Bir denklem sistemi nasıl çözülür? Doğrusal Denklem Sistemleri: Temel Kavramlar

Konuyla ilgili ders ve sunum: "Denklem sistemleri. Değiştirme yöntemi, toplama yöntemi, yeni bir değişken ekleme yöntemi"

Ek materyaller
Sevgili kullanıcılar, yorumlarınızı, yorumlarınızı, dileklerinizi bırakmayı unutmayın! Tüm materyaller antivirüs programı ile kontrol edilmiştir.

9. sınıf için Integral çevrimiçi mağazasında eğitim yardımcıları ve simülatörler
Atanasyan L.S.'nin ders kitapları için simülatörü. Ders kitapları için simülatör Pogorelova A.V.

Eşitsizlik sistemlerini çözme yöntemleri

Arkadaşlar, denklem sistemlerini inceledik ve bunları grafikler kullanarak nasıl çözeceğimizi öğrendik. Şimdi sistemleri çözmenin başka hangi yollarının mevcut olduğunu görelim?
Bunları çözme yöntemlerinin neredeyse tamamı 7. sınıfta okuduklarımızdan farklı değil. Şimdi çözmeyi öğrendiğimiz denklemlere göre bazı ayarlamalar yapmamız gerekiyor.
Bu derste anlatılan tüm yöntemlerin özü, sistemi daha basit bir form ve çözümle eşdeğer bir sistemle değiştirmektir. Arkadaşlar, eşdeğer sistemin ne olduğunu unutmayın.

İkame yöntemi

İki değişkenli denklem sistemlerini çözmenin ilk yolu bizim tarafımızdan iyi bilinmektedir - bu, ikame yöntemidir. Bu yöntemi doğrusal denklemleri çözmek için kullandık. Şimdi genel durumda denklemlerin nasıl çözüleceğini görelim.

Karar verirken nasıl ilerlemelisiniz?
1. Değişkenlerden birini diğerine göre ifade ediniz. Denklemlerde en sık kullanılan değişkenler x ve y'dir. Denklemlerden birinde bir değişkeni diğerine göre ifade ediyoruz. İpucu: Çözmeye başlamadan önce her iki denkleme de dikkatlice bakın ve değişkeni ifade etmenin daha kolay olduğu denklemi seçin.
2. Ortaya çıkan ifadeyi, ifade edilen değişken yerine ikinci denklemde değiştirin.
3. Bulduğumuz denklemi çözün.
4. Ortaya çıkan çözümü ikinci denklemde yerine koyun. Birkaç çözüm varsa, birkaç çözümü kaybetmemek için bunları sırayla değiştirmeniz gerekir.
5. Sonuç olarak, cevap olarak yazılması gereken bir çift $(x;y)$ sayısını alacaksınız.

Örnek.
İki değişkenli bir sistemi ikame yöntemini kullanarak çözün: $\begin(cases)x+y=5, \\xy=6\end(cases)$.

Çözüm.
Denklemlerimize daha yakından bakalım. Açıkçası, ilk denklemde y'yi x cinsinden ifade etmek çok daha basittir.
$\begin(case)y=5-x, \\xy=6\end(case)$.
İlk ifadeyi ikinci denklemde $\begin(cases)y=5-x, \\x(5-2x)=6\end(cases)$ yerine koyalım.
İkinci denklemi ayrı ayrı çözelim:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
İkinci denklem $x_1=2$ ve $x_2=3$ için iki çözüm elde ettik.
İkinci denklemde sırayla yerine koyarız.
$x=2$ ise $y=3$ olur. $x=3$ ise $y=2$ olur.
Cevap iki çift sayı olacaktır.
Cevap: $(2;3)$ ve $(3;2)$.

Cebirsel toplama yöntemi

Bu yöntemi 7. sınıfta da işlemiştik.
Denklemin her iki tarafını da çarpmayı unutmadan, iki değişkenli bir rasyonel denklemi herhangi bir sayıyla çarpabileceğimiz bilinmektedir. Denklemlerden birini belirli bir sayı ile çarptık, böylece ortaya çıkan denklemi sistemin ikinci denklemine eklerken değişkenlerden biri yok oldu. Daha sonra kalan değişken için denklem çözüldü.
Değişkenlerden birini yok etmek her zaman mümkün olmasa da bu yöntem hala işe yarıyor. Ancak denklemlerden birinin biçimini önemli ölçüde basitleştirmenize olanak tanır.

Örnek.
Sistemi çözün: $\begin(cases)2x+xy-1=0, \\4y+2xy+6=0\end(cases)$.

Çözüm.
İlk denklemi 2 ile çarpalım.
$\begin(cases)4x+2xy-2=0, \\4y+2xy+6=0\end(cases)$.
Birinci denklemden ikinciyi çıkaralım.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Gördüğünüz gibi ortaya çıkan denklemin formu orijinalinden çok daha basittir. Artık yerine koyma yöntemini kullanabiliriz.
$\begin(cases)4x-4y-8=0, \\4y+2xy+6=0\end(cases)$.
Ortaya çıkan denklemde x'i y cinsinden ifade edelim.
$\begin(cases)4x=4y+8, \\4y+2xy+6=0\end(cases)$.
$\begin(cases)x=y+2, \\4y+2(y+2)y+6=0\end(cases)$.
$\begin(cases)x=y+2, \\4y+2y^2+4y+6=0\end(cases)$.
$\begin(cases)x=y+2, \\2y^2+8y+6=0\end(case)$.
$\begin(cases)x=y+2, \\y^2+4y+3=0\end(cases)$.
$\begin(cases)x=y+2, \\(y+3)(y+1)=0\end(cases)$.
$y=-1$ ve $y=-3$ elde ettik.
Bu değerleri sırasıyla ilk denklemde yerine koyalım. İki çift sayı elde ederiz: $(1;-1)$ ve $(-1;-3)$.
Cevap: $(1;-1)$ ve $(-1;-3)$.

Yeni bir değişken ekleme yöntemi

Bu yöntemi de inceledik ama gelin tekrar bakalım.

Örnek.
Sistemi çözün: $\begin(cases)\frac(x)(y)+\frac(2y)(x)=3, \\2x^2-y^2=1\end(cases)$.

Çözüm.
$t=\frac(x)(y)$ yerine geçeni tanıtalım.
İlk denklemi yeni bir değişkenle yeniden yazalım: $t+\frac(2)(t)=3$.
Ortaya çıkan denklemi çözelim:
$\frac(t^2-3t+2)(t)=0$.
$\frac((t-2)(t-1))(t)=0$.
$t=2$ veya $t=1$ elde ederiz. $t=\frac(x)(y)$ ters değişimini tanıtalım.
Şunu elde ettik: $x=2y$ ve $x=y$.

İfadelerin her biri için orijinal sistemin ayrı ayrı çözülmesi gerekir:
$\begin(cases)x=2y, \\2x^2-y^2=1\end(case)$.    $\begin(cases)x=y, \\2x^2-y^2=1\end(case)$.
$\begin(cases)x=2y, \\8y^2-y^2=1\end(case)$.    $\begin(cases)x=y, \\2y^2-y^2=1\end(case)$.
$\begin(case)x=2y, \\7y^2=1\end(case)$.       $\begin(case)x=2y, \\y^2=1\end(case)$.
$\begin(cases)x=2y, \\y=±\frac(1)(\sqrt(7))\end(cases)$.      $\begin(case)x=y, \\y=±1\end(case)$.
$\begin(cases)x=±\frac(2)(\sqrt(7)), \\y=±\frac(1)(\sqrt(7))\end(cases)$.     $\begin(case)x=±1, \\y=±1\end(case)$.
Dört çift çözüm aldık.
Cevap: $(\frac(2)(\sqrt(7));\frac(1)(\sqrt(7)))$; $(-\frac(2)(\sqrt(7));-\frac(1)(\sqrt(7)))$; $(1;1)$; $(-1;-1)$.

Örnek.
Sistemi çözün: $\begin(cases)\frac(2)(x-3y)+\frac(3)(2x+y)=2, \\\frac(8)(x-3y)-\frac( 9 )(2x+y)=1\end(durum)$.

Çözüm.
Değiştirmeyi tanıtalım: $z=\frac(2)(x-3y)$ ve $t=\frac(3)(2x+y)$.
Orijinal denklemleri yeni değişkenlerle yeniden yazalım:
$\begin(cases)z+t=2, \\4z-3t=1\end(case)$.
Cebirsel toplama yöntemini kullanalım:
$\begin(case)3z+3t=6, \\4z-3t=1\end(case)$.
$\begin(case)3z+3t+4z-3t=6+1, \\4z-3t=1\end(case)$.
$\begin(cases)7z=7, \\4z-3t=1\end(case)$.
$\begin(cases)z=1, \\-3t=1-4\end(case)$.
$\begin(case)z=1, \\t=1\end(case)$.
Ters ikameyi tanıtalım:
$\begin(cases)\frac(2)(x-3y)=1, \\\frac(3)(2x+y)=1\end(cases)$.
$\begin(case)x-3y=2, \\2x+y=3\end(case)$.
Değiştirme yöntemini kullanalım:
$\begin(case)x=2+3y, \\4+6y+y=3\end(case)$.
$\begin(case)x=2+3y, \\7y=-1\end(case)$.
$\begin(cases)x=2+3(\frac(-1)(7)), \\y=\frac(-1)(7)\end(cases)$.
$\begin(cases)x=\frac(11)(7), \\x=-\frac(11)(7)\end(case)$.
Cevap: $(\frac(11)(7);-\frac(1)(7))$.

