšteti, in isto spodnje število ostane nespremenjeno.

Na primer, vzemimo ulomek 7/9, tukaj:

  • številka "sedem" na vrhu je števnik;
  • številka »devet« spodaj je imenovalec.

Primer 1. Dodatek:

5/49 + 4/49 = (5+4) / 49 =9/49.

Primer 2. odštevanje:

6/35−3/35 = (6−3) / 35 = 3/35.

Odštevanje preprostih ulomkov, ki imajo različne imenovalce

Če želite izvesti matematično operacijo odštevanja količin, ki imajo različne imenovalce, jih morate najprej zmanjšati na en imenovalec. Pri izvajanju te naloge se je treba držati pravila, da mora biti ta skupni imenovalec najmanjši od vseh možnih možnosti.

Primer 3

Podani sta dve enostavni količini z različnimi imenovalci (nižja števila): 7/8 in 2/9.

Od prve vrednosti je treba odšteti drugo.

Rešitev je sestavljena iz več korakov:

1. Poiščite skupno nižje število, tj. nekaj, kar je deljivo z nižjo vrednostjo prvega in drugega ulomka. To bo število 72, saj je večkratnik števil osem in devet.

2. Spodnja številka vsakega ulomka se je povečala:

  • število "osem" v ulomku 7/8 se je povečalo za devetkrat - 8*9=72;
  • število “devet” v ulomku 2/9 se je povečalo za osemkrat - 9*8=72.

3. Če se je spremenil imenovalec (spodnja števka), se mora spremeniti tudi števec (zgornja števka). V skladu z obstoječim matematičnim pravilom je treba zgornjo številko povečati za natanko toliko kot spodnjo. To je:

  • števec "sedem" v prvem ulomku (7/8) se pomnoži s številom "devet" - 7*9=63;
  • Števec "dva" v drugem ulomku (2/9) pomnožimo s številom "osem" - 2*8=16.

4. Kot rezultat naših dejanj smo dobili dve novi količini, ki pa sta enaki prvotnim.

  • prvi: 7/8 = 7*9 / 8*9 = 63/72;
  • drugič: 2/9 = 2*8 / 9*8 = 16/72.

5. Sedaj je mogoče odšteti eno delno število od drugega:

7/8−2/9 = 63/72−16/72 =?

6. Ko izvedemo to dejanje, se vrnemo k temi odštevanja ulomkov z enakimi spodnjimi števkami (imenovalci). To pomeni, da bo dejanje odštevanja izvedeno na vrhu, v števcu, spodnja številka pa bo prenesena brez sprememb.

63/72−16/72 = (63−16) / 72 = 47/72.

7/8−2/9 = 47/72.

Primer 4

Zakomplicirajmo problem tako, da za rešitev vzamemo več ulomkov z različnimi, vendar več številkami na dnu.

Podane vrednosti so: 5/6; 1/3; 1/12; 7/24.

V tem zaporedju jih je treba odvzeti drug od drugega.

1. Z zgornjo metodo pripeljemo ulomke na skupni imenovalec, ki bo številka "24":

  • 5/6 = 5*4 / 6*4 = 20/24;
  • 1/3 = 1*8 / 3*8 = 8/24;
  • 1/12 = 1*2 / 12*2 = 2/24.

7/24 - to zadnjo vrednost pustimo nespremenjeno, saj je imenovalec skupno število "24".

2. Odštejemo vse količine:

20/24−8/2−2/24−7/24 = (20−8−2−7)/24 = 3/24.

3. Ker sta števec in imenovalec dobljenega ulomka deljiva z enim številom, ju je mogoče zmanjšati z deljenjem s številom "tri":

3:3 / 24:3 = 1/8.

4. Odgovor zapišemo takole:

5/6−1/3−1/12−7/24 = 1/8.

Primer 5

Podani so trije ulomki z nekratnimi imenovalci: 3/4; 2/7; 1/13.

Morate najti razliko.

1. Prvi dve številki pripeljemo na skupni imenovalec, to bo številka "28":

  • ¾ = 3*7 / 4*7 = 21/28;
  • 2/7 = 2*4 / 7*4 = 8/28.

2. Odštejte prva dva ulomka drug od drugega:

¾−2/7 = 21/28−8/28 = (21−8) / 28 = 13/28.

