Cebirsel ilerlemenin toplamı için formül. Aritmetik ve geometrik ilerlemeler


Örneğin \(2\); dizisi \(5\); \(8\); \(onbir\); \(14\)... aritmetik bir ilerlemedir, çünkü sonraki her öğe bir öncekinden üç kat farklıdır (bir öncekinden üç ekleyerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) negatif bir sayı da olabilir. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğenin numarasına eşit bir sayısal indeksle gösterilirler.

Örneğin, \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) aritmetik ilerlemesi \(a_1=2\); \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme \(b_1=7; d=4\) koşullarıyla belirtilir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk negatif) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme aşağıdaki koşullarla tanımlanır: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili pek çok problem, yalnızca asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen “kafa kafaya” karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez mi eklememiz gerekiyor? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları, ilerlemenin n'inci terimi için formül ve \(n\) ilk terimin toplamı için formüldür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8,2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, numarasına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplamdaki öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık neredeyse tüm aritmetik ilerleme problemlerini çözmek için ihtiyacınız olan tüm bilgilere sahipsiniz. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemedeki tüm negatif terimlerin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyorum... ve burada küçük bir nüans ortaya çıkıyor - \(n\) bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Sıfırdan büyük olması için \(a_n\)'a ihtiyacımız var. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve ilk pozitif elemanın \(66\) sayısına sahip olacağı ortaya çıktı. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)'ncı elemandan \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için dördünü önceki öğeye ekleriz). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha vardır. Ancak bunları kolayca bulabilirsiniz.

İlk seviye

Aritmetik ilerleme. Örneklerle ayrıntılı teori (2019)

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin birinci, hangisinin ikinci olduğunu vb. sonuncuya kadar söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki komşu sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizimiz var.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından tanıtıldı ve daha geniş anlamda sonsuz bir sayısal dizi olarak anlaşıldı. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya aritmetik ilerlemenin farkı denir ve gösterilir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
Dır-dir aritmetik ilerleme - b, c.
Değil aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini önceki değere sırayla eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - genel forma koyalım ve şunu elde edelim:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerleme özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Yani bir ilerleme teriminin önceki ve ardışık değerleri bilinen değerlerini bulmak için bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Geriye, efsaneye göre tüm zamanların en büyük matematikçilerinden biri olan “matematikçilerin kralı” Karl Gauss tarafından kolayca çıkarılabilen tek bir formül bulmak kalıyor.

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu görevi verdi: "Diğer kaynaklara göre dahil olan tüm doğal sayıların toplamını hesapla." Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözüpek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara daha yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Bunu denediniz mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak, toplamın şuna eşit olduğunu elde ederiz:
.
Böylece herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için formül şu şekilde olacaktır:

Bazı problemlerde n'inci terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendiniz hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının ve terimlerin toplamının eşit olduğunu buldu. Karar verdiğin şey bu mu?

Aslında aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, Eski Mısır'ı ve o zamanın en büyük inşaat projesini hayal edin - bir piramidin inşası... Resimde bunun bir tarafı gösteriliyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse bir duvar inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

Bu durumda ilerleme şu şekilde görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Becerebildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, günlükçüler bunları, her üst katman bir öncekinden bir günlük daha az içerecek şekilde istifler. Duvar işçiliğinin temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Yanıtlar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. İlk tek sayı, son sayı.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir sürü katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi, ilerlemedeki sayıların sayısı olan - formülüyle yazılır.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

ARİTMETİK İLERLEME. ORTALAMA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Sayıyı taşıyan sayıya dizinin inci üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilebilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (buradaki ilk terim eşittir ve fark eşittir). Veya (, fark).

Formül n'inci terim

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin üçüncü terimini bulmak için önceki dokuz terimi hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu artık anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendin için karar ver:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark ne? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O halde yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre büyük matematikçi Carl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesaplamıştı. İlk ve son sayıların toplamının eşit olduğunu, ikinci ve sondan bir önceki sayıların toplamının aynı olduğunu, sondan üçüncü ve 3'üncü sayıların toplamının aynı olduğunu vb. fark etti. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Tüm iki basamaklı katların toplamını bulun.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftada toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan ve altı yıl sonra ruble karşılığında satılan bir buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Yanıtlar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca katedilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

ARİTMETİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Bir ilerlemenin bir terimini, eğer komşu terimleri biliniyorsa (ilerlemedeki sayıların sayısı nerede) kolayca bulmanızı sağlar.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.