Bağımsız çözüm için denklem sistemleriyle ilgili problemler

Sistemleri çözün:
1. $\begin(case)2x-2y=6,\\xy =-2\end(case)$.
2. $\begin(case)x+y^2=3, \\xy^2=4\end(case)$.
3. $\begin(case)xy+y^2=3,\\y^2-xy=5\end(case)$.
4. $\begin(case)\frac(2)(x)+\frac(1)(y)=4, \\\frac(1)(x)+\frac(3)(y)=9\ bitiş(durumlar)$.
5. $\begin(case)\frac(5)(x^2-xy)+\frac(4)(y^2-xy)=-\frac(1)(6), \\\frac(7) )(x^2-xy)-\frac(3)(y^2-xy)=\frac(6)(5)\end(cases)$.
Denklem sistemlerinin iki tür çözümünü analiz edelim:

1. Sistemin yerine koyma yöntemini kullanarak çözülmesi.
2. Sistem denklemlerini terim terim toplayarak (çıkararak) sistemi çözmek.

Denklem sistemini çözmek için ikame yöntemiyle basit bir algoritma izlemeniz gerekir:
1. Ekspres. Herhangi bir denklemden bir değişkeni ifade ederiz.
2. Değiştir. Ortaya çıkan değeri, ifade edilen değişken yerine başka bir denklemde değiştiririz.
3. Ortaya çıkan denklemi tek değişkenle çözün. Sisteme çözüm buluyoruz.

Çözmek için terim dönem toplama (çıkarma) yöntemiyle sistemşunları yapmanız gerekir:
1. Katsayılarını aynı yapacağımız bir değişken seçin.
2. Denklemleri topluyor veya çıkarıyoruz, sonuçta tek değişkenli bir denklem elde ediliyor.
3. Ortaya çıkan doğrusal denklemi çözün. Sisteme çözüm buluyoruz.

Sistemin çözümü fonksiyon grafiklerinin kesişim noktalarıdır.

Örnekleri kullanarak sistemlerin çözümünü ayrıntılı olarak ele alalım.

Örnek 1:

Yerine koyma yöntemiyle çözelim

Bir denklem sistemini ikame yöntemini kullanarak çözme

2x+5y=1 (1 denklem)
x-10y=3 (2. denklem)

1. Ekspres
İkinci denklemde katsayısı 1 olan bir x değişkeninin olduğu görülmektedir, bu da x değişkenini ikinci denklemden ifade etmenin en kolay olduğu anlamına gelir.
x=3+10y

2.Bunu ifade ettikten sonra ilk denklemde x değişkeni yerine 3+10y yazıyoruz.
2(3+10y)+5y=1

3. Ortaya çıkan denklemi tek değişkenle çözün.
2(3+10y)+5y=1 (parantezleri açın)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Denklem sisteminin çözümü grafiklerin kesişim noktalarıdır, dolayısıyla x ve y'yi bulmamız gerekiyor çünkü kesişim noktası x ve y'den oluşuyor. x'i bulalım, ifade ettiğimiz ilk noktada y'yi değiştirelim.
x=3+10y
x=3+10*(-0,2)=1

X değişkenini yazdığımız ilk yere, y değişkenini ikinci sıraya yazmak gelenekseldir.
Cevap: (1; -0,2)

Örnek #2:

Terim terim toplama (çıkarma) yöntemini kullanarak çözelim.

Toplama yöntemini kullanarak bir denklem sistemini çözme

3x-2y=1 (1 denklem)
2x-3y=-10 (2. denklem)

1. Bir değişken seçiyoruz, diyelim ki x'i seçiyoruz. İlk denklemde x değişkeninin katsayısı 3, ikincisinde - 2'dir. Katsayıları aynı yapmamız gerekiyor, bunun için denklemleri çarpma veya herhangi bir sayıya bölme hakkımız var. İlk denklemi 2, ikincisini 3 ile çarpıyoruz ve toplam 6 katsayısını elde ediyoruz.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2. X değişkeninden kurtulmak için ikinciyi birinci denklemden çıkarın. Doğrusal denklemi çözün.
__6x-4y=2

5y=32 | :5
y=6.4

3. x'i bulun. Bulunan y'yi denklemlerden herhangi birinin yerine koyarız, diyelim ki ilk denklemin içine.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Kesişme noktası x=4,6 olacaktır; y=6.4
Cevap: (4.6; 6.4)

Sınavlara ücretsiz hazırlanmak ister misiniz? Çevrimiçi öğretmen ücretsiz. Şaka yapmıyorum.


Doğrusal cebirsel denklem sistemlerini (SLAE'ler) çözmek şüphesiz doğrusal cebir dersindeki en önemli konudur. Matematiğin tüm dallarından çok sayıda problem, doğrusal denklem sistemlerinin çözülmesiyle ilgilidir. Bu faktörler bu makalenin nedenini açıklamaktadır. Makalenin materyali, onun yardımıyla şunları yapabilmeniz için seçilmiş ve yapılandırılmıştır:

  • Doğrusal cebirsel denklem sisteminizi çözmek için en uygun yöntemi seçin,
  • Seçilen yöntemin teorisini incelemek,
  • Tipik örneklere ve problemlere yönelik ayrıntılı çözümleri dikkate alarak doğrusal denklem sisteminizi çözün.

Makale materyalinin kısa açıklaması.

Öncelikle gerekli tüm tanımları, kavramları veriyoruz ve notasyonları tanıtıyoruz.

Daha sonra, denklem sayısının bilinmeyen değişkenlerin sayısına eşit olduğu ve tek çözümü olan doğrusal cebirsel denklem sistemlerini çözme yöntemlerini ele alacağız. İlk olarak Cramer yöntemine odaklanacağız, ikinci olarak bu tür denklem sistemlerinin çözümü için matris yöntemini göstereceğiz ve üçüncü olarak Gauss yöntemini (bilinmeyen değişkenlerin sıralı olarak yok edilmesi yöntemi) analiz edeceğiz. Teoriyi pekiştirmek için kesinlikle birkaç SLAE'yi farklı şekillerde çözeceğiz.

Bundan sonra, denklem sayısının bilinmeyen değişkenlerin sayısıyla çakışmadığı veya sistemin ana matrisinin tekil olduğu genel formdaki doğrusal cebirsel denklem sistemlerini çözmeye geçeceğiz. SLAE'lerin uyumluluğunu belirlememize olanak tanıyan Kronecker-Capelli teoremini formüle edelim. Bir matrisin küçük tabanı kavramını kullanarak sistemlerin çözümünü (eğer uyumlularsa) analiz edelim. Ayrıca Gauss yöntemini de ele alacağız ve örneklerin çözümlerini ayrıntılı olarak anlatacağız.

Homojen ve homojen olmayan lineer cebirsel denklem sistemlerinin genel çözümünün yapısı üzerinde kesinlikle duracağız. Temel çözüm sistemi kavramını verelim ve temel çözüm sisteminin vektörleri kullanılarak bir SLAE'nin genel çözümünün nasıl yazıldığını gösterelim. Daha iyi anlamak için birkaç örneğe bakalım.

Sonuç olarak, doğrusal olanlara indirgenebilen denklem sistemlerini ve çözümünde SLAE'lerin ortaya çıktığı çeşitli problemleri ele alacağız.

Sayfada gezinme.

Tanımlar, kavramlar, atamalar.

n bilinmeyen değişkenli (p, n'ye eşit olabilir) p doğrusal cebirsel denklem sistemlerini ele alacağız.

Bilinmeyen değişkenler, - katsayılar (bazı gerçek veya karmaşık sayılar), - serbest terimler (aynı zamanda gerçek veya karmaşık sayılar).

SLAE kaydetmenin bu biçimine denir koordinat.

İÇİNDE matris formu Bu denklem sistemini yazmanın şekli şu şekildedir:
Nerede - sistemin ana matrisi, - bilinmeyen değişkenlerden oluşan bir sütun matrisi, - serbest terimlerden oluşan bir sütun matrisi.

A matrisine (n+1). sütun olarak serbest terimlerden oluşan bir matris sütunu eklersek, sözde elde ederiz. genişletilmiş matris Doğrusal denklem sistemleri. Tipik olarak, genişletilmiş bir matris T harfiyle gösterilir ve serbest terimler sütunu, kalan sütunlardan dikey bir çizgi ile ayrılır;

Doğrusal cebirsel denklem sistemini çözme sistemin tüm denklemlerini kimliğe dönüştüren bilinmeyen değişkenlerin değerleri kümesi denir. Bilinmeyen değişkenlerin verilen değerleri için matris denklemi de bir özdeşlik haline gelir.

