Gauss yönteminin çözümü yoktur. Denklem sayısının bilinmeyenlerin sayısıyla çakışmadığı veya sistemin ana matrisinin tekil olduğu doğrusal cebirsel denklem sistemlerinin Gauss yöntemini kullanarak çözülmesi

Bugün doğrusal cebirsel denklem sistemlerini çözmek için Gauss yöntemini inceliyoruz. Aynı SLAE'leri Cramer yöntemini kullanarak çözmeye ayrılmış önceki makalede bu sistemlerin ne olduğunu okuyabilirsiniz. Gauss yöntemi herhangi bir özel bilgi gerektirmez, yalnızca dikkat ve tutarlılığa ihtiyacınız vardır. Matematiksel açıdan okul eğitiminin bunu uygulamak için yeterli olmasına rağmen, öğrenciler genellikle bu yönteme hakim olmakta zorlanırlar. Bu yazıda bunları hiçliğe indirmeye çalışacağız!

Gauss yöntemi

M Gauss yöntemi– SLAE'leri çözmek için en evrensel yöntem (çok büyük sistemler hariç). Daha önce tartışılanın aksine sadece tek çözümü olan sistemler için değil aynı zamanda sonsuz sayıda çözümü olan sistemler için de uygundur. Burada üç olası seçenek var.

  1. Sistemin benzersiz bir çözümü vardır (sistemin ana matrisinin determinantı sıfıra eşit değildir);
  2. Sistemin sonsuz sayıda çözümü vardır;
  3. Çözüm yok, sistem uyumsuz.

Yani bir sistemimiz var (bir çözümü olsun) ve onu Gauss yöntemini kullanarak çözeceğiz. Nasıl çalışır?

Gauss yöntemi ileri ve ters olmak üzere iki aşamadan oluşur.

Gauss yönteminin doğrudan vuruşu

Öncelikle sistemin genişletilmiş matrisini yazalım. Bunu yapmak için ana matrise serbest üyelerden oluşan bir sütun ekleyin.

Gauss yönteminin tüm özü, bu matrisi temel dönüşümler yoluyla kademeli (veya dedikleri gibi üçgen) bir forma getirmektir. Bu formda, matrisin ana köşegeninin altında (veya üstünde) yalnızca sıfırlar bulunmalıdır.

Ne yapabilirsin:

  1. Matrisin satırlarını yeniden düzenleyebilirsiniz;
  2. Bir matriste eşit (veya orantılı) satırlar varsa, bunlardan biri hariç tümünü kaldırabilirsiniz;
  3. Bir dizeyi herhangi bir sayıyla (sıfır hariç) çarpabilir veya bölebilirsiniz;
  4. Boş satırlar kaldırıldı;
  5. Bir dizeye sıfırdan farklı bir sayıyla çarpılan bir dize ekleyebilirsiniz.

Ters Gauss Yöntemi

Sistemi bu şekilde dönüştürdükten sonra bilinmeyen bir Xn bilinir hale gelir ve geri kalan tüm bilinmeyenleri, zaten bilinen x'leri sistemin denklemlerinde birinciye kadar değiştirerek ters sırada bulabilirsiniz.

İnternet her zaman elinizin altında olduğunda, Gauss yöntemini kullanarak bir denklem sistemini çözebilirsiniz. çevrimiçi. Katsayıları çevrimiçi hesap makinesine girmeniz yeterlidir. Ancak kabul etmelisiniz ki, örneğin bir bilgisayar programı tarafından değil, kendi beyniniz tarafından çözüldüğünü fark etmek çok daha keyifli.

Gauss yöntemini kullanarak bir denklem sistemini çözme örneği

Ve şimdi - her şeyin net ve anlaşılır hale gelmesi için bir örnek. Bir doğrusal denklem sistemi verilse, bunu Gauss yöntemini kullanarak çözmeniz gerekir:

Öncelikle genişletilmiş matrisi yazalım:

Şimdi dönüşümleri yapalım. Matrisin üçgen görünümünü elde etmemiz gerektiğini hatırlıyoruz. 1. satırı (3) ile çarpalım. 2. satırı (-1) ile çarpın. 2. satırı 1. satıra ekleyin ve şunu elde edin:

Daha sonra 3. satırı (-1) ile çarpın. 3. satırı 2. satıra ekleyelim:

1. satırı (6) ile çarpalım. 2. satırı (13) ile çarpalım. 2. satırı 1. satıra ekleyelim:

Voila - sistem uygun forma getirildi. Bilinmeyenleri bulmak için kalır:

Bu örnekteki sistemin benzersiz bir çözümü var. Sonsuz sayıda çözümü olan sistemleri çözmeyi ayrı bir makalede ele alacağız. Belki ilk başta matrisi dönüştürmeye nereden başlayacağınızı bilemeyeceksiniz, ancak uygun uygulamadan sonra alışacaksınız ve SLAE'leri Gauss yöntemini kullanarak fındık gibi kıracaksınız. Ve aniden kırılması çok zor olan bir SLA ile karşılaşırsanız yazarlarımızla iletişime geçin! Yazışma Bürosuna bir talep bırakarak bunu yapabilirsiniz. Birlikte her sorunu çözeceğiz!

Doğrusal cebirsel sistemleri çözmenin evrensel ve etkili yöntemlerinden biri Gauss yöntemi bilinmeyenlerin sıralı olarak ortadan kaldırılmasından oluşur.

İki sistemin çağrıldığını hatırlayın eş değer (eşdeğer) eğer çözümlerinin kümeleri çakışıyorsa. Başka bir deyişle, sistemlerden birinin çözümü diğerinin çözümü ise veya tam tersi ise sistemler eşdeğerdir. Eşdeğer sistemler şu durumlarda elde edilir: temel dönüşümler sistemin denklemleri:

    denklemin her iki tarafının sıfırdan farklı bir sayıyla çarpılması;

    bir denkleme, başka bir denklemin karşılık gelen kısımlarının sıfırdan farklı bir sayıyla çarpılmasıyla eklenmesi;

    iki denklemin yeniden düzenlenmesi.

Bir denklem sistemi verilsin

Bu sistemin Gauss yöntemi kullanılarak çözülmesi süreci iki aşamadan oluşmaktadır. İlk aşamada (doğrudan hareket), temel dönüşümleri kullanan sistem şuna indirgenir: adım adım , veya üçgensel şeklindedir ve ikinci aşamada (tersi), son değişken sayısından başlayarak, ortaya çıkan adım sisteminden bilinmeyenlerin belirlenmesi sıralıdır.

Bu sistemin katsayısının
aksi takdirde sistemde ilk satır başka herhangi bir satırla değiştirilebilir, böylece katsayı sıfırdan farklıydı.

Bilinmeyenleri ortadan kaldırarak sistemi dönüştürelim İlki dışındaki tüm denklemlerde. Bunu yapmak için ilk denklemin her iki tarafını da şu şekilde çarpın: ve sistemin ikinci denklemiyle terim terim ekleyin. Daha sonra ilk denklemin her iki tarafını da şu şekilde çarpın: ve bunu sistemin üçüncü denklemine ekleyin. Bu işleme devam ederek eşdeğer sistemi elde ediyoruz.

Burada
– ilk adımdan sonra elde edilen yeni katsayı değerleri ve serbest terimler.

Benzer şekilde ana unsur göz önüne alındığında
, bilinmeyenleri hariç tut birinci ve ikinci hariç sistemin tüm denklemlerinden. Bu süreci mümkün olduğu kadar devam ettirelim ve sonuç olarak adım adım bir sistem elde edeceğiz.

,

Nerede ,
,…,– sistemin ana unsurları
.

Sistemi aşamalı bir forma indirgeme sürecinde denklemler, yani formun eşitlikleri ortaya çıkarsa
herhangi bir sayı kümesi tarafından karşılandıkları için atılırlar
. Eğer
Çözümü olmayan bir denklem ortaya çıkarsa, bu sistemin uyumsuzluğunu gösterir.