3. Od dobljene vrednosti odštejemo tretji dani ulomek:

4. Števila spravimo na skupni imenovalec. Če istega imenovalca ni mogoče izbrati na lažji način, potem morate le izvesti korake tako, da vse imenovalce zaporedno pomnožite enega z drugim, pri čemer ne pozabite povečati vrednosti števca za isto številko. V tem primeru naredimo to:

  • 13/28 = 13*13 / 28*13 = 169/364, kjer je 13 spodnja številka 5/13;
  • 5/13 = 5*28 / 13*28 = 140/364, kjer je 28 nižje število od 13/28.

5. Odštejte nastale ulomke:

13/28−5/13 = 169/364−140/364 = (169−140) / 364 = 29/364.

Odgovor: ¾−2/7−5/13 = 29/364.

Mešane frakcije

V zgoraj obravnavanih primerih so bili uporabljeni samo pravi ulomki.

Kot primer:

  • 8/9 je pravilen ulomek;
  • 9/8 je napačen.

Nepravilnega ulomka je nemogoče spremeniti v pravilnega ulomka, vendar ga je mogoče spremeniti mešano. Zakaj delite zgornje število (števec) z spodnjim (imenovalec), da dobite število z ostankom? Celo število, ki nastane pri deljenju, zapišemo takole, ostanek zapišemo v števec na vrhu, imenovalec na dnu pa ostane enak. Da bo bolj jasno, poglejmo konkreten primer:

Primer 6

Pretvorite nepravilni ulomek 9/8 v pravi ulomek.

Če želite to narediti, razdelite število "devet" na "osem", kar ima za posledico mešani ulomek s celim številom in ostankom:

9: 8 = 1 in 1/8 (to lahko zapišemo drugače kot 1+1/8), kjer:

  • številka 1 je celo število, ki izhaja iz deljenja;
  • drugo število 1 je ostanek;
  • število 8 je imenovalec, ki ostane nespremenjen.

Celo število imenujemo tudi naravno število.

Ostanek in imenovalec sta nov, a pravi ulomek.

Ko pišemo številko 1, jo pišemo pred pravim ulomkom 1/8.

Odštevanje mešanih števil z različnimi imenovalci

Iz zgornjega podajamo definicijo mešanega delnega števila: "Mešano število - to je količina, ki je enaka vsoti celega števila in pravega navadnega ulomka. V tem primeru se kliče celoten del naravno število, in številka, ki je ostala, je njegova delni del».

Primer 7

Podano: dve mešani ulomki, sestavljeni iz celega števila in pravega ulomka:

  • prva vrednost je 9 in 4/7, to je (9+4/7);
  • druga vrednost je 3 in 5/21, to je (3+5/21).

Treba je najti razliko med temi količinami.

1. Če želite odšteti 3+5/21 od 9+4/7, morate najprej odšteti celoštevilske vrednosti eno od druge:

4/7−5/21 = 4*3 / 7*3−5/21 =12/21−5/21 = (12−5) / 21 = 7/21.

3. Rezultat razlike med dvema mešanima številoma bo sestavljen iz naravnega (celega) števila 6 in pravega ulomka 7/21 = 1/3:

(9 + 4/7) - (3 + 5/21) = 6 + 1/3.

Matematiki iz vseh držav so se strinjali, da se znak "+" pri pisanju mešanih količin lahko izpusti in pred ulomkom pusti samo celo število brez predznaka.

Je vaš otrok prinesel domačo nalogo iz šole, vi pa ne veste, kako bi jo rešili? Potem je ta mini lekcija za vas!

Kako sešteti decimalke

Bolj priročno je dodati decimalne ulomke v stolpcu. Če želite dodati decimalke, morate upoštevati eno preprosto pravilo:

  • Mesto mora biti pod mestom, vejica pod vejico.

Kot lahko vidite v primeru, se cele enote nahajajo druga pod drugo, desetinke in stotinke pa ena pod drugo. Sedaj seštevamo števila, pri čemer ne upoštevamo vejice. Kaj storiti z vejico? Vejica se premakne na mesto, kjer je stala v kategoriji celo število.

Seštevanje ulomkov z enakimi imenovalci

Če želite izvesti seštevanje s skupnim imenovalcem, morate ohraniti imenovalec nespremenjen, poiskati vsoto števcev in dobiti ulomek, ki bo skupna vsota.


Seštevanje ulomkov z različnimi imenovalci z metodo skupnega večkratnika

Prva stvar, na katero morate biti pozorni, so imenovalci. Imenovalci so različni, ne glede na to, ali je eden deljiv z drugim ali pa so praštevila. Najprej ga morate spraviti na en skupni imenovalec;

  • 1/3 + 3/4 = 13/12, moramo za rešitev tega primera najti najmanjši skupni večkratnik (LCM), ki bo deljiv z 2 imenovalcema. Za označevanje najmanjšega večkratnika a in b – LCM (a;b). V tem primeru LCM (3;4)=12. Preverimo: 12:3=4; 12:4=3.
  • Faktorje pomnožimo in dobljena števila seštejemo, dobimo 13/12 - nepravilen ulomek.