Bir denklem sisteminin en az bir çözümü varsa buna denir. eklem yeri.

Bir denklem sisteminin çözümü yoksa buna denir. ortak olmayan.

Bir SLAE'nin benzersiz bir çözümü varsa buna denir. kesin; birden fazla çözüm varsa o zaman – belirsiz.

Sistemin tüm denklemlerinin serbest terimleri sıfıra eşitse , daha sonra sistem çağrılır homojen, aksi takdirde - heterojen.

Lineer cebirsel denklemlerin temel sistemlerini çözme.

Bir sistemin denklem sayısı bilinmeyen değişkenlerin sayısına eşitse ve ana matrisinin determinantı sıfıra eşit değilse, bu tür SLAE'ler çağrılacaktır. temel. Bu tür denklem sistemlerinin benzersiz bir çözümü vardır ve homojen bir sistem durumunda tüm bilinmeyen değişkenler sıfıra eşittir.

Bu tür SLAE'leri lisede incelemeye başladık. Bunları çözerken, bir denklemi aldık, bilinmeyen bir değişkeni diğerleri cinsinden ifade ettik ve onu kalan denklemlerde yerine koyduk, sonra bir sonraki denklemi aldık, bir sonraki bilinmeyen değişkeni ifade ettik ve onu diğer denklemlerde yerine koyduk, vb. Veya toplama yöntemini kullandılar, yani bilinmeyen bazı değişkenleri ortadan kaldırmak için iki veya daha fazla denklem eklediler. Bu yöntemler esasen Gauss yönteminin modifikasyonları olduğundan, üzerinde ayrıntılı olarak durmayacağız.

Temel doğrusal denklem sistemlerini çözmenin ana yöntemleri Cramer yöntemi, matris yöntemi ve Gauss yöntemidir. Bunları sıralayalım.

Doğrusal denklem sistemlerini Cramer yöntemini kullanarak çözme.

Bir doğrusal cebirsel denklem sistemini çözmemiz gerektiğini varsayalım.

Denklem sayısının bilinmeyen değişken sayısına eşit olduğu ve sistemin ana matrisinin determinantının sıfırdan farklı olduğu, yani .

Sistemin ana matrisinin determinantı olsun ve - A'dan değiştirilerek elde edilen matrislerin determinantları 1., 2.,…, n. sütun sırasıyla serbest üyelerin sütununa:

Bu gösterimle bilinmeyen değişkenler Cramer yönteminin formülleri kullanılarak şu şekilde hesaplanır: . Cramer yöntemi kullanılarak bir doğrusal cebirsel denklem sisteminin çözümü bu şekilde bulunur.

Örnek.

Cramer'in yöntemi .

Çözüm.

Sistemin ana matrisi şu şekildedir: . Determinantını hesaplayalım (gerekirse makaleye bakın):

Sistemin ana matrisinin determinantı sıfırdan farklı olduğundan sistemin Cramer yöntemiyle bulunabilecek tek bir çözümü vardır.

Gerekli belirleyicileri oluşturup hesaplayalım (A matrisindeki ilk sütunu serbest terimlerden oluşan bir sütunla değiştirerek determinantı, ikinci sütunu serbest terimlerden oluşan bir sütunla değiştirerek ve A matrisinin üçüncü sütununu serbest terimlerden oluşan bir sütunla değiştirerek elde ederiz) :

Formülleri kullanarak bilinmeyen değişkenleri bulma :

Cevap:

Cramer yönteminin en büyük dezavantajı (dezavantaj olarak adlandırılabilirse), sistemdeki denklem sayısı üçten fazla olduğunda determinantların hesaplanmasının karmaşıklığıdır.

Doğrusal cebirsel denklem sistemlerini matris yöntemini kullanarak çözme (ters matris kullanarak).

A matrisinin n x n boyutuna sahip olduğu ve determinantının sıfır olmadığı bir doğrusal cebirsel denklem sistemi matris biçiminde verilsin.

A matrisi tersinir olduğundan, ters bir matris vardır. Eşitliğin her iki tarafını da solla çarparsak, bilinmeyen değişkenlerden oluşan bir matris sütununu bulmak için bir formül elde ederiz. Matris yöntemini kullanarak doğrusal cebirsel denklemler sisteminin çözümünü bu şekilde elde ettik.

Örnek.

Doğrusal denklem sistemini çözme matris yöntemi.

Çözüm.

Denklem sistemini matris formunda yeniden yazalım:

Çünkü

daha sonra SLAE matris yöntemi kullanılarak çözülebilir. Ters matris kullanılarak bu sistemin çözümü şu şekilde bulunabilir: .

A matrisinin elemanlarının cebirsel toplamlarından bir matris kullanarak ters bir matris oluşturalım (gerekirse makaleye bakın):

Ters matrisi çarparak bilinmeyen değişkenlerin matrisini hesaplamak kalır. ücretsiz üyelerden oluşan bir matris sütununa (gerekirse makaleye bakın):

Cevap:

veya başka bir gösterimle x 1 = 4, x 2 = 0, x 3 = -1.

Matris yöntemini kullanarak doğrusal cebirsel denklem sistemlerine çözüm bulmadaki ana sorun, özellikle üçüncü mertebeden yüksek kare matrisler için ters matris bulmanın karmaşıklığıdır.

Doğrusal denklem sistemlerini Gauss yöntemini kullanarak çözme.

n bilinmeyen değişkenli n doğrusal denklem sistemine bir çözüm bulmamız gerektiğini varsayalım.
ana matrisin determinantı sıfırdan farklıdır.

Gauss yönteminin özü bilinmeyen değişkenlerin sıralı olarak hariç tutulmasından oluşur: ilk olarak x 1, ikinciden başlayarak sistemin tüm denklemlerinden çıkarılır, ardından üçüncüden başlayarak x 2 tüm denklemlerden çıkarılır ve bu şekilde yalnızca bilinmeyen değişken x n olana kadar devam eder. son denklemde kalır. Bilinmeyen değişkenleri sırayla ortadan kaldırmak için sistem denklemlerini dönüştürme işlemine denir. doğrudan Gauss yöntemi. Gauss yönteminin ileri vuruşu tamamlandıktan sonra, son denklemden x n bulunur, sondan bir önceki denklemdeki bu değer kullanılarak x n-1 hesaplanır ve bu şekilde ilk denklemden x 1 bulunur. Sistemin son denkleminden birincisine geçerken bilinmeyen değişkenlerin hesaplanması işlemine ne ad verilir? Gauss yönteminin tersi.

Bilinmeyen değişkenleri ortadan kaldırmak için kullanılan algoritmayı kısaca açıklayalım.

Bunu her zaman sistemin denklemlerini yeniden düzenleyerek başarabileceğimiz için bunu varsayacağız. Bilinmeyen değişken x 1'i ikinciden başlayarak sistemin tüm denklemlerinden çıkaralım. Bunu yapmak için sistemin ikinci denklemine birincisini çarptığımız denklemi, üçüncü denklemine birincisini ekliyoruz ve bu şekilde devam ederek n'inci denkleme birincisini çarpıyoruz. Bu tür dönüşümlerden sonra denklem sistemi şu şekli alacaktır:

Nerede ve .

Sistemin ilk denkleminde x 1'i diğer bilinmeyen değişkenler cinsinden ifade edip, elde edilen ifadeyi diğer tüm denklemlerde yerine koysaydık aynı sonuca ulaşırdık. Böylece x 1 değişkeni ikinciden başlayarak tüm denklemlerin dışında bırakılır.

Daha sonra benzer şekilde ilerliyoruz, ancak yalnızca sonuçtaki sistemin şekilde işaretlenmiş kısmıyla

Bunu yapmak için sistemin üçüncü denklemine ikinciyi çarpıyoruz, dördüncü denkleme ikinciyi ekliyoruz ve bu şekilde devam ederek n'inci denkleme ikinciyi çarpıyoruz. Bu tür dönüşümlerden sonra denklem sistemi şu şekli alacaktır:

Nerede ve . Böylece x2 değişkeni üçüncüden başlayarak tüm denklemlerin dışında bırakılır.

Daha sonra sistemin şekilde işaretlenen kısmı ile benzer şekilde hareket ederek bilinmeyen x 3'ü ortadan kaldırmaya devam ediyoruz.

Böylece sistem şu formu alana kadar Gauss yönteminin doğrudan ilerlemesine devam ediyoruz:

Bu andan itibaren Gauss yönteminin tersini başlatırız: son denklemden x n'yi şu şekilde hesaplarız, elde edilen x n değerini kullanarak sondan bir önceki denklemden x n-1'i buluruz ve bu şekilde devam ederek ilk denklemden x 1'i buluruz .

Örnek.

Doğrusal denklem sistemini çözme Gauss yöntemi.

Çözüm.