Ters vuruş sırasında, ilk bilinmeyen, dönüştürülmüş adım sisteminin son denkleminden ifade edilir. diğer tüm bilinmeyenler aracılığıyla
bunlara denir özgür . Daha sonra değişken ifadesi sistemin son denkleminden sondan bir önceki denkleme ikame edilir ve değişken bundan ifade edilir
. Değişkenler benzer şekilde sırayla tanımlanır
. Değişkenler
Serbest değişkenlerle ifade edilenlere denir temel (bağımlı). Sonuç, doğrusal denklem sisteminin genel bir çözümüdür.

Bulmak özel çözüm sistemler, ücretsiz bilinmiyor
genel çözümde isteğe bağlı değerler atanır ve değişkenlerin değerleri hesaplanır
.

Sistem denklemlerinin kendisini değil, sistemin genişletilmiş matrisini temel dönüşümlere tabi tutmak teknik olarak daha uygundur.

.

Gauss yöntemi, yalnızca kareyi değil aynı zamanda bilinmeyenlerin sayısının olduğu dikdörtgen sistemleri de çözmenize olanak tanıyan evrensel bir yöntemdir.
denklem sayısına eşit değil
.

Bu yöntemin avantajı aynı zamanda, genişletilmiş matrisi verdikten sonra, çözme sürecinde sistemi uyumluluk açısından eşzamanlı olarak incelememizdir.
adım adım oluşturmak için matrisin sıralarını belirlemek kolaydır ve genişletilmiş matris
ve uygula Kronecker-Capelli teoremi .

Örnek 2.1 Gauss yöntemini kullanarak sistemi çözün

Çözüm. Denklem sayısı
ve bilinmeyenlerin sayısı
.

Matrisin sağına katsayılar atayarak sistemin genişletilmiş matrisini oluşturalım. ücretsiz üyeler sütunu .

Matris'i sunalım üçgen bir görünüme; Bunu yapmak için temel dönüşümleri kullanarak ana köşegendeki elemanların altında “0” elde edeceğiz.

İlk sütunun ikinci konumundaki "0"ı elde etmek için ilk satırı (-1) ile çarpıp ikinci satıra ekleyin.

Bu dönüşümü ilk satırın karşısına (-1) rakamı olarak yazıp, birinci satırdan ikinci satıra giden bir okla gösteriyoruz.

İlk sütunun üçüncü konumunda "0" elde etmek için ilk satırı (-3) ile çarpın ve üçüncü satıra ekleyin; Bu eylemi birinci satırdan üçüncü satıra giden bir ok kullanarak gösterelim.




.

Sonuçta ortaya çıkan matris zincirinde ikinci olarak yazılan matriste üçüncü sıradaki ikinci sütunda “0” elde ederiz. Bunun için ikinci satırı (-4) ile çarpıp üçüncüye ekledik. Ortaya çıkan matriste ikinci satırı (-1) ile çarpın ve üçüncüyü (-8)'e bölün. Bu matrisin köşegen elemanlarının altında bulunan tüm elemanları sıfırdır.

Çünkü , sistem işbirliğine dayalıdır ve tanımlanmıştır.

Son matrise karşılık gelen denklem sistemi üçgen bir forma sahiptir:

Son (üçüncü) denklemden
. İkinci denklemde yerine koyarız ve
.

Hadi değiştirelim
Ve
ilk denklemde şunu buluruz:


.

1. Doğrusal cebirsel denklem sistemi

1.1 Doğrusal cebirsel denklem sistemi kavramı

Denklem sistemi, çeşitli değişkenlere göre çeşitli denklemlerin aynı anda yürütülmesinden oluşan bir durumdur. M denklem ve n bilinmeyen içeren doğrusal cebirsel denklemler sistemine (bundan sonra SLAE olarak anılacaktır) aşağıdaki formdaki sistem denir:

a ij sayılarına sistem katsayıları, b i sayılarına ise serbest terimler denir, bir ben Ve ben(i=1,…, m; b=1,…, n) bilinen bazı sayıları temsil eder ve x 1 ,…, xn- Bilinmeyen. Katsayıların belirlenmesinde bir ben ilk indeks i denklemin numarasını, ikinci j ise bu katsayının bulunduğu bilinmeyenin sayısını belirtir. X n sayıları bulunmalıdır. Böyle bir sistemi kompakt matris formunda yazmak uygundur: AX=B. Burada A, ana matris adı verilen sistem katsayılarının matrisidir;

– bilinmeyenlerin sütun vektörü xj.
serbest terimlerin bi sütun vektörüdür.

A*X matrislerinin çarpımı tanımlanır, çünkü A matrisinde X matrisindeki satır sayısı kadar (n adet) sütun vardır.

Bir sistemin genişletilmiş matrisi, serbest terimlerden oluşan bir sütunla desteklenen sistemin A matrisidir.

1.2 Doğrusal cebirsel denklem sistemini çözme

Bir denklem sisteminin çözümü, sıralı bir sayı kümesidir (değişkenlerin değerleri), değişkenler yerine bunları değiştirirken, sistemin denklemlerinin her biri gerçek bir eşitliğe dönüşür.

Bir sistemin çözümü, x1=c1, x2=c2,…, xn=cn bilinmeyenlerinin n değeridir; bunların değiştirilmesiyle sistemin tüm denklemleri gerçek eşitlikler haline gelir. Sistemin herhangi bir çözümü sütun matrisi olarak yazılabilir.

Bir denklem sistemi, en az bir çözümü varsa tutarlı, çözümü yoksa tutarsız olarak adlandırılır.

Tutarlı bir sistemin tek bir çözümü varsa belirli, birden fazla çözümü varsa belirsiz olduğu söylenir. İkinci durumda, çözümlerinin her birine sistemin belirli bir çözümü denir. Tüm özel çözümlerin kümesine genel çözüm denir.

Bir sistemi çözmek, onun uyumlu mu yoksa tutarsız mı olduğunu bulmak anlamına gelir. Sistem tutarlı ise genel çözümünü bulun.

Genel çözümleri aynı olan iki sisteme eşdeğer (eşdeğer) denir. Başka bir deyişle, sistemlerden birinin çözümü diğerinin çözümü ise ve bunun tersi de geçerliyse sistemler eşdeğerdir.

Uygulaması bir sistemi orijinaline eşdeğer yeni bir sisteme dönüştüren dönüşüme eşdeğer veya eşdeğer dönüşüm denir. Eşdeğer dönüşümlerin örnekleri aşağıdaki dönüşümleri içerir: bir sistemin iki denkleminin yer değiştirmesi, iki bilinmeyenin tüm denklemlerin katsayılarıyla birlikte yer değiştirmesi, bir sistemin herhangi bir denkleminin her iki tarafının sıfırdan farklı bir sayı ile çarpılması.

Tüm serbest terimler sıfıra eşitse, bir doğrusal denklem sistemine homojen denir:

x1=x2=x3=…=xn=0 sistemin bir çözümü olduğundan homojen bir sistem her zaman tutarlıdır. Bu çözüme sıfır veya önemsiz denir.

2. Gauss eleme yöntemi

2.1 Gauss eleme yönteminin özü

Doğrusal cebirsel denklem sistemlerini çözmenin klasik yöntemi, bilinmeyenlerin sıralı olarak ortadan kaldırılması yöntemidir - Gauss yöntemi(Buna Gauss eleme yöntemi de denir). Bu, temel dönüşümler kullanılarak, bir denklem sisteminin, diğer tüm değişkenlerin sonuncusundan başlayarak sırayla bulunduğu, bir adım (veya üçgen) biçimindeki eşdeğer bir sisteme indirgendiği zaman, değişkenlerin sıralı olarak ortadan kaldırılmasına yönelik bir yöntemdir. sayı) değişkenler.

Gauss yöntemi kullanılarak çözüm süreci ileri ve geri hareket olmak üzere iki aşamadan oluşur.

1. Doğrudan vuruş.

İlk aşamada, sıralar üzerindeki temel dönüşümler yoluyla sistem kademeli veya üçgen bir şekle getirildiğinde veya sistemin uyumsuz olduğu tespit edildiğinde doğrudan hareket adı verilen hareket gerçekleştirilir. Yani, matrisin ilk sütununun elemanları arasından sıfır olmayan bir tane seçin, satırları yeniden düzenleyerek en üst konuma taşıyın ve elde edilen ilk satırı, yeniden düzenlemeden sonra kalan satırlardan bir değerle çarparak çıkarın. bu satırların her birinin ilk elemanının ilk satırın ilk elemanına oranına eşittir, böylece altındaki sütun sıfırlanır.