  • Da nepravi ulomek pretvorimo v pravilnega, števec delimo z imenovalcem, dobimo celo število 1, ostanek 1 je števec, 12 pa imenovalec.

Seštevanje ulomkov z metodo navzkrižnega množenja

Če želite dodati ulomke z različnimi imenovalci, obstaja še ena metoda, ki uporablja formulo "križ v križ". To je zajamčen način za izenačitev imenovalcev; za to morate pomnožiti števce z imenovalcem enega ulomka in obratno. Če ste šele na začetni stopnji učenja ulomkov, potem je ta metoda najpreprostejši in najbolj natančen način za pravilen rezultat pri seštevanju ulomkov z različnimi imenovalci.

V petem stoletju pred našim štetjem je starogrški filozof Zenon iz Eleje oblikoval svoje znamenite aporije, med katerimi je najbolj znana aporija »Ahil in želva«. Takole zveni:

Recimo, da Ahil teče desetkrat hitreje od želve in je tisoč korakov za njo. V času, ki ga Ahil potrebuje, da preteče to razdaljo, bo želva odplazila sto korakov v isto smer. Ko Ahil preteče sto korakov, se želva plazi še deset korakov in tako naprej. Proces se bo nadaljeval ad infinitum, Ahil ne bo nikoli dohitel želve.

To razmišljanje je postalo logični šok za vse naslednje generacije. Aristotel, Diogen, Kant, Hegel, Hilbert ... Vsi so tako ali drugače obravnavali Zenonove aporije. Šok je bil tako močan, da " ... razprave se nadaljujejo še danes; znanstvena skupnost še ni uspela priti do skupnega mnenja o bistvu paradoksov ... v preučevanje problematike so bili vključeni matematična analiza, teorija množic, novi fizikalni in filozofski pristopi ; nobeden od njih ni postal splošno sprejeta rešitev problema ..."[Wikipedia, "Zeno's Aporia". Vsi razumejo, da so preslepljeni, vendar nihče ne razume, v čem je prevara.

Z matematičnega vidika je Zenon v svoji aporiji jasno prikazal prehod od kvantitete k . Ta prehod pomeni uporabo namesto stalnih. Kolikor razumem, matematični aparat za uporabo spremenljivih merskih enot še ni bil razvit ali pa ni bil uporabljen pri Zenonovi aporiji. Uporaba naše običajne logike nas pripelje v past. Mi pa zaradi vztrajnosti mišljenja na recipročno vrednost dodajamo stalne časovne enote. S fizičnega vidika je to videti kot upočasnjevanje časa, dokler se popolnoma ne ustavi v trenutku, ko Ahil dohiti želvo. Če se čas ustavi, Ahil ne more več prehiteti želve.

Če obrnemo našo običajno logiko, se vse postavi na svoje mesto. Ahil teče s konstantno hitrostjo. Vsak naslednji segment njegove poti je desetkrat krajši od prejšnjega. Skladno s tem je čas, porabljen za njegovo premagovanje, desetkrat manjši od prejšnjega. Če v tej situaciji uporabimo koncept "neskončnosti", potem bi bilo pravilno reči, da bo Ahil dohitel želvo neskončno hitro."

Kako se izogniti tej logični pasti? Ostanite v stalnih časovnih enotah in ne preklopite na recipročne enote. V Zenonovem jeziku je to videti takole:

V času, ki ga potrebuje Ahil, da preteče tisoč korakov, bo želva odplazila sto korakov v isto smer. V naslednjem časovnem intervalu, ki je enak prvemu, bo Ahil pretekel še tisoč korakov, želva pa se bo plazila sto korakov. Zdaj je Ahil osemsto korakov pred želvo.

Ta pristop ustrezno opisuje realnost brez logičnih paradoksov. Vendar to ni popolna rešitev problema. Einsteinova izjava o neustavljivosti svetlobne hitrosti je zelo podobna Zenonovi aporiji "Ahil in želva". Ta problem moramo še preučiti, premisliti in rešiti. In rešitev je treba iskati ne v neskončno velikem številu, ampak v merskih enotah.

Druga zanimiva Zenonova aporija govori o leteči puščici:

Leteča puščica je negibna, saj v vsakem trenutku miruje, in ker v vsakem trenutku miruje, vedno miruje.