Bilinmeyen x 1 değişkenini sistemin ikinci ve üçüncü denklemlerinden hariç tutalım. Bunu yapmak için, ikinci ve üçüncü denklemlerin her iki tarafına, birinci denklemin karşılık gelen kısımlarını sırasıyla ve ile çarparak ekleriz:

Şimdi üçüncü denklemden x 2'yi, ikinci denklemin sol ve sağ taraflarını sol ve sağ taraflarına ekleyerek şununla çarpıyoruz:

Bu, Gauss yönteminin ileri vuruşunu tamamlar; geri vuruşa başlarız.

Ortaya çıkan denklem sisteminin son denkleminden x 3'ü buluyoruz:

İkinci denklemden elde ederiz.

İlk denklemden geri kalan bilinmeyen değişkeni buluyoruz ve böylece Gauss yönteminin tersini tamamlıyoruz.

Cevap:

X1 = 4, x2 = 0, x3 = -1.

Genel formdaki lineer cebirsel denklem sistemlerini çözme.

Genel olarak, p sisteminin denklem sayısı, bilinmeyen değişkenlerin sayısı n ile çakışmaz:

Bu tür SLAE'lerin hiçbir çözümü olmayabilir, tek bir çözümü olabilir veya sonsuz sayıda çözümü olabilir. Bu ifade aynı zamanda ana matrisi kare ve tekil olan denklem sistemleri için de geçerlidir.

Kronecker-Capelli teoremi.

Bir doğrusal denklem sistemine çözüm bulmadan önce uyumluluğunun belirlenmesi gerekir. SLAE ne zaman uyumlu, ne zaman tutarsız sorusunun cevabı şu şekilde verilmektedir: Kronecker-Capelli teoremi:
N bilinmeyenli (p, n'ye eşit olabilir) p denklemlerden oluşan bir sistemin tutarlı olabilmesi için, sistemin ana matrisinin sıralamasının genişletilmiş matrisin sıralamasına eşit olması gerekli ve yeterlidir; , Sıra(A)=Sıra(T).

Örnek olarak, bir doğrusal denklem sisteminin uyumluluğunu belirlemek için Kronecker-Capelli teoreminin uygulanmasını ele alalım.

Örnek.

Doğrusal denklem sisteminin olup olmadığını öğrenin çözümler.

Çözüm.

. Küçükleri sınırlama yöntemini kullanalım. İkinci dereceden küçük sıfırdan farklı. Şimdi onu çevreleyen üçüncü dereceden küçüklere bakalım:

Üçüncü dereceden tüm sınırdaki küçükler sıfıra eşit olduğundan, ana matrisin rütbesi ikiye eşittir.

Buna karşılık, genişletilmiş matrisin rütbesi küçük üçüncü dereceden olduğundan üçe eşittir

sıfırdan farklı.

Böylece, Dolayısıyla Rang(A) Kronecker-Capelli teoremini kullanarak orijinal doğrusal denklem sisteminin tutarsız olduğu sonucuna varabiliriz.

Cevap:

Sistemin çözümü yok.

Kronecker-Capelli teoremini kullanarak bir sistemin tutarsızlığını belirlemeyi öğrendik.

Ancak uyumluluğu sağlanmışsa bir SLAE'ye çözüm nasıl bulunur?

Bunu yapmak için bir matrisin minör tabanı kavramına ve matrisin rütbesine ilişkin bir teoreme ihtiyacımız var.

A matrisinin sıfırdan farklı en yüksek mertebesinden küçük olanına denir temel.

Bir temel minörün tanımından, sırasının matrisin rütbesine eşit olduğu sonucu çıkar. Sıfır olmayan bir A matrisi için birkaç temel minör olabilir; her zaman bir temel minör vardır.

Örneğin, matrisi düşünün .

Bu matrisin üçüncü dereceden tüm küçükleri sıfıra eşittir çünkü bu matrisin üçüncü satırının elemanları, birinci ve ikinci satırların karşılık gelen elemanlarının toplamıdır.

Aşağıdaki ikinci dereceden küçükler sıfırdan farklı oldukları için temeldir

Küçükler sıfıra eşit oldukları için temel değildirler.

Matris rütbe teoremi.

P'ye n düzeyindeki bir matrisin sıralaması r'ye eşitse, matrisin seçilen temel minörü oluşturmayan tüm satır (ve sütun) öğeleri, onu oluşturan karşılık gelen satır (ve sütun) öğeleri cinsinden doğrusal olarak ifade edilir. temel küçük.

Matris rütbe teoremi bize ne söylüyor?

Kronecker-Capelli teoremine göre sistemin uyumluluğunu belirlediysek, sistemin ana matrisinin herhangi bir minör tabanını seçeriz (sıralaması r'ye eşittir) ve aşağıdakileri sağlayan tüm denklemleri sistemden çıkarırız: seçilen esas minörü oluşturmaz. Bu şekilde elde edilen SLAE, atılan denklemler hala gereksiz olduğundan orijinaline eşdeğer olacaktır (matris sıra teoremine göre bunlar, kalan denklemlerin doğrusal bir birleşimidir).

Sonuç olarak sistemin gereksiz denklemleri çıkarıldıktan sonra iki durum mümkündür.

    Ortaya çıkan sistemdeki r denklem sayısı bilinmeyen değişken sayısına eşitse bu kesin olacaktır ve tek çözüm Cramer yöntemi, matris yöntemi veya Gauss yöntemiyle bulunabilecektir.

    Örnek.

    .

    Çözüm.

    Sistemin ana matrisinin sıralaması küçük ikinci dereceden olduğundan ikiye eşittir sıfırdan farklı. Genişletilmiş Matris Sıralaması üçüncü dereceden tek minör sıfır olduğundan bu da ikiye eşittir

    ve yukarıda ele alınan ikinci dereceden küçük sıfırdan farklıdır. Kronecker-Capelli teoremine dayanarak, Rank(A)=Rank(T)=2 olduğundan orijinal doğrusal denklem sisteminin uyumluluğunu iddia edebiliriz.

    Temel olarak küçük olarak alıyoruz . Birinci ve ikinci denklemlerin katsayılarından oluşur:

    Sistemin üçüncü denklemi temel minörün oluşumuna katılmaz, bu nedenle onu matrisin rütbesine ilişkin teoreme dayanarak sistemden hariç tutuyoruz:

    Temel doğrusal cebirsel denklem sistemini bu şekilde elde ettik. Cramer yöntemini kullanarak çözelim:

    Cevap:

    x 1 = 1, x 2 = 2.

    Ortaya çıkan SLAE'deki r denklemlerinin sayısı, bilinmeyen değişkenlerin sayısından n azsa, denklemlerin sol taraflarında, temel minör oluşturan terimleri bırakırız ve geri kalan terimleri, denklemin sağ taraflarına aktarırız. Sistemin zıt işaretli denklemleri.

    Denklemin sol tarafında kalan bilinmeyen değişkenlere (r tanesi) denir. ana.

    Sağ tarafta bulunan bilinmeyen değişkenlere (n - r parça vardır) denir özgür.

    Artık serbest bilinmeyen değişkenlerin keyfi değerler alabileceğine, ana bilinmeyen değişkenlerin ise serbest bilinmeyen değişkenler aracılığıyla benzersiz bir şekilde ifade edileceğine inanıyoruz. İfadeleri, elde edilen SLAE'nin Cramer yöntemi, matris yöntemi veya Gauss yöntemi kullanılarak çözülmesiyle bulunabilir.

    Bir örnekle bakalım.

    Örnek.

    Doğrusal cebirsel denklem sistemini çözme .

    Çözüm.

    Sistemin ana matrisinin rütbesini bulalım küçükleri sınırlama yöntemiyle. 1 1 = 1'i birinci dereceden sıfır olmayan bir minör olarak alalım. Bu minörün sınırındaki ikinci dereceden sıfır olmayan bir minör aramaya başlayalım:

    İkinci dereceden sıfır olmayan bir minörü bu şekilde bulduk. Üçüncü dereceden sıfırdan farklı sınırdaki küçükleri aramaya başlayalım:

    Böylece ana matrisin rütbesi üç olur. Genişletilmiş matrisin sıralaması da üçe eşittir, yani sistem tutarlıdır.

    Üçüncü mertebenin sıfırdan farklı bulunan minörünü temel alıyoruz.

    Açıklık sağlamak için, minörün temelini oluşturan unsurları gösteriyoruz:

    Temel minörde yer alan terimleri sistem denklemlerinin sol tarafına bırakıp, geri kalanını zıt işaretli olarak sağ taraflara aktarıyoruz:

    Serbest bilinmeyen değişkenlere x 2 ve x 5 keyfi değerler verelim, yani kabul edelim , keyfi sayılar nerede. Bu durumda SLAE şu şekli alacaktır:

    Ortaya çıkan temel doğrusal cebirsel denklem sistemini Cramer yöntemini kullanarak çözelim:

    Buradan, .

    Cevabınızda serbest bilinmeyen değişkenleri belirtmeyi unutmayın.