Bu dönüşümler tamamlandıktan sonra, ilk satırın ve ilk sütunun üzeri zihinsel olarak çizilir ve sıfır boyutlu bir matris kalana kadar devam edilir. Herhangi bir yinelemede, ilk sütunun öğeleri arasında sıfırdan farklı bir öğe yoksa, sonraki sütuna geçin ve benzer bir işlem yapın.

İlk aşamada (doğrudan vuruş), sistem kademeli (özellikle üçgen) bir forma indirgenir.

Aşağıdaki sistem aşamalı bir forma sahiptir:

,

Katsayılara aii sistemin ana (öncü) elemanları denir.

(eğer a11=0 ise matrisin satırlarını yeniden düzenleyin, böylece A 11, 0'a eşit değildi. Bu her zaman mümkündür, çünkü aksi halde matris sıfır sütunu içerir, determinantı sıfıra eşittir ve sistem tutarsızdır).

İlki dışındaki tüm denklemlerdeki bilinmeyen x1'i ortadan kaldırarak (sistemin temel dönüşümlerini kullanarak) sistemi dönüştürelim. Bunu yapmak için ilk denklemin her iki tarafını da şu şekilde çarpın:

ve sistemin ikinci denklemiyle terimi terim olarak toplayın (veya ikinci denklemden, birinciyle çarpılarak terim terim çıkarın). Daha sonra ilk denklemin her iki tarafını da ile çarpıp sistemin üçüncü denklemine ekliyoruz (veya üçüncüden birincinin çarpımını çıkarıyoruz). Böylece, ilk satırı sırayla bir sayıyla çarpar ve ekleriz. Ben için, inci satır ben= 2, 3, …,N.

Bu işleme devam ederek eşdeğer bir sistem elde ediyoruz:


– sistemin son m-1 denklemlerindeki bilinmeyenler ve serbest terimler için formüllerle belirlenen yeni katsayı değerleri:

Böylece, ilk adımda, birinci öncü eleman a 11'in altında yer alan tüm katsayılar yok edilir.

0'da, ikinci adımda ikinci öncü elemanın (a 22 (1)) altında bulunan elemanlar yok edilir (eğer a 22 (1) 0 ise), vb. Bu işlemi daha da sürdürerek nihayet (m-1) adımında orijinal sistemi üçgen sisteme indirgemiş oluyoruz.

Sistemi aşamalı bir forma indirgeme sürecinde sıfır denklem ortaya çıkarsa, yani. 0=0 formundaki eşitlikler atılır. Formun bir denklemi ortaya çıkarsa

o zaman bu sistemin uyumsuzluğunu gösterir.

Gauss yönteminin doğrudan ilerleyişinin sona erdiği yer burasıdır.

2. Ters vuruş.

İkinci aşamada, özü, sonuçta ortaya çıkan tüm temel değişkenleri temel olmayanlar açısından ifade etmek ve temel bir çözüm sistemi oluşturmak veya tüm değişkenler temel ise, sözde ters hareket gerçekleştirilir. Daha sonra doğrusal denklem sisteminin tek çözümünü sayısal olarak ifade edin.

Bu prosedür, karşılık gelen temel değişkenin ifade edildiği (içinde yalnızca bir tane vardır) ve önceki denklemlere yerleştirildiği son denklemle başlar ve bu şekilde "adımlara" doğru ilerleyerek devam eder.

Her satır tam olarak bir temel değişkene karşılık gelir, dolayısıyla son (en üst) hariç her adımda durum son satırın durumunu tam olarak tekrarlar.

Not: Pratikte, sistemle değil, genişletilmiş matrisiyle çalışmak, satırlarındaki tüm temel dönüşümleri gerçekleştirmek daha uygundur. a11 katsayısının 1'e eşit olması uygundur (denklemleri yeniden düzenleyin veya denklemin her iki tarafını a11'e bölün).

2.2 Gauss yöntemini kullanarak SLAE'leri çözme örnekleri

Bu bölümde üç farklı örnek kullanarak Gauss yönteminin SLAE'leri nasıl çözebildiğini göstereceğiz.

Örnek 1. 3. dereceden bir SLAE'yi çözün.

Katsayıları sıfırlayalım

ikinci ve üçüncü satırlarda. Bunu yapmak için sırasıyla 2/3 ve 1 ile çarpın ve ilk satıra ekleyin:

Doğrusal denklem sistemlerini dikkate almaya devam ediyoruz. Bu ders konuyla ilgili üçüncü derstir. Genel olarak doğrusal denklem sisteminin ne olduğuna dair belirsiz bir fikriniz varsa, kendinizi çaydanlık gibi hissediyorsanız, o zaman Sonraki sayfasındaki temel bilgilerle başlamanızı öneririm, dersi incelemenizde fayda var.

Gauss yöntemi kolaydır! Neden? Ünlü Alman matematikçi Johann Carl Friedrich Gauss, yaşamı boyunca tüm zamanların en büyük matematikçisi, bir dahi olarak tanındı ve hatta "Matematiğin Kralı" lakabını aldı. Ve bildiğiniz gibi ustaca olan her şey basit! Bu arada, sadece enayiler değil, dahiler de para alıyor - Gauss'un portresi 10 Alman Markı banknotunun üzerindeydi (euro'nun piyasaya sürülmesinden önce) ve Gauss hala sıradan posta pullarından Almanlara gizemli bir şekilde gülümsüyor.

Gauss yöntemi basittir, çünkü BEŞİNCİ SINIF ÖĞRENCİSİNİN BİLGİSİ bu konuda uzmanlaşmak için YETERLİDİR. Toplama ve çarpmayı bilmelisiniz!Öğretmenlerin okul matematik seçmeli derslerinde bilinmeyenleri sıralı olarak hariç tutma yöntemini sıklıkla düşünmeleri tesadüf değildir. Bu bir paradoks ama öğrenciler Gauss yöntemini en zor buluyorlar. Şaşırtıcı bir şey yok - her şey metodolojiyle ilgili ve yöntemin algoritması hakkında erişilebilir bir biçimde konuşmaya çalışacağım.

Öncelikle doğrusal denklem sistemleri hakkında biraz bilgi verelim. Bir doğrusal denklem sistemi şunları yapabilir:

1) Benzersiz bir çözüme sahip olun. 2) Sonsuz sayıda çözümü var. 3) Çözümünüz yok (olun) ortak olmayan).

Gauss yöntemi çözüm bulmak için en güçlü ve evrensel araçtır herhangi Doğrusal denklem sistemleri. Hatırladığımız kadarıyla, Cramer kuralı ve matris yöntemi sistemin sonsuz sayıda çözümü olduğu veya tutarsız olduğu durumlarda uygun değildir. Ve bilinmeyenlerin sıralı olarak ortadan kaldırılması yöntemi Her neyse bizi cevaba götürecek! Bu dersimizde yine 1 numaralı durum (sistemin tek çözümü) için Gauss yöntemini ele alacağız, 2-3 numaralı noktaların durumlarına bir makale ayrılmıştır. Yöntemin algoritmasının her üç durumda da aynı şekilde çalıştığını not ediyorum.

Dersten en basit sisteme dönelim Doğrusal denklem sistemi nasıl çözülür? Gauss metodunu kullanarak çözelim.

İlk adım yazmaktır genişletilmiş sistem matrisi: . Katsayıların hangi prensibe göre yazıldığını sanırım herkes görebilir. Matrisin içindeki dikey çizginin herhangi bir matematiksel anlamı yoktur; bu sadece tasarım kolaylığı için üstü çizili bir çizgidir.

Referans : hatırlamanı tavsiye ederim şartlar lineer Cebir. Sistem Matrisi yalnızca bilinmeyenlerin katsayılarından oluşan bir matristir; bu örnekte sistem matrisi: . Genişletilmiş Sistem Matrisi – bu, sistemin aynı matrisi artı serbest terimlerin bir sütunudur, bu durumda: . Kısaca belirtmek gerekirse, matrislerden herhangi birine basitçe matris adı verilebilir.