V tej aporiji je logični paradoks premagan zelo preprosto - dovolj je pojasniti, da leteča puščica v vsakem trenutku miruje na različnih točkah v prostoru, kar je pravzaprav gibanje. Tukaj je treba opozoriti na drugo točko. Iz ene fotografije avtomobila na cesti ni mogoče ugotoviti niti dejstva njegovega gibanja niti razdalje do njega. Če želite ugotoviti, ali se avto premika, potrebujete dve fotografiji, posneti z iste točke v različnih časovnih točkah, vendar ne morete določiti razdalje od njiju. Za določitev razdalje do avtomobila potrebujete dve fotografiji, posneti iz različnih točk v prostoru v enem trenutku, vendar iz njih ne morete ugotoviti dejstva gibanja (seveda še vedno potrebujete dodatne podatke za izračune, trigonometrija vam bo pomagala ). Posebno pozornost želim opozoriti na to, da sta dve točki v času in dve točki v prostoru različni stvari, ki ju ne smemo zamenjevati, saj ponujata različne možnosti za raziskovanje.

Sreda, 4. julij 2018

Razlike med množico in množico so zelo dobro opisane na Wikipediji. Pa poglejmo.

Kot lahko vidite, »v nizu ne moreta biti dva enaka elementa«, če pa so v nizu enaki elementi, se tak niz imenuje »multiset«. Razumna bitja ne bodo nikoli razumela takšne absurdne logike. To je raven govorečih papig in dresiranih opic, ki nimajo pameti od besede "popolnoma". Matematiki delujejo kot navadni trenerji in nam pridigajo svoje absurdne ideje.

Nekoč so bili inženirji, ki so gradili most, v čolnu pod mostom, medtem ko so preizkušali most. Če se je most zrušil, je povprečen inženir umrl pod ruševinami svoje stvaritve. Če je most zdržal obremenitev, je nadarjeni inženir zgradil druge mostove.

Ne glede na to, kako se matematiki skrivajo za besedno zvezo »pozor, jaz sem v hiši« ali bolje rečeno »matematika preučuje abstraktne pojme«, obstaja ena popkovina, ki jih neločljivo povezuje z realnostjo. Ta popkovina je denar. Uporabimo matematično teorijo množic za same matematike.

Zelo dobro smo se učili matematiko in zdaj sedimo za blagajno in delimo plače. Matematik torej pride k nam po svoj denar. Celoten znesek mu preštejemo in ga razporedimo po svoji mizi v različne kupčke, v katere damo bankovce enakih vrednosti. Nato iz vsakega kupa vzamemo po en račun in damo matematiku njegov »matematični nabor plače«. Pojasnimo matematiku, da bo preostale račune prejel šele, ko bo dokazal, da množica brez enakih elementov ni enaka množici z enakimi elementi. Tu se začne zabava.

Najprej bo delovala logika poslancev: "To lahko velja za druge, zame pa ne!" Potem nas bodo začeli prepričevati, da imajo bankovci istega apoena različne številke bankovcev, kar pomeni, da jih ni mogoče šteti za iste elemente. V redu, preštejmo plače v kovancih - na kovancih ni številk. Tu se bo matematik začel mrzlično spominjati fizike: različni kovanci imajo različno količino umazanije, kristalna struktura in razporeditev atomov je edinstvena za vsak kovanec ...

In zdaj imam najbolj zanimivo vprašanje: kje je črta, za katero se elementi multimnožice spremenijo v elemente množice in obratno? Takšna linija ne obstaja – o vsem odločajo šamani, znanost tu niti približno ne laže.

Poglej tukaj. Izberemo nogometne stadione z enako površino igrišča. Območja polj so enaka – kar pomeni, da imamo multimnožico. Če pa pogledamo imena teh istih stadionov, jih dobimo veliko, saj so imena različna. Kot lahko vidite, je ista množica elementov hkrati množica in multimnožica. Katera je pravilna? In tu matematik-šaman-oštar potegne iz rokava asa adutov in nam začne pripovedovati ali o množici ali multimnožici. V vsakem primeru nas bo prepričal, da ima prav.

Da bi razumeli, kako sodobni šamani operirajo s teorijo množic in jo povezujejo z realnostjo, je dovolj odgovoriti na eno vprašanje: kako se elementi enega sklopa razlikujejo od elementov drugega? Pokazal vam bom, brez kakršnih koli "predstavljivo kot enotna celota" ali "ni predstavljivo kot ena sama celota."