Her doğal sayı için ise N gerçek bir sayıyla eşleş BİR sonra verildi diyorlar sayı dizisi :

A 1 , A 2 , A 3 , . . . , BİR , . . . .

Dolayısıyla sayı dizisi doğal argümanın bir fonksiyonudur.

Sayı A 1 isminde dizinin ilk üyesi , sayı A 2 dizinin ikinci terimi , sayı A 3 üçüncü ve benzeri. Sayı BİR isminde dizinin n'inci üyesi ve bir doğal sayı Nonun numarası .

İki bitişik üyeden BİR Ve BİR +1 dizi üyesi BİR +1 isminde sonraki (karşı BİR ), A BİR öncesi (karşı BİR +1 ).

Bir dizi tanımlamak için dizinin herhangi bir sayıdaki üyesini bulmanızı sağlayacak bir yöntem belirtmeniz gerekir.

Genellikle sıra kullanılarak belirtilir n'inci terim formülleri yani bir dizinin bir üyesini numarasına göre belirlemenize olanak tanıyan bir formül.

Örneğin,

bir dizi pozitif tek sayı formülle verilebilir

BİR= 2N- 1,

ve alternatif dizi 1 Ve -1 - formül

B N = (-1)N +1 .

Sıra belirlenebilir tekrarlanan formül, yani, bazılarından başlayarak önceki (bir veya daha fazla) üyeye kadar dizinin herhangi bir üyesini ifade eden bir formül.

Örneğin,

Eğer A 1 = 1 , A BİR +1 = BİR + 5

A 1 = 1,

A 2 = A 1 + 5 = 1 + 5 = 6,

A 3 = A 2 + 5 = 6 + 5 = 11,

A 4 = A 3 + 5 = 11 + 5 = 16,

A 5 = A 4 + 5 = 16 + 5 = 21.

Eğer 1= 1, bir 2 = 1, BİR +2 = BİR + BİR +1 , daha sonra sayısal dizinin ilk yedi terimi şu şekilde oluşturulur:

1 = 1,

bir 2 = 1,

3 = 1 + bir 2 = 1 + 1 = 2,

4 = bir 2 + 3 = 1 + 2 = 3,

5 = 3 + 4 = 2 + 3 = 5,

A 6 = A 4 + A 5 = 3 + 5 = 8,

A 7 = A 5 + A 6 = 5 + 8 = 13.

Sıralar olabilir son Ve sonsuz .

Sıra denir nihai Eğer sınırlı sayıda üyesi varsa. Sıra denir sonsuz sonsuz sayıda üyesi varsa.

Örneğin,

iki basamaklı doğal sayılar dizisi:

10, 11, 12, 13, . . . , 98, 99

final.

Asal sayılar dizisi:

2, 3, 5, 7, 11, 13, . . .

sonsuz.

Sıra denir artan , eğer ikinciden başlayarak üyelerinin her biri bir öncekinden daha büyükse.

Sıra denir azalan , eğer ikinciden başlayarak üyelerinin her biri bir öncekinden daha azsa.

Örneğin,

2, 4, 6, 8, . . . , 2N, . . . - artan sıra;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /N, . . . - azalan dizi.

Sayısı arttıkça elemanları azalmayan veya tam tersi artmayan diziye ne ad verilir? monoton dizi .

Monotonik diziler özellikle artan diziler ve azalan dizilerdir.

Aritmetik ilerleme

Aritmetik ilerleme ikinciden başlayarak her üyenin aynı sayının eklendiği bir öncekine eşit olduğu bir dizidir.

A 1 , A 2 , A 3 , . . . , BİR, . . .

herhangi bir doğal sayı için aritmetik bir ilerlemedir N koşul yerine getirildi:

BİR +1 = BİR + D,

Nerede D - belirli bir sayı.

Dolayısıyla, belirli bir aritmetik ilerlemenin sonraki ve önceki terimleri arasındaki fark her zaman sabittir:

bir 2 - A 1 = 3 - A 2 = . . . = BİR +1 - BİR = D.

Sayı D isminde aritmetik ilerleme farkı.