Genişletilmiş sistem matrisi yazıldıktan sonra onunla bazı eylemlerin gerçekleştirilmesi gerekir. temel dönüşümler.

Aşağıdaki temel dönüşümler mevcuttur:

1) Teller matrisler Olabilmek yeniden düzenlemek bazı yerlerde. Örneğin, söz konusu matriste birinci ve ikinci satırları ağrısız bir şekilde yeniden düzenleyebilirsiniz:

2) Matriste orantılı (özel bir durum olarak - aynı) satırlar varsa (veya ortaya çıkmışsa), o zaman şunları yapmalısınız: silmek matristen biri hariç tüm bu satırlar. Örneğin matrisi düşünün . Bu matriste son üç satır orantılı olduğundan yalnızca birini bırakmak yeterlidir: .

3) Dönüşümler sırasında matriste sıfır satır görünüyorsa, o zaman aynı zamanda silmek. Tabii ki çizmeyeceğim, sıfır çizgisi hangi çizgidir? hepsi sıfır.

4) Matris satırı şu şekilde olabilir: çarpmak (bölmek) herhangi bir numaraya sıfır olmayan. Örneğin matrisi düşünün. Burada ilk satırı –3'e bölmeniz ve ikinci satırı 2 ile çarpmanız önerilir: . Bu eylem çok faydalıdır çünkü matrisin daha sonraki dönüşümlerini basitleştirir.

5) Bu dönüşüm en çok zorluğa neden olur, ancak aslında karmaşık bir şey de yoktur. Bir matrisin bir satırına şunları yapabilirsiniz: bir sayıyla çarpılan başka bir dize ekle, sıfırdan farklı. Pratik bir örnekten matrisimize bakalım: . İlk önce dönüşümü çok detaylı bir şekilde anlatacağım. İlk satırı –2 ile çarpın: , Ve ikinci satıra ilk satırı –2 ile çarparak ekliyoruz: . Artık ilk satır “geriye” –2 ile bölünebilir: . Gördüğünüz gibi EKLENEN satır LIdeğişmedi. Her zaman EKLENEN satır değişir UT.

Pratikte elbette bu kadar ayrıntılı yazmıyorlar, kısaca yazıyorlar: Bir kez daha: ikinci satıra ilk satırı –2 ile çarparak ekledim. Bir satır genellikle sözlü olarak veya taslak üzerinde çarpılır ve zihinsel hesaplama süreci şöyle olur:

“Matrisi yeniden yazıyorum ve ilk satırı yeniden yazıyorum: »

“Önce ilk sütun. En altta sıfır almam gerekiyor. Bu nedenle üsttekini -2: ile çarpıyorum ve ilkini ikinci satıra ekliyorum: 2 + (–2) = 0. Sonucu ikinci satıra yazıyorum: »

“Şimdi ikinci sütun. En üstte -1 ile -2'yi çarpıyorum: . İlkini ikinci satıra ekliyorum: 1 + 2 = 3. Sonucu ikinci satıra yazıyorum: »

“Ve üçüncü sütun. En üstte -5 ile -2'yi çarpıyorum: . İlkini ikinci satıra ekliyorum: –7 + 10 = 3. Sonucu ikinci satıra yazıyorum: »

Lütfen bu örneği dikkatlice anlayın ve sıralı hesaplama algoritmasını anlayın, bunu anlarsanız Gauss yöntemi pratik olarak cebinizde. Ama elbette bu dönüşüm üzerinde çalışmaya devam edeceğiz.

Temel dönüşümler denklem sisteminin çözümünü değiştirmez

! DİKKAT: dikkate alınan manipülasyonlar kullanılamaz, matrislerin "kendi başlarına" verildiği bir görev teklif edilirse. Örneğin “klasik” matrislerle işlemler Hiçbir durumda matrislerin içindeki hiçbir şeyi yeniden düzenlememelisiniz! Sistemimize dönelim. Pratik olarak parçalara ayrılır.

Sistemin genişletilmiş matrisini yazalım ve temel dönüşümleri kullanarak onu şuna indirelim: kademeli görünüm:

(1) Birinci satır ikinci satıra –2 ile çarpılarak eklendi. Ve yine: neden ilk satırı –2 ile çarpıyoruz? Altta sıfır elde etmek için bu, ikinci satırda bir değişkenden kurtulmak anlamına gelir.

(2) İkinci satırı 3'e bölün.

Temel dönüşümlerin amacı matrisi aşamalı forma indirgeyin: . Görevin tasarımında, sadece "merdivenleri" basit bir kalemle işaretliyorlar ve ayrıca "basamaklarda" bulunan sayıları da daire içine alıyorlar. "Adımlı görünüm" terimi bilimsel ve eğitimsel literatürde tamamen teorik değildir; yamuk görünüm veya üçgen görünüm.

Temel dönüşümler sonucunda elde ettik eş değer orijinal denklem sistemi:

Şimdi sistemin ters yönde "çözülmesi" gerekiyor - aşağıdan yukarıya doğru bu işleme denir Gauss yönteminin tersi.

Alt denklemde zaten hazır bir sonucumuz var: .

Sistemin ilk denklemini ele alalım ve zaten bilinen “y” değerini onun içine koyalım:

Gauss yönteminin üç bilinmeyenli üç doğrusal denklemden oluşan bir sistemin çözülmesini gerektirdiği en yaygın durumu ele alalım.

örnek 1

Denklem sistemini Gauss yöntemini kullanarak çözün:

Sistemin genişletilmiş matrisini yazalım:

Şimdi çözüm sırasında ulaşacağımız sonucu hemen çizeceğim: Tekrar ediyorum, amacımız temel dönüşümleri kullanarak matrisi adım adım forma getirmektir. Nereden başlamalı?

İlk önce sol üstteki numaraya bakın: Neredeyse her zaman burada olmalı birim. Genel olarak konuşursak, -1 (ve bazen diğer sayılar) işe yarar, ancak bir şekilde geleneksel olarak bir genellikle oraya yerleştirilir. Bir birim nasıl organize edilir? İlk sütuna bakıyoruz - bitmiş bir birimimiz var! Birinci dönüşüm: birinci ve üçüncü satırları değiştirin:

Artık ilk satır çözümün sonuna kadar değişmeden kalacak. Şimdi iyi.

Sol üst köşedeki ünite düzenlenmiştir. Şimdi bu yerlerde sıfır almanız gerekiyor:

Sıfırları “zor” bir dönüşüm kullanarak elde ederiz. İlk önce ikinci satırla ilgileniyoruz (2, –1, 3, 13). İlk pozisyonda sıfır almak için ne yapılması gerekiyor? Gerekiyor ikinci satıra ilk satırı –2 ile çarparak ekleyin. Zihinsel olarak veya taslakta ilk satırı –2 ile çarpın: (–2, –4, 2, –18). Ve sürekli olarak (yine zihinsel olarak veya taslak üzerinde) ekleme yapıyoruz, ikinci satıra zaten –2 ile çarpılmış olan ilk satırı ekliyoruz:

Sonucu ikinci satıra yazıyoruz:

Üçüncü satırı da aynı şekilde ele alıyoruz (3, 2, –5, –1). İlk pozisyonda sıfır almak için ihtiyacınız olan üçüncü satıra ilk satırı –3 ile çarparak ekleyin. Zihinsel olarak veya taslakta ilk satırı –3 ile çarpın: (–3, –6, 3, –27). VE üçüncü satıra ilk satırı –3 ile çarparak ekliyoruz:

Sonucu üçüncü satıra yazıyoruz:

Uygulamada bu eylemler genellikle sözlü olarak gerçekleştirilir ve tek adımda yazılır:

Her şeyi aynı anda ve aynı anda saymaya gerek yok. Hesaplamaların sırası ve sonuçların “yazılması” tutarlı ve genellikle şu şekildedir: önce ilk satırı yeniden yazarız ve yavaşça kendimize üfleriz - SÜREKLİ ve DİKKATLİCE:
Yukarıda hesaplamaların zihinsel sürecini zaten tartışmıştım.