    Cevap:

    Rastgele sayılar nerede.

Özetleyin.

Bir genel doğrusal cebirsel denklem sistemini çözmek için öncelikle Kronecker-Capelli teoremini kullanarak uyumluluğunu belirleriz. Ana matrisin sıralaması genişletilmiş matrisin sıralamasına eşit değilse sistemin uyumsuz olduğu sonucuna varırız.

Ana matrisin rütbesi genişletilmiş matrisin rütbesine eşitse, o zaman bir minör baz seçeriz ve seçilen baz minörün oluşumuna katılmayan sistem denklemlerini atarız.

Temel minörün sırası bilinmeyen değişkenlerin sayısına eşitse, o zaman SLAE'nin bildiğimiz herhangi bir yöntemle bulunabilecek benzersiz bir çözümü vardır.

Temelin sırası bilinmeyen değişken sayısından azsa, sistem denklemlerinin sol tarafında, ana bilinmeyen değişkenlerin bulunduğu terimleri bırakırız, kalan terimleri sağ taraflara aktarırız ve keyfi değerler veririz. serbest bilinmeyen değişkenler Ortaya çıkan doğrusal denklem sisteminden ana bilinmeyen değişkenleri Cramer yöntemini, matris yöntemini veya Gauss yöntemini kullanarak buluruz.

Genel formdaki doğrusal cebirsel denklem sistemlerini çözmek için Gauss yöntemi.

Gauss yöntemi, her türlü doğrusal cebirsel denklem sistemini, önce tutarlılık açısından test etmeden çözmek için kullanılabilir. Bilinmeyen değişkenlerin sıralı olarak ortadan kaldırılması süreci, SLAE'nin hem uyumluluğu hem de uyumsuzluğu hakkında bir sonuca varılmasını ve bir çözüm varsa bulunmasını mümkün kılar.

Hesaplama açısından Gauss yöntemi tercih edilir.

Genel doğrusal cebirsel denklem sistemlerini çözmek için Gauss yöntemi makalesinde ayrıntılı açıklamasına ve analiz edilen örneklere bakın.

Temel çözüm sisteminin vektörlerini kullanarak homojen ve homojen olmayan doğrusal cebirsel sistemlere genel bir çözüm yazmak.

Bu bölümde sonsuz sayıda çözümü olan eşzamanlı homojen ve homojen olmayan doğrusal cebirsel denklem sistemlerinden bahsedeceğiz.

İlk önce homojen sistemlerle ilgilenelim.

Temel çözüm sistemi n bilinmeyen değişkenli p doğrusal cebirsel denklemlerden oluşan homojen sistem, bu sistemin (n – r) doğrusal olarak bağımsız çözümlerinin bir koleksiyonudur; burada r, sistemin ana matrisinin temel minörünün sırasıdır.

Homojen bir SLAE'nin doğrusal olarak bağımsız çözümlerini X (1) , X (2) , ..., X (n-r) (X (1) , X (2) , ..., X (n-r) sütunsaldır olarak gösterirsek boyut matrisleri n x 1) , daha sonra bu homojen sistemin genel çözümü, temel çözüm sisteminin vektörlerinin keyfi sabit katsayılar C 1, C 2, ..., C (n-r) ile doğrusal bir kombinasyonu olarak temsil edilir; dır-dir, .

Homojen bir doğrusal cebirsel denklem sisteminin (oroslau) genel çözümü terimi ne anlama gelir?

Anlamı basit: formül, orijinal SLAE'nin tüm olası çözümlerini belirtir, başka bir deyişle, kullanacağımız formülü kullanarak C 1, C 2, ..., C (n-r) keyfi sabitlerinin herhangi bir değer kümesini alır. Orijinal homojen SLAE'nin çözümlerinden birini elde edin.

Dolayısıyla, eğer temel bir çözüm sistemi bulursak, bu homojen SLAE'nin tüm çözümlerini şu şekilde tanımlayabiliriz.

Homojen bir SLAE'ye yönelik temel bir çözüm sistemi oluşturma sürecini gösterelim.

Orijinal lineer denklemler sisteminin temel minörünü seçiyoruz, diğer tüm denklemleri sistemden çıkarıyoruz ve serbest bilinmeyen değişkenler içeren tüm terimleri ters işaretlerle sistemin denklemlerinin sağ taraflarına aktarıyoruz. Serbest bilinmeyen değişkenlere 1,0,0,...,0 değerlerini verelim ve elde edilen temel doğrusal denklem sistemini herhangi bir şekilde, örneğin Cramer yöntemini kullanarak çözerek ana bilinmeyenleri hesaplayalım. Bu, temel sistemin ilk çözümü olan X (1) ile sonuçlanacaktır. Serbest bilinmeyenlere 0,1,0,0,…,0 değerlerini verip ana bilinmeyenleri hesaplarsak X(2) elde ederiz. Ve benzeri. Serbest bilinmeyen değişkenlere 0.0,…,0.1 değerlerini atayıp temel bilinmeyenleri hesaplarsak X(n-r) elde ederiz. Bu şekilde homojen bir SLAE'nin temel çözüm sistemi oluşturulacak ve genel çözümü şeklinde yazılabilecektir.

Homojen olmayan lineer cebirsel denklem sistemleri için genel çözüm, karşılık gelen homojen sistemin genel çözümü olan ve serbest bilinmeyenlere değerleri vererek elde ettiğimiz orijinal homojen olmayan SLAE'nin özel çözümü olan formda temsil edilir. ​0,0,…,0 ve temel bilinmeyenlerin değerlerinin hesaplanması.

Örneklere bakalım.

Örnek.

Temel çözüm sistemini ve homojen bir doğrusal cebirsel denklem sisteminin genel çözümünü bulun .

Çözüm.

Homojen doğrusal denklem sistemlerinin ana matrisinin sıralaması her zaman genişletilmiş matrisin sıralamasına eşittir. Küçükleri sınırlama yöntemini kullanarak ana matrisin rütbesini bulalım. Birinci dereceden sıfır olmayan bir minör olarak sistemin ana matrisinin a 1 1 = 9 öğesini alıyoruz. İkinci dereceden sınırdaki sıfır olmayan küçükleri bulalım:

Sıfırdan farklı ikinci dereceden bir minör bulundu. Sıfır olmayan bir tane bulmak için sınırındaki üçüncü dereceden küçükleri inceleyelim:

Üçüncü dereceden sınırdaki tüm küçükler sıfıra eşittir, bu nedenle ana ve genişletilmiş matrisin sırası ikiye eşittir. Hadi alalım . Açıklık sağlamak için, onu oluşturan sistemin öğelerine dikkat edelim:

Orijinal SLAE'nin üçüncü denklemi temel minörün oluşumuna katılmaz, bu nedenle hariç tutulabilir:

Temel bilinmeyenleri içeren terimleri denklemlerin sağ taraflarına bırakıp, serbest bilinmeyenli terimleri sağ taraflara aktarıyoruz:

Orijinal homojen doğrusal denklem sisteminin temel çözüm sistemini oluşturalım. Bu SLAE'nin temel çözüm sistemi iki çözümden oluşur, çünkü orijinal SLAE dört bilinmeyen değişken içerir ve temel minörün sırası ikiye eşittir. X (1)'i bulmak için serbest bilinmeyen değişkenlere x 2 = 1, x 4 = 0 değerlerini veriyoruz, ardından denklem sisteminden ana bilinmeyenleri buluyoruz
.

Bu derste bir doğrusal denklem sistemini çözme yöntemlerine bakacağız. Yüksek matematik dersinde, doğrusal denklem sistemlerinin hem ayrı görevler biçiminde, örneğin "Cramer formüllerini kullanarak sistemi çözme" hem de diğer problemleri çözme sırasında çözülmesi gerekir. Doğrusal denklem sistemleri yüksek matematiğin neredeyse tüm dallarında ele alınmalıdır.

İlk önce küçük bir teori. Bu durumda matematiksel “doğrusal” kelimesi ne anlama geliyor? Bu, sistemin denklemlerinin Tüm dahil edilen değişkenler birinci derecede: gibi süslü şeyler olmadan sadece matematik olimpiyatlarına katılanların memnun olduğu vb.

Yüksek matematikte değişkenleri belirtmek için yalnızca çocukluktan aşina olduğumuz harfler kullanılmaz.
Oldukça popüler bir seçenek, indeksli değişkenlerdir: .
Veya Latin alfabesinin küçük ve büyük baş harfleri:
Yunan harflerini bulmak o kadar da nadir değildir: – birçok kişi tarafından “alfa, beta, gama” olarak bilinir. Ve ayrıca örneğin “mu” harfinin yer aldığı endekslerden oluşan bir set:

Bir veya daha fazla harf grubunun kullanımı, yüksek matematiğin bir doğrusal denklem sistemiyle karşı karşıya olduğumuz bölümüne bağlıdır. Dolayısıyla, örneğin integralleri ve diferansiyel denklemleri çözerken karşılaşılan doğrusal denklem sistemlerinde, notasyonu kullanmak gelenekseldir.

