Sayıların nod'u ve nok'u, birkaç sayının en büyük ortak böleni ve en küçük ortak katıdır. En küçük ortak kat (LCM)

Ortaokul 5. sınıfta “Çoklu Sayılar” konusu işleniyor. Amacı yazılı ve sözlü matematiksel hesaplama becerilerini geliştirmektir. Bu derste yeni kavramlar tanıtılmaktadır - “katlı sayılar” ve “bölenler”, bir doğal sayının bölenlerini ve katlarını bulma tekniği ve LCM'yi çeşitli yollarla bulma yeteneği uygulanmaktadır.

Bu konu çok önemlidir. Kesirli örnekleri çözerken bu bilgi uygulanabilir. Bunu yapmak için en küçük ortak katı (LCM) hesaplayarak ortak paydayı bulmanız gerekir.

A'nın katı, A'ya kalansız bölünebilen bir tamsayıdır.

Her doğal sayının sonsuz sayıda katı vardır. Kendisi en küçük olarak kabul edilir. Kat, sayının kendisinden küçük olamaz.

125 sayısının 5'in katı olduğunu kanıtlamanız gerekiyor. Bunun için ilk sayıyı ikinciye bölmeniz gerekiyor. 125, 5'e kalansız bölünüyorsa cevap evettir.

Bu yöntem küçük sayılar için geçerlidir.

LOC hesaplanırken özel durumlar vardır.

1. Biri (80) diğerine (20) bölünebilen 2 sayının (örneğin 80 ve 20) ortak katını bulmanız gerekiyorsa, bu sayı (80) bunların en küçük katıdır. iki sayı.

LCM(80, 20) = 80.

2. Eğer ikisinin ortak böleni yoksa, onların LCM'lerinin bu iki sayının çarpımı olduğunu söyleyebiliriz.

LCM(6, 7) = 42.

Son örneğe bakalım. 6 ve 7'nin 42 ile ilişkisi bölenlerdir. Bir sayının katlarını kalansız bölerler.

Bu örnekte 6 ve 7 eşleştirilmiş faktörlerdir. Çarpımları en çok çarpan sayıya (42) eşittir.

Bir sayı yalnızca kendisine veya 1'e (3:1=3; 3:3=1) bölünebiliyorsa asal sayı olarak adlandırılır. Geri kalanına kompozit denir.

Başka bir örnek, 9'un 42'nin böleni olup olmadığının belirlenmesini içerir.

42:9=4 (kalan 6)

Cevap: 9, 42'nin böleni değildir çünkü cevabın bir kalanı vardır.

Bölen, doğal sayıların bölündüğü sayı olması ve katın kendisinin de bu sayıya bölünebilmesi açısından bir çokludan farklıdır.

Sayıların en büyük ortak böleni A Ve B, en küçük katlarıyla çarpıldığında sayıların çarpımını verir A Ve B.

Yani: gcd (a, b) x gcd (a, b) = a x b.

Daha karmaşık sayıların ortak katları aşağıdaki şekilde bulunur.

Örneğin 168, 180, 3024'ün LCM'sini bulun.

Bu sayıları asal çarpanlara ayırıp kuvvetlerin çarpımı olarak yazıyoruz:

168=2³x3¹x7¹

2⁴х3³х5¹х7¹=15120

LCM(168, 180, 3024) = 15120.

Ancak birçok doğal sayı aynı zamanda diğer doğal sayılara da bölünebilir.

Örneğin:

12 sayısı 1'e, 2'ye, 3'e, 4'e, 6'ya, 12'ye bölünebilir;

36 sayısı 1'e, 2'ye, 3'e, 4'e, 6'ya, 12'ye, 18'e, 36'ya bölünür.

Bir sayının bir tama bölünebildiği sayılara (12 için bunlar 1, 2, 3, 4, 6 ve 12'dir) denir. sayıların bölenleri. Bir doğal sayının böleni A- belirli bir sayıyı bölen bir doğal sayıdır A iz bırakmadan. İkiden fazla böleni olan doğal sayılara denir kompozit .