Bu örnekte bunu yapmak kolaydır; ikinci satırı -5'e böleriz (çünkü oradaki tüm sayılar 5'e kalansız bölünebilir). Aynı zamanda üçüncü satırı -2'ye bölüyoruz çünkü sayılar ne kadar küçük olursa çözüm o kadar basit olur:

Temel dönüşümlerin son aşamasında, burada bir sıfır daha almanız gerekir:

Bunun için üçüncü satıra ikinci satırı –2 ile çarparak ekliyoruz:
Bu eylemi kendiniz anlamaya çalışın - ikinci satırı zihinsel olarak –2 ile çarpın ve ekleme işlemini gerçekleştirin.

Gerçekleştirilen son eylem, sonucun saç modelidir, üçüncü satırı 3'e bölün.

Temel dönüşümler sonucunda eşdeğer bir doğrusal denklem sistemi elde edildi: Serin.

Şimdi Gauss yönteminin tersi devreye giriyor. Denklemler aşağıdan yukarıya doğru “gevşemektedir”.

Üçüncü denklemde zaten hazır bir sonucumuz var:

İkinci denkleme bakalım: . "Zet"in anlamı zaten bilinmektedir, dolayısıyla:

Ve son olarak ilk denklem: . "Igrek" ve "zet" biliniyor, bu sadece küçük şeyler meselesi:

Cevap:

Tekrar tekrar belirtildiği gibi, herhangi bir denklem sistemi için bulunan çözümü kontrol etmek mümkün ve gereklidir, neyse ki bu kolay ve hızlıdır.

Örnek 2

Bu, bağımsız bir çözüm için bir örnek, nihai tasarımın bir örneği ve dersin sonunda bir cevaptır.

Şunu belirtmek gerekir ki kararın ilerlemesi karar sürecimle örtüşmeyebilir, ve bu Gauss yönteminin bir özelliğidir. Ama cevaplar aynı olmalı!

Örnek 3

Gauss yöntemini kullanarak bir doğrusal denklem sistemini çözme

Sol üstteki “adıma” bakıyoruz. Orada bir tane olmalı. Sorun şu ki, ilk sütunda hiç birim yok, dolayısıyla satırları yeniden düzenlemek hiçbir şeyi çözmeyecek. Bu gibi durumlarda ünitenin temel bir dönüşüm kullanılarak düzenlenmesi gerekir. Bu genellikle birkaç yolla yapılabilir. Bunu yaptım: (1) İlk satıra ikinci satırı -1 ile çarparak ekliyoruz. Yani ikinci satırı zihinsel olarak –1 ile çarpıp birinci ve ikinci satırları ekledik, ikinci satır değişmedi.

Şimdi sol üstte “eksi bir” var ki bu da bize çok yakışıyor. +1 almak isteyen herkes ek bir hareket yapabilir: İlk satırı –1 ile çarpın (işaretini değiştirin).

(2) Birinci satırın 5 ile çarpılması ikinci satıra eklendi. İlk satırın 3 ile çarpılması üçüncü satıra eklendi.

(3) İlk satır -1 ile çarpılmıştır, prensip olarak bu güzellik içindir. Üçüncü satırın işareti de değiştirilerek ikinci sıraya taşındı, böylece ikinci “adım”da gerekli üniteye sahip olduk.

(4) İkinci satır üçüncü satıra 2 ile çarpılarak eklendi.

(5) Üçüncü satır 3'e bölündü.

Hesaplamalarda bir hata olduğunu (daha nadiren bir yazım hatası) gösteren kötü bir işaret, "kötü" bir sonuçtur. Yani, eğer aşağıda , gibi bir şey varsa ve buna göre, , o zaman yüksek bir olasılıkla temel dönüşümler sırasında bir hata yapıldığını söyleyebiliriz.

Biz bunun tersini uyguluyoruz, örneklerin tasarımında genellikle sistemin kendisini yeniden yazmıyorlar, ancak denklemler "doğrudan verilen matristen alınıyor." Size hatırlatırım, ters vuruş aşağıdan yukarıya doğru çalışır. Evet, işte bir hediye:

Cevap: .

Örnek 4

Gauss yöntemini kullanarak bir doğrusal denklem sistemini çözme

Bu kendi başınıza çözebileceğiniz bir örnektir, biraz daha karmaşıktır. Birisinin kafası karışırsa sorun olmaz. Dersin sonunda tam çözüm ve örnek tasarım. Sizin çözümünüz benim çözümümden farklı olabilir.

Son bölümde Gauss algoritmasının bazı özelliklerine bakacağız. İlk özellik bazen sistem denklemlerinde bazı değişkenlerin eksik olmasıdır, örneğin: Genişletilmiş sistem matrisi nasıl doğru şekilde yazılır? Derste bu noktadan zaten bahsetmiştim. Cramer kuralı. Matris yöntemi. Sistemin genişletilmiş matrisinde eksik değişkenlerin yerine sıfırları koyarız: Bu arada, bu oldukça kolay bir örnek, çünkü ilk sütunda zaten bir sıfır var ve gerçekleştirilecek daha az temel dönüşüm var.

İkinci özellik şudur. Ele alınan tüm örneklerde “adımlara” –1 veya +1 yerleştirdik. Orada başka numaralar olabilir mi? Bazı durumlarda bunu yapabilirler. Sistemi düşünün: .

Burada sol üst “adım”da iki tane var. Ancak ilk sütundaki tüm sayıların 2'ye kalansız bölünebildiğini, diğerinin ise iki ve altı olduğunu fark ettik. Ve sol üstteki ikisi bize yakışacak! İlk adımda aşağıdaki dönüşümleri yapmanız gerekir: ilk satırı -1 ile çarparak ikinci satıra ekleyin; üçüncü satıra ilk satırı –3 ile çarparak ekleyin. Bu şekilde ilk sütunda gerekli sıfırları alacağız.

Veya başka bir geleneksel örnek: . Burada ikinci “adım”daki üç de bize uyar, çünkü 12 (sıfır almamız gereken yer) 3'e kalansız bölünebilir. Aşağıdaki dönüşümü gerçekleştirmek gerekir: ikinci satırı üçüncü satıra -4 ile çarparak ekleyin, bunun sonucunda ihtiyacımız olan sıfır elde edilecektir.

Gauss'un yöntemi evrenseldir ancak bir özelliği vardır. Sistemleri tam anlamıyla ilk seferde diğer yöntemleri (Cramer yöntemi, matris yöntemi) kullanarak çözmeyi güvenle öğrenebilirsiniz - çok katı bir algoritmaları vardır. Ancak Gauss yöntemine güvenebilmek için en az 5-10 onlu sistemi “işe sokmalı” ve çözmelisiniz. Bu nedenle ilk başta hesaplamalarda karışıklıklar ve hatalar olabilir ve bunda olağandışı veya trajik bir şey yoktur.

Pencerenin dışında yağmurlu bir sonbahar havası... Bu nedenle, kendi başına çözmek için daha karmaşık bir örnek isteyen herkes için:

Örnek 5

Dört bilinmeyenli 4 doğrusal denklem sistemini Gauss yöntemini kullanarak çözün.

Böyle bir görev pratikte o kadar da nadir değildir. Bu sayfayı iyice inceleyen bir çaydanlığın bile böyle bir sistemi sezgisel olarak çözme algoritmasını anlayacağını düşünüyorum. Temelde her şey aynı; yalnızca daha fazla eylem var.

Sistemin çözümünün olmadığı (tutarsız) veya sonsuz sayıda çözümün olduğu durumlar derste tartışılmaktadır. Uyumsuz sistemler ve ortak bir çözüme sahip sistemler. Burada Gauss yönteminin dikkate alınan algoritmasını düzeltebilirsiniz.

Sana başarılar diliyorum!