Ancak değişkenler nasıl belirlenirse belirlensin, bir doğrusal denklem sistemini çözmenin ilkeleri, yöntemleri ve yöntemleri değişmez. Bu nedenle, eğer . Ve ne kadar komik görünse de, bu gösterimlere sahip bir doğrusal denklem sistemi de çözülebilir.

Makalenin oldukça uzun olacağına dair bir his var, bu yüzden küçük bir içindekiler tablosu. Yani, sıralı “bilgilendirme” şu şekilde olacaktır:

– Bir doğrusal denklem sistemini ikame yöntemini (“okul yöntemi”) kullanarak çözme;
– Sistem denklemlerinin terim terim toplanması (çıkarılması) yoluyla sistemin çözülmesi;
– Sistemin Cramer formüllerini kullanarak çözümü;
– Ters matris kullanarak sistemi çözme;
– Gauss yöntemini kullanarak sistemi çözme.

Herkes okul matematik derslerinden doğrusal denklem sistemlerine aşinadır. Temel olarak tekrarla başlıyoruz.

İkame yöntemini kullanarak bir doğrusal denklem sistemini çözme

Bu yönteme “okul yöntemi” ya da bilinmeyenleri ortadan kaldırma yöntemi de denilebilir. Mecazi anlamda "tamamlanmamış bir Gauss yöntemi" olarak da adlandırılabilir.

örnek 1


Burada bize iki bilinmeyenli iki denklem sistemi veriliyor. Serbest terimlerin (5 ve 7 sayıları) denklemin sol tarafında bulunduğunu unutmayın. Genel olarak konuşursak, nerede oldukları önemli değil, solda veya sağda, sadece yüksek matematik problemlerinde genellikle bu şekilde konumlandırılırlar. Ve böyle bir kayıt gerekirse karışıklığa yol açmamalı, sistem her zaman "her zamanki gibi" yazılabilir: . Bir terimi bir bölümden diğerine taşırken işaretinin değişmesi gerektiğini unutmayın.

Bir doğrusal denklem sistemini çözmek ne anlama gelir? Bir denklem sistemini çözmek, çözümlerinin çoğunu bulmak anlamına gelir. Bir sistemin çözümü, içinde yer alan tüm değişkenlerin değerlerinin bir kümesidir, bu da sistemin HER denklemini gerçek bir eşitliğe dönüştürür. Ayrıca sistem şu şekilde olabilir: ortak olmayan (çözümleri yok).Utanmayın, bu genel bir tanım =) Her c-we denklemini sağlayan yalnızca bir “x” değeri ve bir “y” değerimiz olacak.

Sistemi çözmek için sınıfta aşina olabileceğiniz grafiksel bir yöntem var. Bir çizgiyle ilgili en basit problemler. Orada bahsetmiştim geometrik olarak iki bilinmeyenli iki doğrusal denklem sistemi. Ama artık cebirin, sayıların-sayıların, eylem-eylemlerin çağı geldi.

Haydi karar verelim: ifade ettiğimiz ilk denklemden:
Ortaya çıkan ifadeyi ikinci denklemde değiştiririz:

Parantezleri açıyoruz, benzer terimleri ekliyoruz ve değeri buluyoruz:

Sonra ne için dans ettiğimizi hatırlıyoruz:
Değerini zaten biliyoruz, geriye kalan tek şey bulmak:

Cevap:

HERHANGİ bir denklem sistemi HERHANGİ bir şekilde çözüldükten sonra, kontrol etmenizi şiddetle tavsiye ederim. (sözlü olarak, taslak üzerinde veya hesap makinesinde). Neyse ki bu kolay ve hızlı bir şekilde yapılır.

1) Bulunan cevabı ilk denklemde değiştirin:

– doğru eşitlik elde edilir.

2) Bulunan cevabı ikinci denklemde değiştirin:

– doğru eşitlik elde edilir.

Ya da daha basit bir ifadeyle “her şey bir araya geldi”

Dikkate alınan çözüm yöntemi, ilk denklemden ifade edilmesi mümkün olan tek çözüm değildir.
Bunun tersini de yapabilirsiniz; ikinci denklemden bir şeyi ifade edebilir ve onu ilk denklemde değiştirebilirsiniz. Bu arada, dört yöntemden en dezavantajlı olanının ikinci denklemden ifade etmek olduğunu unutmayın:

Sonuç kesirler, ama neden? Daha rasyonel bir çözüm var.

Ancak bazı durumlarda kesirler olmadan hala yapamazsınız. Bu bağlamda ifadeyi NASIL yazdığıma dikkatinizi çekmek isterim. Böyle değil: ve hiçbir durumda böyle değil: .

Yüksek matematikte kesirli sayılarla ilgileniyorsanız, tüm hesaplamaları sıradan uygunsuz kesirlerle yapmaya çalışın.

Kesinlikle ve değil ya da!

Virgül yalnızca bazen kullanılabilir, özellikle de bir sorunun nihai yanıtıysa ve bu numarayla başka bir işlem yapılmasına gerek yoksa.

Pek çok okuyucu muhtemelen "düzeltme dersi için neden bu kadar ayrıntılı bir açıklama, her şey açık" diye düşünmüştür. Öyle bir şey yok, çok basit bir okul örneği gibi görünüyor, ama ÇOK önemli pek çok sonuç var! İşte burada bir başkası:

Herhangi bir görevi en akılcı şekilde tamamlamaya çalışmalısınız.. Sadece zamandan ve sinirlerden tasarruf sağladığı ve aynı zamanda hata yapma olasılığını azalttığı için.

Yüksek matematikte bir problemde iki bilinmeyenli iki doğrusal denklem sistemiyle karşılaşırsanız, o zaman her zaman yerine koyma yöntemini kullanabilirsiniz (sistemin başka bir yöntemle çözülmesi gerektiği belirtilmediği sürece). enayi olduğunuzu ve “okul yöntemini” kullandığınız için notunuzu düşüreceğinizi düşünün "
Ayrıca bazı durumlarda daha fazla sayıda değişkenle ikame yönteminin kullanılması da tavsiye edilebilir.

Örnek 2

Üç bilinmeyenli doğrusal denklem sistemini çözme

Kesirli bir rasyonel fonksiyonun integralini bulduğumuzda, belirsiz katsayılar yöntemi denilen yöntemi kullanırken sıklıkla benzer bir denklem sistemi ortaya çıkar. Söz konusu sistem tarafımdan oradan alınmıştır.

İntegrali bulurken amaç hızlı Cramer formüllerini, ters matris yöntemini vb. kullanmak yerine katsayıların değerlerini bulun. Dolayısıyla bu durumda ikame yöntemi uygundur.

Herhangi bir denklem sistemi verildiğinde, her şeyden önce onu HEMEN basitleştirmenin mümkün olup olmadığını bulmak arzu edilir. Sistemin denklemlerini incelediğimizde sistemin ikinci denkleminin 2'ye bölünebileceğini görüyoruz ve şunu yapıyoruz:

Referans: matematiksel işaret “bundan şunu çıkar” anlamına gelir ve sıklıkla problem çözmede kullanılır.

Şimdi denklemleri inceleyelim; bazı değişkenleri diğerleri cinsinden ifade etmemiz gerekiyor. Hangi denklemi seçmeliyim? Muhtemelen bu amaç için en kolay yolun sistemin ilk denklemini almak olduğunu zaten tahmin etmişsinizdir:

Burada hangi değişken ifade edilirse edilsin, aynı kolaylıkla veya ifade edilebilir.

Daha sonra, ifadesini sistemin ikinci ve üçüncü denklemlerinde yerine koyarız:

Parantezleri açıyoruz ve benzer terimleri sunuyoruz:

Üçüncü denklemi 2'ye bölün:

İkinci denklemden üçüncü denklemi ifade edip yerine koyuyoruz:

Bulduğumuz üçüncü denklemden hemen hemen her şey hazır:
İkinci denklemden:
İlk denklemden:

Kontrol edin: Değişkenlerin bulunan değerlerini sistemdeki her denklemin sol tarafına değiştirin:

1)
2)
3)

Denklemlerin karşılık gelen sağ tarafları elde edilir, böylece çözüm doğru bulunur.

Örnek 3

4 bilinmeyenli doğrusal denklem sistemini çözme

Bu kendi başınıza çözebileceğiniz bir örnektir (cevap dersin sonunda verilecektir).

Sistem denklemlerinin terim terim toplanması (çıkarılması) yoluyla sistemin çözülmesi

Doğrusal denklem sistemlerini çözerken, “okul yöntemini” değil, sistemin denklemlerini dönem dönem toplama (çıkarma) yöntemini kullanmaya çalışmalısınız. Neden? Bu, zamandan tasarruf sağlar ve hesaplamaları basitleştirir, ancak artık her şey daha net hale gelecektir.