Nedelja, 18. marec 2018

Vsota števk števila je ples šamanov s tamburinom, ki nima nobene zveze z matematiko. Da, pri pouku matematike nas učijo najti vsoto števk števila in jo uporabiti, a zato so šamani, da svoje potomce učijo svojih veščin in modrosti, sicer bodo šamani preprosto izumrli.

Potrebujete dokaz? Odprite Wikipedijo in poskusite najti stran "Vsota števk števila." Ona ne obstaja. V matematiki ni formule, s katero bi lahko našli vsoto števk katerega koli števila. Navsezadnje so številke grafični znaki, s katerimi pišemo števila, v matematičnem jeziku pa naloga zveni takole: »Poišči vsoto grafičnih znakov, ki predstavljajo poljubno število.« Matematiki tega problema ne morejo rešiti, šamani pa to z lahkoto.

Ugotovimo, kaj in kako naredimo, da bi našli vsoto števk danega števila. In tako imamo številko 12345. Kaj je treba storiti, da bi našli vsoto števk tega števila? Razmislimo o vseh korakih po vrstnem redu.

1. Zapišite številko na list papirja. Kaj smo storili? Število smo pretvorili v grafični številski simbol. To ni matematična operacija.

2. Eno dobljeno sliko razrežite na več slik, ki vsebujejo posamezne številke. Rezanje slike ni matematična operacija.

3. Posamezne grafične znake pretvorite v številke. To ni matematična operacija.

4. Seštejte dobljena števila. Zdaj je to matematika.

Vsota števk števila 12345 je 15. To so »tečaji krojenja in šivanja«, ki jih poučujejo šamani, uporabljajo pa jih matematiki. A to še ni vse.

Z matematičnega vidika ni vseeno, v katerem številskem sistemu zapišemo število. Torej bo v različnih številskih sistemih vsota števk istega števila različna. V matematiki je številski sistem označen kot indeks na desni strani števila. Z veliko številko 12345 si ne želim delati glave, razmislimo o številki 26 iz članka o. Zapišimo to število v dvojiškem, osmiškem, decimalnem in šestnajstiškem številskem sistemu. Ne bomo pogledali vsakega koraka pod mikroskopom; Poglejmo rezultat.

Kot lahko vidite, je v različnih številskih sistemih vsota števk istega števila različna. Ta rezultat nima nobene zveze z matematiko. To je enako, kot če bi določili površino pravokotnika v metrih in centimetrih, bi dobili popolnoma drugačne rezultate.

Ničla je videti enako v vseh številskih sistemih in nima vsote števk. To je še en argument v prid dejstvu, da. Vprašanje za matematike: kako se v matematiki označi nekaj, kar ni številka? Kaj, za matematike ne obstaja nič razen številk? Šamanom to lahko dovolim, znanstvenikom pa ne. Realnost niso samo številke.

Dobljeni rezultat je treba obravnavati kot dokaz, da so številski sistemi merske enote za števila. Navsezadnje ne moremo primerjati števil z različnimi merskimi enotami. Če enaka dejanja z različnimi merskimi enotami iste količine po primerjavi privedejo do različnih rezultatov, potem to nima nobene zveze z matematiko.

Kaj je prava matematika? To je takrat, ko rezultat matematične operacije ni odvisen od velikosti števila, uporabljene merske enote in od tega, kdo to dejanje izvaja.

Znak na vratih Odpre vrata in reče:

Oh! Ali ni to žensko stranišče?
- Mlada ženska! To je laboratorij za preučevanje nedefilske svetosti duš med njihovim vnebovzetjem v nebesa! Halo na vrhu in puščica navzgor. Kakšno drugo stranišče?

Ženska... Avreol na vrhu in puščica navzdol sta moški.

Če se vam takšno umetniško delo večkrat na dan zasveti pred očmi,

Potem ni presenetljivo, da nenadoma najdete čudno ikono v svojem avtomobilu:

Osebno se trudim, da pri kakajočem človeku vidim minus štiri stopinje (ena slika) (kompozicija večih slik: znak minus, številka štiri, oznaka stopinj). In mislim, da to dekle ni bedak, ki ne pozna fizike. Samo ima močan stereotip dojemanja grafičnih podob. In tega nas matematiki ves čas učijo. Tukaj je primer.

1A ni "minus štiri stopinje" ali "en a". To je "človek, ki se pokaka" ali številka "šestindvajset" v šestnajstiškem zapisu. Tisti ljudje, ki nenehno delajo v tem sistemu številk, samodejno zaznajo številko in črko kot en grafični simbol.



Vam je bil članek všeč? Delite s prijatelji!