Çözümler ve cevaplar:

Örnek 2: Çözüm : Sistemin genişletilmiş matrisini yazalım ve temel dönüşümleri kullanarak onu adım adım forma getirelim.
Gerçekleştirilen temel dönüşümler: (1) Birinci satır ikinci satıra –2 ile çarpılarak eklendi. Birinci satır üçüncü satıra -1 ile çarpılarak eklendi. Dikkat! Burada birinciyi üçüncü satırdan çıkarmak isteyebilirsiniz; bunu çıkarmamanızı şiddetle tavsiye ederim - hata riski büyük ölçüde artar. Sadece katlayın! (2) İkinci satırın işareti değiştirildi (-1 ile çarpıldı). İkinci ve üçüncü satırlar değiştirildi. Not , "adımlarda" sadece bir tanesinden değil, aynı zamanda -1'den de memnunuz ki bu daha da uygun. (3) İkinci satır üçüncü satıra 5 ile çarpılarak eklendi. (4) İkinci satırın işareti değiştirildi (-1 ile çarpıldı). Üçüncü satır 14'e bölündü.

Tersi:

Cevap : .

Örnek 4: Çözüm : Sistemin genişletilmiş matrisini yazalım ve temel dönüşümleri kullanarak onu adım adım forma getirelim:

Gerçekleştirilen dönüşümler: (1) Birinci satıra ikinci satır eklendi. Böylece sol üstteki “basamak”ta istenilen ünite düzenlenmiştir. (2) İlk satırın 7 ile çarpılması ikinci satıra eklendi. İlk satırın 6 ile çarpılması üçüncü satıra eklendi.

İkinci “adım”la her şey daha da kötüye gidiyor , bunun için "adaylar" 17 ve 23 sayılarıdır ve bizim ya bir ya da -1'e ihtiyacımız var. Dönüşümler (3) ve (4) istenen birimin elde edilmesini amaçlayacaktır. (3) Üçüncü satıra ikinci satır -1 ile çarpılarak eklendi. (4) Üçüncü satır, ikinci satıra -3 ile çarpılarak eklendi. İkinci adımda gerekli öğe alındı . (5) İkinci satır üçüncü satıra 6 ile çarpılarak eklendi. (6) İkinci satır -1 ile çarpılır, üçüncü satır -83'e bölünür.

Tersi:

Cevap :

Örnek 5: Çözüm : Sistemin matrisini yazalım ve temel dönüşümleri kullanarak onu adım adım forma getirelim:

Gerçekleştirilen dönüşümler: (1) Birinci ve ikinci satırlar değiştirildi. (2) Birinci satır ikinci satıra –2 ile çarpılarak eklendi. İlk satır -2 ile çarpılarak üçüncü satıra eklendi. Birinci satır dördüncü satıra -3 ile çarpılarak eklendi. (3) İkinci satır üçüncü satıra 4 ile çarpılarak eklenir. İkinci satır dördüncü satıra -1 ile çarpılarak eklenir. (4) İkinci satırın işareti değiştirildi. Dördüncü satır 3'e bölünerek üçüncü satırın yerine yerleştirildi. (5) Üçüncü satır dördüncü satıra –5 ile çarpılarak eklenir.

Tersi:

Cevap :


Gauss yöntemi Doğrusal cebirsel denklem sistemlerini (SLAE'ler) çözmek için mükemmeldir. Diğer yöntemlere göre bir takım avantajları vardır:

  • öncelikle tutarlılık açısından denklem sistemini incelemeye gerek yoktur;
  • ikinci olarak, Gauss yöntemi yalnızca denklem sayısının bilinmeyen değişkenlerin sayısıyla çakıştığı ve sistemin ana matrisinin tekil olmadığı SLAE'leri değil, aynı zamanda denklem sayısının bilinmeyen değişkenlerin sayısıyla çakışmadığı denklem sistemlerini de çözebilir. bilinmeyen değişkenlerin sayısı veya ana matrisin determinantı sıfıra eşittir;
  • üçüncüsü, Gauss yöntemi nispeten az sayıda hesaplama işlemiyle sonuçlara yol açar.

Makaleye kısa genel bakış.

Öncelikle gerekli tanımları verip notasyonları tanıtıyoruz.

Daha sonra, en basit durum için Gauss yönteminin algoritmasını açıklayacağız, yani doğrusal cebirsel denklem sistemleri için, bilinmeyen değişkenlerin sayısıyla çakışan denklemlerin sayısı ve sistemin ana matrisinin determinantı şöyledir: sıfıra eşit değil. Bu tür denklem sistemlerini çözerken, Gauss yönteminin özü en açık şekilde görülebilir; bu, bilinmeyen değişkenlerin sıralı olarak ortadan kaldırılmasıdır. Bu nedenle Gauss yöntemine bilinmeyenlerin sıralı olarak yok edilmesi yöntemi de denir. Birkaç örneğin ayrıntılı çözümlerini göstereceğiz.

Sonuç olarak, ana matrisi dikdörtgen veya tekil olan lineer cebirsel denklem sistemlerinin Gauss yöntemiyle çözümünü ele alacağız. Bu tür sistemlerin çözümü, örneklerle detaylı olarak inceleyeceğimiz bazı özelliklere sahiptir.

Sayfada gezinme.

Temel tanımlar ve gösterimler.

N bilinmeyenli (p, n'ye eşit olabilir) p doğrusal denklemden oluşan bir sistemi düşünün:

Bilinmeyen değişkenler, sayılar (gerçek veya karmaşık) ve serbest terimlerdir.

Eğer , o zaman doğrusal cebirsel denklemler sistemi denir homojen, aksi takdirde - heterojen.

Sistemin tüm denklemlerinin özdeşlik haline geldiği bilinmeyen değişkenlerin değerleri kümesine denir SLAU'nun kararı.

Bir doğrusal cebirsel denklem sisteminin en az bir çözümü varsa buna denir. eklem yeri, aksi takdirde - ortak olmayan.

Bir SLAE'nin benzersiz bir çözümü varsa buna denir. kesin. Birden fazla çözüm varsa sistem çağrılır. belirsiz.

Sistemin yazılı olduğunu söylüyorlar koordinat formu, eğer formu varsa
.

Bu sistemdeki matris formu kayıtlar şu şekildedir: - SLAE'nin ana matrisi, - bilinmeyen değişkenler sütununun matrisi, - serbest terimler matrisi.

A matrisine (n+1). sütun olarak serbest terimlerden oluşan bir matris sütunu eklersek, sözde elde ederiz. genişletilmiş matris Doğrusal denklem sistemleri. Tipik olarak, genişletilmiş bir matris T harfiyle gösterilir ve serbest terimler sütunu, kalan sütunlardan dikey bir çizgi ile ayrılır;

A kare matrisi denir dejenere determinantı sıfır ise. Eğer ise A matrisi denir dejenere olmayan.

Aşağıdaki noktaya dikkat edilmelidir.

Aşağıdaki işlemleri bir doğrusal cebirsel denklem sistemiyle gerçekleştirirseniz

  • iki denklemin yerini değiştirin,
  • herhangi bir denklemin her iki tarafını keyfi ve sıfırdan farklı bir gerçek (veya karmaşık) k sayısıyla çarpın,
  • herhangi bir denklemin her iki tarafına başka bir denklemin karşılık gelen kısımlarını rastgele bir k sayısıyla çarparak ekleyin,

o zaman aynı çözümlere sahip (veya tıpkı orijinal sistem gibi hiçbir çözümü olmayan) eşdeğer bir sistem elde edersiniz.

Bir doğrusal cebirsel denklem sisteminin genişletilmiş matrisi için bu eylemler, satırlarla temel dönüşümlerin gerçekleştirilmesi anlamına gelecektir:

  • iki satırı değiştirerek,
  • T matrisinin herhangi bir satırının tüm elemanlarını sıfırdan farklı bir k sayısıyla çarpmak,
  • Bir matrisin herhangi bir satırının elemanlarına, başka bir satırın karşılık gelen elemanlarının rastgele bir k sayısıyla çarpılmasıyla eklenmesi.

Artık Gauss yönteminin açıklamasına geçebiliriz.

Denklem sayısının bilinmeyenlerin sayısına eşit olduğu ve sistemin ana matrisinin tekil olmadığı doğrusal cebirsel denklem sistemlerini Gauss yöntemini kullanarak çözme.

Bir denklem sistemine çözüm bulma görevi bize verilseydi okulda ne yapardık? .

Bazıları bunu yapardı.