Örnek 4

Bir doğrusal denklem sistemini çözün:

İlk örnekteki sistemin aynısını aldım.
Denklem sistemini analiz ettiğimizde, değişkenin katsayılarının büyüklük bakımından aynı ve işaret bakımından zıt (-1 ve 1) olduğunu fark ederiz. Böyle bir durumda denklemler terim terim eklenebilir:

Kırmızıyla daire içine alınmış eylemler ZİHİNSEL olarak gerçekleştirilir.
Gördüğünüz gibi terim terim toplama işlemi sonucunda değişkeni kaybettik. Aslında olan da bu yöntemin özü değişkenlerden birinden kurtulmaktır.

Bu videoyla denklem sistemlerine adanmış bir dizi derse başlıyorum. Bugün doğrusal denklem sistemlerinin çözümü hakkında konuşacağız. ekleme yöntemi- Bu en basit yöntemlerden biridir, ancak aynı zamanda en etkili yöntemlerden biridir.

Ekleme yöntemi üç basit adımdan oluşur:

  1. Sisteme bakın ve her denklemde aynı (veya zıt) katsayılara sahip bir değişken seçin;
  2. Denklemlerin cebirsel olarak çıkarılmasını (zıt sayılar için - toplama) gerçekleştirin ve ardından benzer terimleri getirin;
  3. İkinci adımdan sonra elde edilen yeni denklemi çözün.

Her şey doğru yapılırsa çıktıda tek bir denklem elde edeceğiz tek değişkenli- bunu çözmek zor olmayacak. Daha sonra geriye kalan tek şey, bulunan kökü orijinal sisteme yerleştirmek ve nihai cevabı almaktır.

Ancak pratikte her şey o kadar basit değil. Bunun birkaç nedeni var:

  • Toplama yöntemini kullanarak denklemleri çözmek, tüm satırların eşit/karşıt katsayılara sahip değişkenler içermesi gerektiği anlamına gelir. Bu gereksinim karşılanmazsa ne yapmalı?
  • Her zaman değil, denklemleri belirtilen şekilde toplayıp/çıkardıktan sonra kolayca çözülebilecek güzel bir yapı elde ederiz. Hesaplamaları bir şekilde basitleştirmek ve hesaplamaları hızlandırmak mümkün mü?

Bu soruların cevabını bulmak ve aynı zamanda birçok öğrencinin başarısız olduğu birkaç ek inceliği anlamak için video dersimi izleyin:

Bu dersle denklem sistemlerine ayrılmış bir dizi derse başlıyoruz. Ve bunların en basitinden, yani iki denklem ve iki değişken içerenlerden başlayacağız. Her biri doğrusal olacaktır.

Sistemler 7. sınıf materyalidir ancak bu ders aynı zamanda bu konudaki bilgilerini tazelemek isteyen lise öğrencileri için de faydalı olacaktır.

Bu tür sistemlerin çözümünde genel olarak iki yöntem vardır:

  1. Ekleme yöntemi;
  2. Bir değişkeni diğerine göre ifade etme yöntemi.

Bugün ilk yöntemle ilgileneceğiz - çıkarma ve toplama yöntemini kullanacağız. Ancak bunu yapmak için şu gerçeği anlamanız gerekir: İki veya daha fazla denkleminiz olduğunda bunlardan herhangi ikisini alıp birbirine ekleyebilirsiniz. Üye üye eklenirler, yani. “X”lere “X”ler eklenir ve benzerleri verilir, “Y” ile “Y” yine benzer olur ve eşittir işaretinin sağındakiler de birbirine eklenir, benzerleri de verilir. .

Bu tür entrikaların sonuçları, eğer kökleri varsa, kesinlikle orijinal denklemin kökleri arasında yer alacak yeni bir denklem olacaktır. Bu nedenle bizim görevimiz, çıkarma veya toplama işlemini $x$ veya $y$ kaybolacak şekilde yapmaktır.

Bunu nasıl başaracağız ve bunun için hangi aracı kullanacağız - şimdi bunun hakkında konuşacağız.

Toplama yöntemini kullanarak kolay problemleri çözme

Böylece iki basit ifade örneğini kullanarak toplama yöntemini kullanmayı öğreniyoruz.

Görev No.1

\[\left\( \begin(align)& 5x-4y=22 \\& 7x+4y=2 \\\end(align) \right.\]

$y$'ın ilk denklemde $-4$, ikinci denklemde ise $+4$ katsayısına sahip olduğunu unutmayın. Birbirlerine zıttırlar, bu yüzden onları toplarsak sonuçta ortaya çıkan "oyunların" karşılıklı olarak yok edileceğini varsaymak mantıklıdır. Bunu ekleyin ve şunu elde edin:

En basit yapıyı çözelim:

Harika, "x"i bulduk. Şimdi bununla ne yapmalıyız? Bunu denklemlerden herhangi birinin yerine koyma hakkımız var. İlkinde yerine koyalım:

\[-4y=12\sol| :\sol(-4 \sağ) \sağ.\]

Cevap: $\left(2;-3 \right)$.

Sorun No. 2

\[\left\( \begin(align)& -6x+y=21 \\& 6x-11y=-51 \\\end(align) \right.\]

Buradaki durum tamamen benzer, sadece “X'ler” için. Bunları toplayalım:

En basit doğrusal denklemimiz var, hadi çözelim:

Şimdi $x$'ı bulalım:

Cevap: $\left(-3;3 \right)$.

Önemli noktalar

Toplama yöntemini kullanarak iki basit doğrusal denklem sistemini çözdük. Tekrar önemli noktalar:

  1. Değişkenlerden birinin zıt katsayıları varsa denklemdeki tüm değişkenlerin toplanması gerekir. Bu durumda bunlardan biri yok edilecektir.
  2. İkincisini bulmak için bulunan değişkeni sistem denklemlerinden herhangi birinin yerine koyarız.
  3. Nihai yanıt kaydı farklı şekillerde sunulabilir. Örneğin, bunun gibi - $x=...,y=...$ veya noktaların koordinatları biçiminde - $\left(...;... \right)$. İkinci seçenek tercih edilir. Hatırlanması gereken en önemli şey, ilk koordinatın $x$ ve ikincisinin $y$ olmasıdır.
  4. Cevabı nokta koordinatları şeklinde yazma kuralı her zaman geçerli değildir. Örneğin, değişkenler $x$ ve $y$ değil, örneğin $a$ ve $b$ olduğunda kullanılamaz.

Aşağıdaki problemlerde katsayılar zıt olmadığında çıkarma tekniğini ele alacağız.

Çıkarma yöntemini kullanarak kolay problemleri çözme

Görev No.1

\[\left\( \begin(align)& 10x-3y=5 \\& -6x-3y=-27 \\\end(align) \right.\]

Burada zıt katsayıların olmadığını, ancak aynı katsayıların olduğunu unutmayın. Bu nedenle ikinciyi birinci denklemden çıkarıyoruz:

Şimdi $x$ değerini herhangi bir sistem denklemine yerleştireceğiz. İlk önce gidelim:

Cevap: $\left(2;5\right)$.

Sorun No. 2

\[\left\( \begin(align)& 5x+4y=-22 \\& 5x-2y=-4 \\\end(align) \right.\]

Birinci ve ikinci denklemde yine $x$ için aynı $5$ katsayısını görüyoruz. Bu nedenle ikinciyi ilk denklemden çıkarmanız gerektiğini varsaymak mantıklıdır:

Bir değişkeni hesapladık. Şimdi ikinciyi bulalım, örneğin $y$ değerini ikinci yapının yerine koyarak:

Cevap: $\left(-3;-2 \right)$.

Çözümün nüansları

Peki ne görüyoruz? Esas itibariyle şema önceki sistemlerin çözümünden farklı değildir. Tek fark, denklemleri toplamamamız, çıkarmamızdır. Cebirsel çıkarma işlemi yapıyoruz.

Yani iki bilinmeyenli iki denklemden oluşan bir sistem gördüğünüzde ilk bakmanız gereken şey katsayılardır. Her yerde aynı ise denklemler çıkarılır, zıt ise toplama yöntemi kullanılır. Bu her zaman bunlardan birinin ortadan kalkması için yapılır ve çıkarmadan sonra kalan son denklemde yalnızca bir değişken kalır.

Tabii ki hepsi bu değil. Şimdi denklemlerin genel olarak tutarsız olduğu sistemleri ele alacağız. Onlar. İçlerinde aynı veya zıt olan hiçbir değişken yoktur. Bu durumda, bu tür sistemleri çözmek için, denklemlerin her birinin özel bir katsayı ile çarpılması gibi ek bir teknik kullanılır. Nasıl bulunur ve genel olarak bu tür sistemlerin nasıl çözüleceği, şimdi bunun hakkında konuşacağız.