Aritmetik ilerlemeyi tanımlamak için ilk terimini ve farkını belirtmek yeterlidir.

Örneğin,

Eğer A 1 = 3, D = 4 , dizinin ilk beş terimini şu şekilde buluruz:

1 =3,

bir 2 = 1 + D = 3 + 4 = 7,

3 = bir 2 + D= 7 + 4 = 11,

4 = 3 + D= 11 + 4 = 15,

A 5 = A 4 + D= 15 + 4 = 19.

İlk terimle aritmetik ilerleme için A 1 ve fark D o N

BİR = 1 + (N- 1)D.

Örneğin,

Aritmetik ilerlemenin otuzuncu terimini bulun

1, 4, 7, 10, . . .

1 =1, D = 3,

30 = 1 + (30 - 1)d = 1 + 29· 3 = 88.

bir n-1 = 1 + (N- 2)D,

BİR= 1 + (N- 1)D,

BİR +1 = A 1 + ve,

o zaman açıkçası

BİR=
a n-1 + a n+1
2

Aritmetik ilerlemenin ikinciden başlayarak her üyesi, önceki ve sonraki üyelerin aritmetik ortalamasına eşittir.

a, b ve c sayıları, ancak ve ancak bunlardan biri diğer ikisinin aritmetik ortalamasına eşitse, bir aritmetik ilerlemenin ardışık terimleridir.

Örneğin,

BİR = 2N- 7 , aritmetik bir ilerlemedir.

Yukarıdaki ifadeyi kullanalım. Sahibiz:

BİR = 2N- 7,

bir n-1 = 2(N- 1) - 7 = 2N- 9,

bir n+1 = 2(n+ 1) - 7 = 2N- 5.

Buradan,

a n+1 + a n-1
=
2N- 5 + 2N- 9
= 2N- 7 = BİR,
2
2

Dikkat N Bir aritmetik ilerlemenin inci terimi yalnızca şu şekilde bulunabilir: A 1 , aynı zamanda daha önceki herhangi bir bir k

BİR = bir k + (N- k)D.

Örneğin,

İçin A 5 yazılabilir

5 = 1 + 4D,

5 = bir 2 + 3D,

5 = 3 + 2D,

5 = 4 + D.

BİR = bir n-k + kd,

BİR = bir n+k - kd,

o zaman açıkçası

BİR=
A n-k + bir n+k
2

Bir aritmetik ilerlemenin ikinciden başlayarak herhangi bir üyesi, bu aritmetik ilerlemenin ondan eşit uzaklıktaki üyelerinin toplamının yarısına eşittir.

Ayrıca herhangi bir aritmetik ilerleme için aşağıdaki eşitlik geçerlidir:

bir m + bir n = bir k + bir l,

m + n = k + l.

Örneğin,

aritmetik ilerlemede

1) A 10 = 28 = (25 + 31)/2 = (A 9 + A 11 )/2;

2) 28 = 10 = 3 + 7D= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (bir 7 + bir 13)/2;

4) bir 2 + bir 12 = bir 5 + bir 9, Çünkü

a 2 + a 12= 4 + 34 = 38,

bir 5 + bir 9 = 13 + 25 = 38.

Sn= bir 1 + bir 2 + bir 3 + . . .+ BİR,

Birinci N Bir aritmetik ilerlemenin terimleri, uç terimlerin toplamının yarısı ile terim sayısının çarpımına eşittir:

Buradan özellikle şu sonuç çıkar: terimleri toplamanız gerekiyorsa

bir k, bir k +1 , . . . , BİR,

bu durumda önceki formül yapısını korur:

Örneğin,

aritmetik ilerlemede 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Aritmetik bir ilerleme verilirse, miktarlar A 1 , BİR, D, N VeS N iki formülle birbirine bağlanır:

Bu nedenle, bu miktarlardan üçünün değerleri verilirse, diğer iki miktarın karşılık gelen değerleri, iki bilinmeyenli iki denklem sisteminde birleştirilen bu formüllerden belirlenir.

Aritmetik ilerleme monoton bir dizidir. Burada:

  • Eğer D > 0 , o zaman artıyor;
  • Eğer D < 0 , o zaman azalıyor;
  • Eğer D = 0 , bu durumda dizi durağan olacaktır.