12 ve 36 sayılarının ortak bölenleri olduğunu lütfen unutmayın. Bu sayılar: 1, 2, 3, 4, 6, 12'dir. Bu sayıların en büyük böleni 12'dir. Bu iki sayının ortak böleni A Ve B- verilen her iki sayının da kalansız olarak bölündüğü sayıdır A Ve B.

Ortak katlar birkaç sayı, bu sayıların her birine bölünebilen bir sayıdır. Örneğin 9, 18 ve 45 sayılarının ortak katı 180'dir. Ancak 90 ve 360 ​​da onların ortak katlarıdır. Tüm ortak katlar arasında her zaman en küçük olan vardır, bu durumda 90'dır. Bu sayıya denir. en küçükortak kat (CMM).

LCM her zaman tanımlandığı sayıların en büyüğünden büyük olması gereken bir doğal sayıdır.

En küçük ortak kat (LCM). Özellikler.

Değişebilirlik:

İlişkisellik:

Özellikle, eğer ve eş asal sayılar ise, o zaman:

İki tam sayının en küçük ortak katı M Ve N diğer tüm ortak katların bölenidir M Ve N. Ayrıca ortak katlar kümesi m, n LCM'nin katları kümesiyle çakışır ( m, n).

Asimptotikleri bazı sayı-teorik fonksiyonlarla ifade edilebilir.

Bu yüzden, Chebyshev işlevi. Ve:

Bu, Landau fonksiyonunun tanımından ve özelliklerinden kaynaklanmaktadır. g(n).

Asal sayıların dağılım kanunundan çıkan sonuç.

En küçük ortak katı (LCM) bulma.

NOC( a, b) çeşitli şekillerde hesaplanabilir:

1. En büyük ortak bölen biliniyorsa, bunun LCM ile bağlantısını kullanabilirsiniz:

2. Her iki sayının asal çarpanlarına kanonik ayrışımı bilinsin:

Nerede p 1 ,...,p k- çeşitli asal sayılar ve d 1 ,...,d k Ve e 1 ,...,ek— negatif olmayan tamsayılar (karşılık gelen asal sayı genişlemede değilse sıfır olabilirler).

Daha sonra NOC ( A,B) aşağıdaki formülle hesaplanır:

Başka bir deyişle, LCM ayrıştırması, sayıların ayrıştırılmasından en az birinde yer alan tüm asal faktörleri içerir. a, b, ve bu çarpanın iki üssünden en büyüğü alınır.

Örnek:

Birkaç sayının en küçük ortak katını hesaplamak, iki sayının LCM'sinin birkaç ardışık hesaplamasına indirgenebilir:

Kural. Bir sayı serisinin LCM'sini bulmak için şunlara ihtiyacınız vardır:

- sayıları asal faktörlere ayrıştırmak;

- en büyük ayrıştırmayı (verilenlerin en büyük sayısının faktörlerinin çarpımı) istenen ürünün faktörlerine aktarın ve ardından ilk sayıda görünmeyen veya içinde yer almayan diğer sayıların ayrıştırılmasından faktörleri ekleyin daha az kez;

— asal faktörlerin sonuçtaki çarpımı, verilen sayıların LCM'si olacaktır.

Herhangi iki veya daha fazla doğal sayının kendi LCM'si vardır. Sayılar birbirinin katı değilse veya açılımda aynı faktörlere sahip değilse, LCM'leri bu sayıların çarpımına eşittir.

28 sayısının asal çarpanlarına (2, 2, 7) 3 çarpanı (21 sayısı) eklenir, elde edilen çarpım (84), 21 ve 28'e bölünebilen en küçük sayı olacaktır.

En büyük sayı olan 30'un asal çarpanları, 25 sayısının 5 çarpanı ile tamamlanır; sonuçta ortaya çıkan çarpım 150, en büyük sayı olan 30'dan büyüktür ve verilen tüm sayılara kalansız bölünebilir. Bu, verilen tüm sayıların katı olan mümkün olan en küçük çarpımdır (150, 250, 300...).

2,3,11,37 sayıları asal sayılar olduğundan LCM'leri verilen sayıların çarpımına eşittir.

Kural. Asal sayıların LCM'sini hesaplamak için tüm bu sayıları birbiriyle çarpmanız gerekir.