Birinci denklemin sol tarafını ikinci denklemin sol tarafına, sağ tarafını da sağ tarafına ekleyerek bilinmeyen x 2 ve x 3 değişkenlerinden kurtulabileceğinizi ve hemen x 1'i bulabileceğinizi unutmayın:

Bulunan x 1 =1 değerini sistemin birinci ve üçüncü denklemlerinde yerine koyarız:

Sistemin üçüncü denkleminin her iki tarafını -1 ile çarpıp birinci denklemin karşılık gelen kısımlarına eklersek bilinmeyen x 3 değişkeninden kurtuluruz ve x 2'yi bulabiliriz:

Ortaya çıkan x 2 = 2 değerini üçüncü denklemde yerine koyarız ve kalan bilinmeyen değişken x 3'ü buluruz:

Diğerleri farklı yapardı.

Sistemin ilk denklemini bilinmeyen x 1 değişkenine göre çözelim ve elde edilen ifadeyi sistemin ikinci ve üçüncü denklemlerinde bu değişkeni hariç tutmak için yerine koyalım:

Şimdi sistemin ikinci denklemini x 2 için çözelim ve elde edilen sonucu üçüncü denklemde yerine koyarak bilinmeyen x 2 değişkenini ortadan kaldıralım:

Sistemin üçüncü denkleminden x 3 =3 olduğu açıktır. Bulduğumuz ikinci denklemden ve elde ettiğimiz ilk denklemden.

Tanıdık çözümler, değil mi?

Buradaki en ilginç şey, ikinci çözüm yönteminin esasen bilinmeyenlerin sıralı olarak yok edilmesi yöntemi yani Gauss yöntemi olmasıdır. Bilinmeyen değişkenleri (ilk x 1, sonraki aşamada x 2) ifade edip sistemin geri kalan denklemlerine yerleştirdiğimizde onları dışarıda bırakmış oluyoruz. Son denklemde tek bir bilinmeyen değişken kalana kadar yok etme işlemi yaptık. Bilinmeyenlerin sırayla ortadan kaldırılması işlemine ne ad verilir? doğrudan Gauss yöntemi. İleriye doğru hamleyi tamamladıktan sonra son denklemde bulunan bilinmeyen değişkeni hesaplama fırsatına sahip oluyoruz. Onun yardımıyla sondan bir önceki denklemden bir sonraki bilinmeyen değişkeni buluruz vb. Son denklemden birinciye geçerken bilinmeyen değişkenleri sırayla bulma işlemine denir Gauss yönteminin tersi.

İlk denklemde x 1'i x 2 ve x 3 cinsinden ifade ettiğimizde ve elde edilen ifadeyi ikinci ve üçüncü denklemlerde değiştirdiğimizde, aşağıdaki eylemlerin aynı sonuca yol açacağına dikkat edilmelidir:

Aslında böyle bir prosedür, bilinmeyen değişken x 1'in sistemin ikinci ve üçüncü denklemlerinden çıkarılmasını da mümkün kılar:

Sistem denklemleri bazı değişkenler içermediğinde, Gauss yöntemini kullanarak bilinmeyen değişkenlerin ortadan kaldırılmasıyla ilgili nüanslar ortaya çıkar.

Örneğin, SLAU'da birinci denklemde bilinmeyen x 1 değişkeni yoktur (yani önündeki katsayı sıfırdır). Dolayısıyla bu bilinmeyen değişkeni kalan denklemlerden çıkarmak için sistemin ilk denklemini x 1 için çözemeyiz. Bu durumdan çıkmanın yolu sistemin denklemlerini değiştirmektir. Ana matrislerin determinantları sıfırdan farklı olan lineer denklem sistemlerini ele aldığımız için her zaman ihtiyacımız olan değişkenin bulunduğu bir denklem vardır ve bu denklemi ihtiyacımız olan konuma yeniden düzenleyebiliriz. Örneğimiz için sistemin birinci ve ikinci denklemlerinin yer değiştirmesi yeterlidir. , daha sonra x 1 için ilk denklemi çözebilir ve onu sistemin geri kalan denklemlerinden hariç tutabilirsiniz (her ne kadar x 1 artık ikinci denklemde mevcut olmasa da).

Ana fikri anladığınızı umuyoruz.

Hadi tarif edelim Gauss yöntemi algoritması.

n bilinmeyen değişkenli n doğrusal cebirsel denklemden oluşan bir sistemi çözmemiz gerektiğini varsayalım. ve ana matrisinin determinantının sıfırdan farklı olmasına izin verin.

Bunu her zaman sistemin denklemlerini yeniden düzenleyerek başarabileceğimiz için bunu varsayacağız. Bilinmeyen değişken x 1'i ikinciden başlayarak sistemin tüm denklemlerinden çıkaralım. Bunu yapmak için sistemin ikinci denklemine birincisini çarptığımız denklemi, üçüncü denklemine birincisini ekliyoruz ve bu şekilde devam ederek n'inci denkleme birincisini çarpıyoruz. Bu tür dönüşümlerden sonra denklem sistemi şu şekli alacaktır:

Nerede ve .

Sistemin ilk denkleminde x 1'i diğer bilinmeyen değişkenler cinsinden ifade edip, elde edilen ifadeyi diğer tüm denklemlerde yerine koysaydık aynı sonuca ulaşırdık. Böylece x 1 değişkeni ikinciden başlayarak tüm denklemlerin dışında bırakılır.

Daha sonra benzer şekilde ilerliyoruz, ancak yalnızca sonuçtaki sistemin şekilde işaretlenmiş kısmıyla

Bunu yapmak için sistemin üçüncü denklemine ikinciyi çarpıyoruz, dördüncü denkleme ikinciyi ekliyoruz ve bu şekilde devam ederek n'inci denkleme ikinciyi çarpıyoruz. Bu tür dönüşümlerden sonra denklem sistemi şu şekli alacaktır:

Nerede ve . Böylece x2 değişkeni üçüncüden başlayarak tüm denklemlerin dışında bırakılır.

Daha sonra sistemin şekilde işaretlenen kısmı ile benzer şekilde hareket ederek bilinmeyen x 3'ü ortadan kaldırmaya devam ediyoruz.

Böylece sistem aşağıdaki formu alana kadar Gauss yönteminin doğrudan ilerlemesine devam ederiz.

Bu andan itibaren Gauss yönteminin tersini başlatırız: son denklemden x n'yi şu şekilde hesaplarız, elde edilen x n değerini kullanarak sondan bir önceki denklemden x n-1'i buluruz ve bu şekilde devam ederek ilk denklemden x 1'i buluruz .

Bir örnek kullanarak algoritmaya bakalım.

Örnek.

Gauss yöntemi.

Çözüm.

a 11 katsayısı sıfır değildir, bu nedenle Gauss yönteminin doğrudan ilerlemesine, yani bilinmeyen x 1 değişkeninin birincisi hariç sistemin tüm denklemlerinden hariç tutulmasına geçelim. Bunu yapmak için, ikinci, üçüncü ve dördüncü denklemlerin sol ve sağ taraflarına, birinci denklemin sol ve sağ taraflarını sırasıyla ile çarparak ekleyin. Ve :

Bilinmeyen x 1 değişkeni elendi, şimdi x 2'yi yok etmeye geçelim. Sistemin üçüncü ve dördüncü denklemlerinin sol ve sağ taraflarına, ikinci denklemin sol ve sağ taraflarını sırasıyla çarparak ekleriz. Ve :

Gauss yönteminin ileri ilerlemesini tamamlamak için sistemin son denkleminden bilinmeyen x3 değişkenini çıkarmamız gerekir. Dördüncü denklemin sol ve sağ taraflarına sırasıyla üçüncü denklemin sol ve sağ taraflarını çarparak ekleyelim. :

Gauss yönteminin tersinden başlayabilirsiniz.

Elimizdeki son denklemden ,
elde ettiğimiz üçüncü denklemden,
ikinciden itibaren,
ilkinden.

Kontrol etmek için bilinmeyen değişkenlerin elde edilen değerlerini orijinal denklem sistemine değiştirebilirsiniz. Tüm denklemlerin özdeşliğe dönüşmesi Gauss yöntemini kullanan çözümün doğru bulunduğunu gösterir.