Bir katsayı ile çarparak problemleri çözme

Örnek No.1

\[\left\( \begin(align)& 5x-9y=38 \\& 3x+2y=8 \\\end(align) \right.\]

Ne $x$ ne de $y$ için katsayıların yalnızca karşılıklı olarak zıt olmadığını, aynı zamanda diğer denklemle hiçbir şekilde ilişkili olmadığını görüyoruz. Denklemleri birbirine eklesek veya çıkarsak bile bu katsayılar hiçbir şekilde kaybolmayacaktır. Bu nedenle çarpma işlemine başvurmak gerekir. $y$ değişkeninden kurtulmaya çalışalım. Bunun için ilk denklemi ikinci denklemdeki $y$ katsayısıyla, ikinci denklemi ise birinci denklemdeki $y$ katsayısıyla işarete dokunmadan çarpıyoruz. Çarpıyoruz ve yeni bir sistem elde ediyoruz:

\[\left\( \begin(align)& 10x-18y=76 \\& 27x+18y=72 \\\end(align) \right.\]

Şuna bakalım: $y$'da katsayılar zıttır. Böyle bir durumda ekleme yöntemini kullanmak gerekir. Ekleyelim:

Şimdi $y$'ı bulmamız gerekiyor. Bunu yapmak için ilk ifadeye $x$ yazın:

\[-9y=18\sol| :\sol(-9 \sağ) \sağ.\]

Cevap: $\left(4;-2 \right)$.

Örnek No.2

\[\left\( \begin(align)& 11x+4y=-18 \\& 13x-6y=-32 \\\end(align) \right.\]

Yine hiçbir değişkenin katsayıları tutarlı değildir. $y$ katsayılarıyla çarpalım:

\[\left\( \begin(align)& 11x+4y=-18\left| 6 \right. \\& 13x-6y=-32\left| 4 \right. \\\end(align) \right .\]

\[\left\( \begin(align)& 66x+24y=-108 \\& 52x-24y=-128 \\\end(align) \right.\]

Yeni sistemimiz bir öncekinin eşdeğeridir ancak $y$ katsayıları karşılıklı olarak zıttır ve bu nedenle burada toplama yöntemini uygulamak kolaydır:

Şimdi ilk denklemde $x$ yerine $y$ koyalım:

Cevap: $\left(-2;1 \right)$.

Çözümün nüansları

Buradaki temel kural şudur: Her zaman yalnızca pozitif sayılarla çarparız - bu sizi işaret değiştirmeyle ilgili aptalca ve saldırgan hatalardan kurtaracaktır. Genel olarak çözüm şeması oldukça basittir:

  1. Sisteme bakıyoruz ve her denklemi analiz ediyoruz.
  2. Ne $y$ ne de $x$ katsayılarının tutarlı olduğunu görürsek, yani ne eşit ne de zıt, o zaman şunu yapıyoruz: kurtulmamız gereken değişkeni seçiyoruz ve sonra bu denklemlerin katsayılarına bakıyoruz. İlk denklemi ikincinin katsayısı ile çarparsak ve ikinciyi buna göre birincinin katsayısı ile çarparsak, sonunda bir öncekine tamamen eşdeğer bir sistem ve $ katsayıları elde ederiz. y$ tutarlı olacaktır. Tüm eylemlerimiz veya dönüşümlerimiz yalnızca bir değişkeni tek bir denklemde elde etmeye yöneliktir.
  3. Bir değişken buluyoruz.
  4. Bulunan değişkeni sistemin iki denkleminden birine yerleştirip ikincisini buluyoruz.
  5. $x$ ve $y$ değişkenlerimiz varsa cevabı noktaların koordinatları şeklinde yazıyoruz.

Ancak bu kadar basit bir algoritmanın bile kendi incelikleri vardır; örneğin, $x$ veya $y$ katsayıları kesirler ve diğer "çirkin" sayılar olabilir. Şimdi bu durumları ayrı ayrı ele alacağız çünkü bunlarda standart algoritmaya göre biraz farklı davranabilirsiniz.

Kesirlerle ilgili problemleri çözme

Örnek No.1

\[\left\( \begin(align)& 4m-3n=32 \\& 0,8m+2,5n=-6 \\\end(align) \right.\]

Öncelikle ikinci denklemin kesirler içerdiğine dikkat edin. Ancak 4$'ı 0,8$'a bölebileceğinizi unutmayın. 5$ alacağız. İkinci denklemi $5$ ile çarpalım:

\[\left\( \begin(align)& 4m-3n=32 \\& 4m+12,5m=-30 \\\end(align) \right.\]

Denklemleri birbirinden çıkarırız:

$n$'ı bulduk, şimdi $m$'ı sayalım:

Cevap: $n=-4;m=5$

Örnek No.2

\[\left\( \begin(align)& 2,5p+1,5k=-13\left| 4 \right. \\& 2p-5k=2\left| 5 \right. \\\end(align )\ Sağ.\]

Burada da önceki sistemde olduğu gibi kesirli katsayılar mevcut ancak hiçbir değişken için katsayılar birbirine tam sayı kadar uymuyor. Bu nedenle standart algoritmayı kullanıyoruz. $p$'dan kurtulun:

\[\left\( \begin(align)& 5p+3k=-26 \\& 5p-12,5k=5 \\\end(align) \right.\]

Çıkarma yöntemini kullanıyoruz:

İkinci yapıya $k$ koyarak $p$'ı bulalım:

Cevap: $p=-4;k=-2$.

Çözümün nüansları

Hepsi optimizasyon bu. İlk denklemde hiçbir şeyle çarpmadık ama ikinci denklemi 5$ ile çarptık. Sonuç olarak, ilk değişken için tutarlı ve hatta özdeş bir denklem elde ettik. İkinci sistemde standart bir algoritma izledik.

Peki denklemlerin çarpılacağı sayıları nasıl bulacaksınız? Sonuçta kesirlerle çarparsak yeni kesirler elde ederiz. Bu nedenle kesirlerin yeni bir tamsayı verecek bir sayı ile çarpılması ve ardından standart algoritmaya göre değişkenlerin katsayılarla çarpılması gerekir.

Sonuç olarak, yanıtın kaydedilme biçimine dikkatinizi çekmek isterim. Daha önce de söylediğim gibi, burada $x$ ve $y$ değil, diğer değerlere sahip olduğumuz için, formun standart olmayan bir gösterimini kullanıyoruz:

Karmaşık denklem sistemlerini çözme

Bugünkü video eğitimine son not olarak, gerçekten karmaşık birkaç sisteme bakalım. Karmaşıklıkları, hem solda hem de sağda değişkenlere sahip olmaları gerçeğinden oluşacaktır. Bu nedenle bunları çözmek için ön işleme uygulamamız gerekecek.

Sistem No.1

\[\left\( \begin(align)& 3\left(2x-y \right)+5=-2\left(x+3y ​​\right)+4 \\& 6\left(y+1) \right )-1=5\left(2x-1 \right)+8 \\\end(align) \right.\]

Her denklem belirli bir karmaşıklık taşır. Bu nedenle her ifadeyi düzenli doğrusal yapıyla ele alalım.

Toplamda orijinal sisteme eşdeğer olan son sistemi elde ediyoruz:

\[\left\( \begin(align)& 8x+3y=-1 \\& -10x+6y=-2 \\\end(align) \right.\]

$y$ katsayılarına bakalım: $3$, $6$'a iki kez sığar, o halde ilk denklemi $2$ ile çarpalım:

\[\left\( \begin(align)& 16x+6y=-2 \\& -10+6y=-2 \\\end(align) \right.\]

$y$'ın katsayıları artık eşit olduğundan ikinciyi birinci denklemden çıkarırız: $$

Şimdi $y$'ı bulalım:

Cevap: $\left(0;-\frac(1)(3) \right)$

Sistem No.2

\[\left\( \begin(align)& 4\left(a-3b \right)-2a=3\left(b+4 \right)-11 \\& -3\left(b-2a \right) )-12=2\left(a-5 \right)+b \\\end(align) \right.\]

İlk ifadeyi dönüştürelim:

Gelelim ikincisine:

\[-3\sol(b-2a \sağ)-12=2\left(a-5 \sağ)+b\]

\[-3b+6a-12=2a-10+b\]

\[-3b+6a-2a-b=-10+12\]

Toplamda, ilk sistemimiz aşağıdaki formu alacaktır:

\[\left\( \begin(align)& 2a-15b=1 \\& 4a-4b=2 \\\end(align) \right.\]

$a$ katsayılarına baktığımızda ilk denklemin $2$ ile çarpılması gerektiğini görüyoruz:

\[\left\( \begin(align)& 4a-30b=2 \\& 4a-4b=2 \\\end(align) \right.\]

İkinciyi ilk yapıdan çıkarın:

Şimdi $a$'ı bulalım:

Cevap: $\left(a=\frac(1)(2);b=0 \right)$.

Bu kadar. Bu video eğitiminin bu zor konuyu, yani basit doğrusal denklem sistemlerini çözmenizi anlamanıza yardımcı olacağını umuyorum. Gelecekte bu konuyla ilgili çok daha fazla ders olacak: Daha fazla değişkenin olacağı ve denklemlerin doğrusal olmayacağı daha karmaşık örneklere bakacağız. Tekrar görüşürüz!



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!