Geometrik ilerleme

Geometrik ilerleme ikinciden başlayarak her üyenin bir öncekinin aynı sayıyla çarpımına eşit olduğu bir dizidir.

B 1 , B 2 , B 3 , . . . , bn, . . .

herhangi bir doğal sayı için geometrik bir ilerlemedir N koşul yerine getirildi:

bn +1 = bn · Q,

Nerede Q ≠ 0 - belirli bir sayı.

Dolayısıyla, belirli bir geometrik ilerlemenin sonraki teriminin bir öncekine oranı sabit bir sayıdır:

B 2 / B 1 = B 3 / B 2 = . . . = bn +1 / bn = Q.

Sayı Q isminde geometrik ilerlemenin paydası.

Geometrik bir ilerlemeyi tanımlamak için ilk terimini ve paydasını belirtmek yeterlidir.

Örneğin,

Eğer B 1 = 1, Q = -3 , dizinin ilk beş terimini şu şekilde buluruz:

b 1 = 1,

b2 = b 1 · Q = 1 · (-3) = -3,

b3 = b2 · Q= -3 · (-3) = 9,

b4 = b3 · Q= 9 · (-3) = -27,

B 5 = B 4 · Q= -27 · (-3) = 81.

B 1 ve payda Q o N Bu terim aşağıdaki formül kullanılarak bulunabilir:

bn = B 1 · qn -1 .

Örneğin,

geometrik ilerlemenin yedinci terimini bulun 1, 2, 4, . . .

B 1 = 1, Q = 2,

B 7 = B 1 · Q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

bn = b 1 · qn -1 ,

bn +1 = B 1 · qn,

o zaman açıkçası

bn 2 = bn -1 · bn +1 ,

ikinciden başlayarak geometrik ilerlemenin her bir üyesi, önceki ve sonraki üyelerin geometrik ortalamasına (orantılı) eşittir.

Bunun tersi de doğru olduğundan aşağıdaki ifade geçerlidir:

a, b ve c sayıları, ancak ve ancak bunlardan birinin karesi diğer ikisinin çarpımına eşitse, yani sayılardan biri diğer ikisinin geometrik ortalamasıysa, bir geometrik ilerlemenin ardışık terimleridir.

Örneğin,

Formülün verdiği diziyi kanıtlayalım bn= -3 · 2 N , geometrik bir ilerlemedir. Yukarıdaki ifadeyi kullanalım. Sahibiz:

bn= -3 · 2 N,

bn -1 = -3 · 2 N -1 ,

bn +1 = -3 · 2 N +1 .

Buradan,

bn 2 = (-3 2 N) 2 = (-3 2 N -1 ) · (-3 · 2 N +1 ) = bn -1 · bn +1 ,

bu da istenen ifadeyi kanıtlıyor.

Dikkat N Geometrik ilerlemenin inci terimi yalnızca şu şekilde bulunabilir: B 1 , aynı zamanda önceki herhangi bir üye bk bunun için formülü kullanmak yeterlidir

bn = bk · qn - k.

Örneğin,

İçin B 5 yazılabilir

b5 = b 1 · Q 4 ,

b5 = b2 · 3. soru,

b5 = b3 · q 2,

b5 = b4 · Q.

bn = bk · qn - k,

bn = bn - k · qk,

o zaman açıkçası

bn 2 = bn - k· bn + k

İkinciden başlayarak geometrik ilerlemenin herhangi bir teriminin karesi, bu ilerlemenin eşit aralıklı terimlerinin çarpımına eşittir.

Ayrıca herhangi bir geometrik ilerleme için eşitlik doğrudur:

bm· bn= bk· b l,

M+ N= k+ ben.

Örneğin,

geometrik ilerlemede

1) B 6 2 = 32 2 = 1024 = 16 · 64 = B 5 · B 7 ;

2) 1024 = B 11 = B 6 · Q 5 = 32 · 2 5 = 1024;

3) B 6 2 = 32 2 = 1024 = 8 · 128 = B 4 · B 8 ;

4) B 2 · B 7 = B 4 · B 5 , Çünkü

B 2 · B 7 = 2 · 64 = 128,

B 4 · B 5 = 8 · 16 = 128.