Başka seçenek:

Birkaç sayının en küçük ortak katını (LCM) bulmak için ihtiyacınız olan:

1) her sayıyı asal faktörlerinin bir ürünü olarak temsil edin, örneğin:

504 = 2 2 2 3 3 7,

2) Tüm asal faktörlerin kuvvetlerini yazın:

504 = 2 2 2 3 3 7 = 2 3 3 2 7 1,

3) bu sayıların her birinin asal bölenlerini (çarpanlarını) yazın;

4) bu sayıların tüm açılımlarında bulunan her birinin en büyük derecesini seçin;

5) bu güçleri çarpın.

Örnek. 168, 180 ve 3024 sayılarının LCM'sini bulun.

Çözüm. 168 = 2 2 2 3 7 = 2 3 3 1 7 1,

180 = 2 2 3 3 5 = 2 2 3 2 5 1,

3024 = 2 2 2 2 3 3 3 7 = 2 4 3 3 7 1.

Tüm asal bölenlerin en büyük kuvvetlerini yazıp çarpıyoruz:

NOC = 2 4 3 3 5 1 7 1 = 15120.

En büyük ortak böleni

Tanım 2

Eğer bir a doğal sayısı bir $b$ doğal sayısı ile bölünebiliyorsa, o zaman $b$'ye $a$'ın böleni denir ve $a$'a $b$'ın katı denir.

$a$ ve $b$ doğal sayılar olsun. $c$ sayısına hem $a$ hem de $b$'ın ortak böleni denir.

$a$ ve $b$ sayılarının ortak bölenleri kümesi sonludur çünkü bu bölenlerin hiçbiri $a$'dan büyük olamaz. Bu, bu bölenler arasında, $a$ ve $b$ sayılarının en büyük ortak böleni olarak adlandırılan ve aşağıdaki gösterimle gösterilen en büyük bölenin olduğu anlamına gelir:

$GCD\(a;b)\ veya \D\(a;b)$

İki sayının en büyük ortak bölenini bulmak için ihtiyacınız olan:

  1. 2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en büyük ortak bölen olacaktır.

örnek 1

$121$ ve $132.$ sayılarının gcd'sini bulun

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Bu sayıların genişletilmesine dahil olan sayıları seçin

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en büyük ortak bölen olacaktır.

    $GCD=2\cdot 11=22$

Örnek 2

$63$ ve $81$ tek terimlilerinin gcd'sini bulun.

Sunulan algoritmaya göre bulacağız. Bunun için:

    Sayıları asal çarpanlarına ayıralım

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Bu sayıların açılımına dahil olan sayıları seçiyoruz

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    2. adımda bulduğumuz sayıların çarpımını bulalım. Ortaya çıkan sayı istenilen en büyük ortak bölen olacaktır.

    $GCD=3\cdot 3=9$

İki sayının gcd'sini, sayıların bölenleri kümesini kullanarak başka bir şekilde bulabilirsiniz.

Örnek 3

$48$ ve $60$ sayılarının gcd'sini bulun.

Çözüm:

$48$ sayısının bölenleri kümesini bulalım: $\left\((\rm 1,2,3.4.6,8,12,16,24,48)\right\)$

Şimdi $60$:$\ \left\((\rm 1,2,3,4,5,6,10,12,15,20,30,60)\right\) sayısının bölenleri kümesini bulalım $

Bu kümelerin kesişimini bulalım: $\left\((\rm 1,2,3,4,6,12)\right\)$ - bu küme $48$ ve $60 sayılarının ortak bölenleri kümesini belirleyecektir. $. Bu kümedeki en büyük öğe $12$ sayısı olacaktır. Bu, $48$ ve $60$ sayılarının en büyük ortak böleninin $12$ olduğu anlamına gelir.

Takipteki kredilerin tanımı

Tanım 3

Doğal sayıların ortak katları$a$ ve $b$, hem $a$ hem de $b$'ın katı olan bir doğal sayıdır.

Sayıların ortak katları, orijinal sayılara kalansız bölünebilen sayılardır. Örneğin, $25$ ve $50$ sayıları için ortak katlar, $50,100,150,200$ vb. sayılar olacaktır.