Cevap:

Şimdi aynı örneğe matris gösteriminde Gauss yöntemini kullanarak bir çözüm verelim.

Örnek.

Denklem sisteminin çözümünü bulun Gauss yöntemi.

Çözüm.

Sistemin genişletilmiş matrisi şu şekildedir: . Her sütunun üstünde matrisin elemanlarına karşılık gelen bilinmeyen değişkenler bulunur.

Buradaki Gauss yönteminin doğrudan yaklaşımı, sistemin genişletilmiş matrisinin temel dönüşümler kullanılarak yamuk forma indirilmesini içerir. Bu işlem, sistemle koordinat formunda yaptığımız bilinmeyen değişkenlerin ortadan kaldırılmasına benzer. Şimdi bunu göreceksiniz.

Matrisi, ikinci sütundan başlayarak ilk sütundaki tüm öğeler sıfır olacak şekilde dönüştürelim. Bunu yapmak için, ikinci, üçüncü ve dördüncü satırların elemanlarına, birinci satırın karşılık gelen elemanlarını ile çarparak ekleriz, ve buna göre:

Daha sonra, ortaya çıkan matrisi, ikinci sütunda üçüncüden başlayarak tüm öğelerin sıfır olacağı şekilde dönüştürüyoruz. Bu, bilinmeyen x 2 değişkeninin ortadan kaldırılmasına karşılık gelecektir. Bunu yapmak için, üçüncü ve dördüncü satırların elemanlarına, matrisin ilk satırının karşılık gelen elemanlarını sırasıyla çarparak ekleriz. Ve :

Geriye bilinmeyen x3 değişkenini sistemin son denkleminden hariç tutmak kalıyor. Bunu yapmak için, elde edilen matrisin son satırının elemanlarına, sondan bir önceki satırın karşılık gelen elemanlarını şununla çarparak ekleriz: :

Bu matrisin bir doğrusal denklem sistemine karşılık geldiğine dikkat edilmelidir.

ileri bir hamleden sonra daha erken elde edildi.

Geri dönmenin zamanı geldi. Matris gösteriminde, Gauss yönteminin tersi, sonuçtaki matrisin, şekilde işaretlenen matris olacak şekilde dönüştürülmesini içerir.

köşegen oldu, yani şeklini aldı

bazı sayılar nerede?

Bu dönüşümler Gauss yönteminin ileri dönüşümlerine benzer ancak ilk satırdan sonuncuya değil, sondan birinciye doğru gerçekleştirilir.

Üçüncü, ikinci ve birinci satırların elemanlarına son satırın karşılık gelen elemanlarını şununla çarparak ekleyin: , durmadan sırasıyla:

Şimdi ikinci ve birinci satırların elemanlarına üçüncü satırın karşılık gelen elemanlarını sırasıyla ve ile çarparak ekleyin:

Ters Gauss yönteminin son adımında, ilk satırın elemanlarına ikinci satırın karşılık gelen elemanlarını şununla çarparak ekleriz:

Ortaya çıkan matris denklem sistemine karşılık gelir bilinmeyen değişkenleri bulduğumuz yerden.

Cevap:

NOT.

Doğrusal cebirsel denklem sistemlerini çözmek için Gauss yöntemini kullanırken, tamamen yanlış sonuçlara yol açabileceğinden yaklaşık hesaplamalardan kaçınılmalıdır. Ondalık sayıları yuvarlamamanızı öneririz. Ondalık kesirlerden sıradan kesirlere geçmek daha iyidir.

Örnek.

Gauss yöntemini kullanarak üç denklemden oluşan bir sistemi çözme .

Çözüm.

Bu örnekte bilinmeyen değişkenlerin farklı bir atamaya sahip olduğuna dikkat edin (x 1, x 2, x 3 değil, x, y, z). Sıradan kesirlere geçelim:

Bilinmeyen x'i sistemin ikinci ve üçüncü denklemlerinden çıkaralım:

Ortaya çıkan sistemde, bilinmeyen değişken y ikinci denklemde yok, ancak üçüncü denklemde y mevcut, bu nedenle ikinci ve üçüncü denklemleri yer değiştirelim:

Bu, Gauss yönteminin doğrudan ilerleyişini tamamlar (bu bilinmeyen değişken artık mevcut olmadığından y'yi üçüncü denklemden çıkarmaya gerek yoktur).

Ters harekete başlayalım.

Bulduğumuz son denklemden ,
sondan bir öncekinden


elimizdeki ilk denklemden

Cevap:

X = 10, y = 5, z = -20.

Denklem sayısının bilinmeyenlerin sayısıyla örtüşmediği veya sistemin ana matrisinin tekil olduğu doğrusal cebirsel denklem sistemlerinin Gauss yöntemini kullanarak çözülmesi.

Ana matrisi dikdörtgen veya kare tekil olan denklem sistemlerinin çözümü olmayabilir, tek çözümü olabilir veya sonsuz sayıda çözümü olabilir.

Şimdi Gauss yönteminin bir doğrusal denklem sisteminin uyumluluğunu veya tutarsızlığını belirlememize ve uyumlu olması durumunda tüm çözümleri (veya tek bir çözümü) belirlememize nasıl izin verdiğini anlayacağız.

Prensip olarak, bu tür SLAE'ler durumunda bilinmeyen değişkenleri ortadan kaldırma süreci aynı kalır. Ancak ortaya çıkabilecek bazı durumlar hakkında detaya inmekte fayda var.

Gelelim en önemli aşamaya.

Dolayısıyla, Gauss yönteminin ileri ilerlemesini tamamladıktan sonra doğrusal cebirsel denklemler sisteminin şu şekli aldığını varsayalım: ve tek bir denklem bile indirgenmedi (bu durumda sistemin uyumsuz olduğu sonucuna varırdık). Mantıklı bir soru ortaya çıkıyor: "Bundan sonra ne yapmalı?"

Ortaya çıkan sistemin tüm denklemlerinde ilk sırada yer alan bilinmeyen değişkenleri yazalım:

Örneğimizde bunlar x 1, x 4 ve x 5'tir. Sistemin denklemlerinin sol taraflarında yalnızca yazılı bilinmeyen değişkenler x 1, x 4 ve x 5'i içeren terimleri bırakıyoruz, geri kalan terimler ters işaretle denklemlerin sağ tarafına aktarılıyor:

Denklemlerin sağ tarafında yer alan bilinmeyen değişkenlere keyfi değerler verelim; - keyfi sayılar:

Bundan sonra SLAE'mizin tüm denklemlerinin sağ tarafları sayılar içerir ve Gauss yönteminin tersine ilerleyebiliriz.

Sistemin sahip olduğumuz son denkleminden, bulduğumuz sondan bir önceki denklemden, elde ettiğimiz ilk denklemden

Bir denklem sisteminin çözümü, bilinmeyen değişkenlerin değerlerinin bir kümesidir

Numara Vermek Farklı değerler alarak denklem sistemine farklı çözümler elde edeceğiz. Yani denklem sistemimizin sonsuz sayıda çözümü vardır.

Cevap:

Nerede - keyfi sayılar.

Malzemeyi pekiştirmek için birkaç örneğin daha çözümlerini ayrıntılı olarak analiz edeceğiz.

Örnek.

Homojen bir doğrusal cebirsel denklem sistemini çözün Gauss yöntemi.

Çözüm.

Bilinmeyen x değişkenini sistemin ikinci ve üçüncü denklemlerinden hariç tutalım. Bunu yapmak için ikinci denklemin sol ve sağ taraflarına sırasıyla birinci denklemin sol ve sağ taraflarını ile çarparak, üçüncü denklemin sol ve sağ taraflarına ise sol ve sağ taraflarını ekliyoruz. ilk denklemin sağ tarafları şununla çarpılır:

Şimdi ortaya çıkan denklem sisteminin üçüncü denkleminden y'yi hariç tutalım:

Ortaya çıkan SLAE, sisteme eşdeğerdir .

Sistem denklemlerinin sol tarafında yalnızca bilinmeyen x ve y değişkenlerini içeren terimleri bırakıp, bilinmeyen değişken z'yi içeren terimleri sağ tarafa taşıyoruz:



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!