Sn= B 1 + B 2 + B 3 + . . . + bn

Birinci N paydalı geometrik ilerlemenin üyeleri Q 0 formülle hesaplanır:

Ve ne zaman Q = 1 - formüle göre

Sn= not 1

Terimleri toplamanız gerekiyorsa şunu unutmayın:

bk, bk +1 , . . . , bn,

daha sonra formül kullanılır:

Sn- Sk -1 = bk + bk +1 + . . . + bn = bk · 1 - qn - k +1
.
1 - Q

Örneğin,

geometrik ilerlemede 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Geometrik bir ilerleme verilirse, o zaman miktarlar B 1 , bn, Q, N Ve Sn iki formülle birbirine bağlanır:

Bu nedenle, bu miktarlardan herhangi üçünün değerleri verilirse, diğer iki miktarın karşılık gelen değerleri, iki bilinmeyenli iki denklem sisteminde birleştirilen bu formüllerden belirlenir.

İlk terimle geometrik ilerleme için B 1 ve payda Q aşağıdakiler gerçekleşir monotonluğun özellikleri :

  • Aşağıdaki koşullardan biri karşılanırsa ilerleme artıyor:

B 1 > 0 Ve Q> 1;

B 1 < 0 Ve 0 < Q< 1;

  • Aşağıdaki koşullardan biri karşılanırsa ilerleme azalıyor:

B 1 > 0 Ve 0 < Q< 1;

B 1 < 0 Ve Q> 1.

Eğer Q< 0 , o zaman geometrik ilerleme dönüşümlüdür: tek sayılı terimler ilk terimiyle aynı işarete sahiptir ve çift sayılı terimler ters işarete sahiptir. Alternatif bir geometrik ilerlemenin monoton olmadığı açıktır.

İlk ürünün ürünü N geometrik ilerlemenin üyeleri aşağıdaki formül kullanılarak hesaplanabilir:

Pn= b 1 · b2 · b3 · . . . · bn = (b 1 · bn) N / 2 .

Örneğin,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Sonsuz azalan geometrik ilerleme

Sonsuz azalan geometrik ilerleme payda modülü daha küçük olan sonsuz geometrik ilerleme denir 1 , yani

|Q| < 1 .

Sonsuz derecede azalan bir geometrik ilerlemenin azalan bir dizi olmayabileceğini unutmayın. Bu duruma uyuyor

1 < Q< 0 .

Böyle bir paydayla dizi değişiyor. Örneğin,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Sonsuz azalan geometrik ilerlemenin toplamı ilklerin toplamının sınırsız olarak yaklaştığı sayıyı adlandırın N sayısında sınırsız bir artış olan bir ilerlemenin üyeleri N . Bu sayı her zaman sonludur ve aşağıdaki formülle ifade edilir:

S= B 1 + B 2 + B 3 + . . . = B 1
.
1 - Q

Örneğin,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Aritmetik ve geometrik ilerlemeler arasındaki ilişki

Aritmetik ve geometrik ilerlemeler yakından ilişkilidir. Sadece iki örneğe bakalım.

A 1 , A 2 , A 3 , . . . D , O

ba bir 1 , ba bir 2 , ba bir 3 , . . . b d .

Örneğin,

1, 3, 5, . . . - farkla aritmetik ilerleme 2 Ve

7 1 , 7 3 , 7 5 , . . . - paydayla geometrik ilerleme 7 2 .

B 1 , B 2 , B 3 , . . . - paydayla geometrik ilerleme Q , O

log a b 1, log a b 2, log a b 3, . . . - farkla aritmetik ilerleme bir günlüğe kaydetQ .

Örneğin,

2, 12, 72, . . . - paydayla geometrik ilerleme 6 Ve

lg 2, lg 12, lg 72, . . . - farkla aritmetik ilerleme lg 6 .

Veya aritmetik, özellikleri bir okul cebir dersinde incelenen bir tür sıralı sayısal dizidir. Bu makalede, bir aritmetik ilerlemenin toplamının nasıl bulunacağı sorusu ayrıntılı olarak tartışılmaktadır.

Bu nasıl bir ilerleme?

Soruna geçmeden önce (bir aritmetik ilerlemenin toplamı nasıl bulunur), neden bahsettiğimizi anlamakta fayda var.