En küçük ortak kat, en küçük ortak kat olarak adlandırılacak ve LCM$(a;b)$ veya K$(a;b).$ ile gösterilecektir.

İki sayının LCM'sini bulmak için yapmanız gerekenler:

  1. Sayıları asal çarpanlara ayırma
  2. Birinci sayının parçası olan çarpanları yazın ve bunlara ikincinin parçası olan ve birincinin parçası olmayan çarpanları ekleyin

Örnek 4

$99$ ve $77$ sayılarının LCM'sini bulun.

Sunulan algoritmaya göre bulacağız. Bunun için

    Sayıları asal çarpanlara ayırma

    $99=3\cdot 3\cdot 11$

    İlk maddede yer alan faktörleri yazınız.

    bunlara birincinin parçası olmayan, ikincinin parçası olan çarpanları ekleyin

    2. adımda bulunan sayıların çarpımını bulun. Ortaya çıkan sayı, istenen en küçük ortak kat olacaktır.

    $NOK=3\cdot 3\cdot 11\cdot 7=693$

    Sayıların bölenlerinin listesini derlemek genellikle çok emek yoğun bir iştir. Öklid algoritması adı verilen GCD'yi bulmanın bir yolu var.

    Öklid algoritmasının dayandığı ifadeler:

    $a$ ve $b$ doğal sayılarsa ve $a\vdots b$ ise, o zaman $D(a;b)=b$

    $a$ ve $b$, $b olacak şekilde doğal sayılar ise

$D(a;b)= D(a-b;b)$ kullanarak, biri diğerine bölünebilecek bir sayı çiftine ulaşana kadar söz konusu sayıları art arda azaltabiliriz. O zaman bu sayılardan küçük olanı, $a$ ve $b$ sayıları için istenen en büyük ortak bölen olacaktır.

GCD ve LCM'nin Özellikleri

  1. $a$ ve $b$'ın herhangi bir ortak katı K$(a;b)$ ile bölünebilir
  2. Eğer $a\vdots b$ ise К$(a;b)=a$
  3. Eğer K$(a;b)=k$ ve $m$ bir doğal sayı ise, o zaman K$(am;bm)=km$

    Eğer $d$, $a$ ve $b$ için ortak bir bölen ise, o zaman K($\frac(a)(d);\frac(b)(d)$)=$\ \frac(k)(d ) $

    Eğer $a\vdots c$ ve $b\vdots c$ ise, o zaman $\frac(ab)(c)$ $a$ ve $b$'ın ortak katıdır

    Herhangi bir $a$ ve $b$ doğal sayısı için eşitlik geçerlidir

    $D(a;b)\cdot К(a;b)=ab$

    $a$ ve $b$ sayılarının herhangi bir ortak böleni, $D(a;b)$ sayısının bölenidir

Kat, belirli bir sayıya kalansız bölünebilen bir sayıdır. Bir sayı grubunun en küçük ortak katı (LCM), gruptaki her sayıya kalan bırakmadan bölünebilen en küçük sayıdır. En küçük ortak katı bulmak için verilen sayıların asal çarpanlarını bulmanız gerekir. LCM ayrıca iki veya daha fazla sayıdan oluşan gruplara uygulanan bir dizi başka yöntem kullanılarak da hesaplanabilir.

Adımlar

Katlar serisi

    Şu sayılara bakın. Burada açıklanan yöntem, her biri 10'dan küçük olan iki sayı verildiğinde en iyi şekilde kullanılır. Daha büyük sayılar verilirse farklı bir yöntem kullanın.

    • Örneğin 5 ve 8'in en küçük ortak katını bulun. Bunlar küçük sayılardır, dolayısıyla bu yöntemi kullanabilirsiniz.
  1. Kat, belirli bir sayıya kalansız bölünebilen bir sayıdır. Çarpım tablosunda katlar bulunabilir.

    • Örneğin 5'in katı olan sayılar: 5, 10, 15, 20, 25, 30, 35, 40.
  2. İlk sayının katları olan bir sayı dizisi yazın.İki sayı kümesini karşılaştırmak için bunu ilk sayının katları altında yapın.

    • Örneğin 8'in katı olan sayılar şunlardır: 8, 16, 24, 32, 40, 48, 56 ve 64.
  3. Her iki kat kümesinde de bulunan en küçük sayıyı bulun. Toplam sayıyı bulmak için uzun katlar dizisi yazmanız gerekebilir. Her iki kat kümesinde de bulunan en küçük sayı, en küçük ortak kattır.

    • Örneğin 5 ve 8'in katları serisinde yer alan en küçük sayı 40 sayısıdır. Dolayısıyla 40, 5 ve 8'in en küçük ortak katıdır.

    Asal çarpanlara ayırma

    1. Şu sayılara bakın. Burada açıklanan yöntem, her biri 10'dan büyük olan iki sayı verildiğinde en iyi şekilde kullanılır. Daha küçük sayılar verilirse farklı bir yöntem kullanın.

      • Örneğin 20 ve 84 sayılarının en küçük ortak katını bulun. Sayıların her biri 10'dan büyüktür, dolayısıyla bu yöntemi kullanabilirsiniz.
    2. İlk sayıyı asal faktörlere ayırın. Yani çarpıldığında belirli bir sayıyı verecek asal sayıları bulmanız gerekir. Asal çarpanları bulduktan sonra bunları eşitlik olarak yazın.

      • Örneğin, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\times 10=20) Ve 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10). Buna göre 20 sayısının asal çarpanları 2, 2 ve 5 sayılarıdır. Bunları bir ifade olarak yazın: .
    3. İkinci sayıyı asal çarpanlara ayırın. Bunu, ilk sayıyı çarpanlarına ayırdığınız şekilde yapın, yani çarpıldığında verilen sayıyı verecek asal sayıları bulun.

      • Örneğin, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42) Ve 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6). Buna göre 84 sayısının asal çarpanları 2, 7, 3 ve 2 sayılarıdır. Bunları bir ifade olarak yazın: .
    4. Her iki sayının ortak çarpanlarını yazınız.Çarpma işlemi gibi çarpanları yazın. Her faktörü yazarken, her iki ifadede de (sayıların asal çarpanlara ayrılmasını açıklayan ifadeler) bunun üzerini çizin.

      • Örneğin, her iki sayının da ortak çarpanı 2'dir, bu nedenle şunu yazın: 2 × (\displaystyle 2\times) ve her iki ifadede de 2'nin üzerini çizin.
      • Her iki sayının da ortak noktası 2'nin bir çarpanı daha, o halde yazın 2 × 2 (\displaystyle 2\times 2) ve her iki ifadede de ikinci 2'nin üzerini çizin.
    5. Kalan çarpanları çarpma işlemine ekleyin. Bunlar her iki ifadede de üstü çizili olmayan faktörlerdir, yani her iki sayı için ortak olmayan faktörlerdir.

      • Örneğin, ifadede 20 = 2 × 2 × 5 (\displaystyle 20=2\times 2\times 5) Her iki ikinin (2) üzeri çizilir çünkü bunlar ortak çarpanlardır. 5 faktörünün üzeri çizili değildir, dolayısıyla çarpma işlemini şu şekilde yazın: 2 × 2 × 5 (\displaystyle 2\times 2\times 5)
      • İfadede 84 = 2 × 7 × 3 × 2 (\displaystyle 84=2\times 7\times 3\times 2) her iki ikilinin (2) de üzeri çizilir. 7 ve 3 çarpanlarının üzeri çizilmemiştir, dolayısıyla çarpma işlemini şu şekilde yazın: 2 × 2 × 5 × 7 × 3 (\displaystyle 2\times 2\times 5\times 7\times 3).
    6. En küçük ortak katı hesaplayın. Bunu yapmak için yazılı çarpma işlemindeki sayıları çarpın.

      • Örneğin, 2 × 2 × 5 × 7 × 3 = 420 (\displaystyle 2\times 2\times 5\times 7\times 3=420). Yani 20 ile 84'ün en küçük ortak katı 420'dir.