Önceki her sayıya bir değer eklenerek (çıkarılarak) elde edilen herhangi bir gerçek sayı dizisine cebirsel (aritmetik) ilerleme denir. Bu tanım matematik diline çevrildiğinde şu şekli alır:

Burada i, a i satırının elemanının seri numarasıdır. Böylece, yalnızca bir başlangıç ​​​​numarasını bilerek tüm seriyi kolayca geri yükleyebilirsiniz. Formüldeki d parametresine ilerleme farkı denir.

Söz konusu sayı serisi için aşağıdaki eşitliğin geçerli olduğu kolaylıkla gösterilebilir:

a n = a 1 + d * (n - 1).

Yani n'inci elemanın değerini sırasıyla bulmak için d farkını ilk eleman a'ya 1 n-1 kez eklemelisiniz.

Aritmetik ilerlemenin toplamı nedir: formül

Belirtilen miktarın formülünü vermeden önce basit bir özel durumu dikkate almakta fayda var. Doğal sayıların 1'den 10'a kadar ilerlemesi verildiğinde, bunların toplamını bulmanız gerekir. İlerlemede (10) az sayıda terim olduğundan, sorunu doğrudan çözmek, yani tüm unsurları sırayla toplamak mümkündür.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

İlginç bir şeyi dikkate almakta fayda var: Her terim bir sonrakinden aynı d = 1 değeriyle farklı olduğundan, ilkinin onuncu, ikincinin dokuzuncu vb. ile ikili toplamı aynı sonucu verecektir. Gerçekten mi:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Gördüğünüz gibi bu toplamlardan sadece 5 adet var, yani serinin eleman sayısından tam iki kat daha az. Daha sonra toplam sayısını (5) her toplamın sonucuyla (11) çarparak ilk örnekte elde edilen sonuca ulaşacaksınız.

Bu argümanları genelleştirirsek aşağıdaki ifadeyi yazabiliriz:

S n = n * (bir 1 + bir n) / 2.

Bu ifade, bir satırdaki tüm elemanların toplamının hiç de gerekli olmadığını, ilk a 1 ve sonuncu a n'nin değerini ve toplam n terim sayısını bilmenin yeterli olduğunu gösterir.

Gauss'un bu eşitliği ilk kez okul öğretmeni tarafından verilen bir probleme çözüm ararken aklına geldiğine inanılıyor: ilk 100 tam sayının toplamı.

m'den n'ye kadar elemanların toplamı: formül

Önceki paragrafta verilen formül, bir aritmetik ilerlemenin (ilk öğeler) toplamının nasıl bulunacağı sorusuna yanıt verir, ancak çoğu zaman problemlerde ilerlemenin ortasında bir sayı dizisinin toplanması gerekir. Nasıl yapılır?

Bu soruyu cevaplamanın en kolay yolu şu örneği ele almaktır: m'den n'ye kadar terimlerin toplamını bulmamız gereksin. Sorunu çözmek için, ilerlemenin m'den n'ye kadar olan kısmını yeni bir sayı serisi biçiminde sunmalısınız. Bu gösterimde m'inci terim a m birinci olacak ve bir n, n-(m-1) olarak numaralandırılacaktır. Bu durumda, toplam için standart formülün uygulanmasıyla aşağıdaki ifade elde edilecektir:

S m n = (n - m + 1) * (bir m + bir n) / 2.

Formül kullanma örneği

Aritmetik ilerlemenin toplamının nasıl bulunacağını bilmek, yukarıdaki formülleri kullanmanın basit bir örneğini düşünmeye değer.

Aşağıda sayısal bir dizi bulunmaktadır, 5'inciden başlayıp 12'nci ile biten terimlerinin toplamını bulmalısınız:

Verilen sayılar d farkının 3'e eşit olduğunu göstermektedir. N'inci eleman ifadesini kullanarak ilerlemenin 5. ve 12. terimlerinin değerlerini bulabilirsiniz. Görünüşe göre:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Söz konusu cebirsel ilerlemenin sonundaki sayıların değerlerini bilerek ve ayrıca serideki hangi sayıları işgal ettiklerini bilerek, önceki paragrafta elde edilen toplamın formülünü kullanabilirsiniz. Ortaya çıkacak:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Bu değerin farklı şekilde elde edilebileceğini belirtmekte fayda var: önce standart formülü kullanarak ilk 12 öğenin toplamını bulun, ardından aynı formülü kullanarak ilk 4 öğenin toplamını hesaplayın, ardından ikinciyi ilk toplamdan çıkarın.



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!