    Ortak faktörleri bulma

    1. Tic-tac-toe oyununa benzer bir ızgara çizin. Böyle bir ızgara, diğer iki paralel çizgiyle (dik açılarda) kesişen iki paralel çizgiden oluşur. Bu size üç satır ve üç sütun verecektir (ızgara, # simgesine çok benzer). İlk sayıyı birinci satıra ve ikinci sütuna yazın. İkinci sayıyı birinci satıra ve üçüncü sütuna yazın.

      • Örneğin 18 ve 30 sayılarının en küçük ortak katını bulun. Birinci satır ve ikinci sütuna 18 sayısını, birinci satır ve üçüncü sütuna 30 sayısını yazın.
    2. Her iki sayının ortak bölenini bulun. Bunu ilk satıra ve ilk sütuna yazın. Asal faktörleri aramak daha iyidir, ancak bu bir gereklilik değildir.

      • Örneğin 18 ve 30 çift sayılar olduğundan ortak çarpanları 2'dir. O halde ilk satıra ve ilk sütuna 2 yazın.
    3. Her sayıyı ilk bölene bölün. Her bölümü uygun sayının altına yazın. Bölüm, iki sayıyı bölmenin sonucudur.

      • Örneğin, 18 ÷ 2 = 9 (\displaystyle 18\div 2=9) 18'in altında 9 yazın.
      • 30 ÷ 2 = 15 (\displaystyle 30\div 2=15) 30'un altında 15 yazın.
    4. Her iki bölümün ortak bölenini bulun. Böyle bir bölen yoksa sonraki iki adımı atlayın. Aksi halde ikinci satıra ve birinci sütuna böleni yazın.

      • Örneğin 9 ve 15 3'e bölünebilir, bu nedenle ikinci satıra ve ilk sütuna 3 yazın.
    5. Her bölümü ikinci bölenine bölün. Her bölme sonucunu karşılık gelen bölümün altına yazın.

      • Örneğin, 9 ÷ 3 = 3 (\displaystyle 9\div 3=3) yani 3'ü 9'un altına yazın.
      • 15 ÷ 3 = 5 (\displaystyle 15\div 3=5) 15'in altına 5 yazın.
    6. Gerekirse ızgaraya ek hücreler ekleyin. Bölümlerin ortak bir böleni olana kadar açıklanan adımları tekrarlayın.

    7. Tablonun ilk sütunundaki ve son satırındaki sayıları daire içine alın. Daha sonra seçilen sayıları çarpma işlemi olarak yazın.

      • Örneğin 2 ve 3 sayıları ilk sütunda, 3 ve 5 sayıları ise son satırda olduğundan çarpma işlemini şu şekilde yazın: 2 × 3 × 3 × 5 (\displaystyle 2\times 3\times 3\times 5).
    8. Sayıları çarpmanın sonucunu bulun. Bu, verilen iki sayının en küçük ortak katını hesaplayacaktır.

      • Örneğin, 2 × 3 × 3 × 5 = 90 (\displaystyle 2\times 3\times 3\times 5=90). Yani 18 ile 30'un en küçük ortak katı 90'dır.

    Öklid algoritması

    1. Bölme işlemiyle ilgili terminolojiyi unutmayın. Temettü, bölünen sayıdır. Bölen, bölünen sayıdır. Bölüm, iki sayıyı bölmenin sonucudur. Kalan, iki sayının bölünmesinden kalan sayıdır.

      • Örneğin, ifadede 15 ÷ 6 = 2 (\displaystyle 15\div 6=2) ost. 3:
        15 temettü
        6 bir bölendir
        2 bölümdür
        Geriye kalan 3'tür.

Doğal sayılarda bölünebilme kriterleri.

2'ye kalansız bölünebilen sayılara denireşit .

2'ye tam olarak bölünemeyen sayılara denirgarip .

2'ye bölünebilme testi

Bir doğal sayının sonu çift rakamla bitiyorsa bu sayı 2'ye kalansız bölünür, bir sayı tek rakamla bitiyorsa bu sayı 2'ye tam olarak bölünemez.

Örneğin 6 sayısı0 , 30 8 , 8 4 2'ye kalansız bölünebilen sayılar 5'tir1 , 8 5 , 16 7 2'ye kalansız bölünmez.

3'e bölünebilme testi

Bir sayının rakamları toplamı 3'e bölünüyorsa sayı 3'e bölünür; Bir sayının rakamları toplamı 3'e bölünemiyorsa sayı 3'e de bölünmez.

Örneğin 2772825 sayısının 3'e bölünüp bölünmediğini bulalım. Bunun için bu sayının rakamlarının toplamını hesaplayalım: 2+7+7+2+8+2+5 = 33 - 3'e bölünebilir. Bu, 2772825 sayısının 3'e bölünebildiği anlamına gelir.

5'e bölünebilme testi

Bir doğal sayının kaydı 0 veya 5 rakamıyla bitiyorsa bu sayı 5'e kalansız bölünür. Bir sayının kaydı başka bir rakamla bitiyorsa sayı 5'e kalansız bölünemez.

Örneğin 1 sayısı5 , 3 0 , 176 5 , 47530 0 5'e kalansız bölünebilir ve sayılar 1'dir7 , 37 8 , 9 1 paylaşmayın.

9'a bölünebilme testi

Bir sayının rakamları toplamı 9'a bölünüyorsa sayı 9'a bölünür; Bir sayının rakamları toplamı 9'a bölünemiyorsa sayı 9'a da bölünemez.

Örneğin 5402070 sayısının 9'a bölünüp bölünmediğini bulalım. Bunun için bu sayının rakamlarının toplamını hesaplayalım: 5+4+0+2+0+7+0 = 16 - 9'a bölünmez Bu, 5402070 sayısının 9'a bölünemeyeceği anlamına gelir.

10'a bölünebilme testi

Bir doğal sayının sonu 0 rakamıyla bitiyorsa bu sayı 10'a kalansız bölünür. Bir doğal sayı başka bir rakamla bitiyorsa 10'a tam olarak bölünemez.

Örneğin 4 sayısı0 , 17 0 , 1409 0 10'a kalansız bölünebilir ve 1 sayıları7 , 9 3 , 1430 7 - paylaşmayın.

En büyük ortak böleni (GCD) bulma kuralı.

Birkaç doğal sayının en büyük ortak bölenini bulmak için yapmanız gerekenler:

2) bu sayılardan birinin genişletilmesine dahil edilen faktörlerden, diğer sayıların genişletilmesine dahil olmayanların üzerini çizin;

3) Kalan faktörlerin çarpımını bulun.

Örnek. OBEB'yi (48;36) bulalım. Kuralı kullanalım.

1. 48 ve 36 sayılarını asal çarpanlarına ayıralım.

48 = 2 · 2 · 2 · 2 · 3

36 = 2 · 2 · 3 · 3

2. 48 sayısının açılımında yer alan faktörlerden 36 sayısının açılımında yer almayanları çıkarıyoruz.

48 = 2 · 2 · 2 · 2 · 3

Geriye kalan çarpanlar 2, 2 ve 3'tür.

3. Geriye kalan çarpanları çarpın ve 12 değerini elde edin. Bu sayı, 48 ve 36 sayılarının en büyük ortak bölenidir.

GCD (48;36) = 2· 2 · 3 = 12.

En küçük ortak katı (LCM) bulma kuralı.

Birkaç doğal sayının en küçük ortak katını bulmak için yapmanız gerekenler:

1) bunları asal faktörlere ayırın;

2) sayılardan birinin açılımına dahil olan faktörleri yazın;

3) kalan sayıların açılımlarından eksik faktörleri bunlara ekleyin;

4) Ortaya çıkan faktörlerin çarpımını bulun.

Örnek. LOC'yi (75;60) bulalım. Kuralı kullanalım.

1. 75 ve 60 sayılarını asal çarpanlarına ayıralım.

75 = 3 · 5 · 5

60 = 2 · 2 · 3 · 3

2. 75 sayısının açılımına dahil olan çarpanları yazalım: 3, 5, 5.

LCM(75;60) = 3 · 5 · 5 · …

3. Onlara 60 sayısının açılımındaki eksik faktörleri ekleyin; 2, 2.

LCM(75;60) = 3 · 5 · 5 · 2 · 2

4. Ortaya çıkan faktörlerin çarpımını bulun

LCM(75;60) = 3 · 5 · 5 · 2 · 2 = 300.



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!