Farklı tabanlara sahip logaritma toplamı örnekleri. Logaritmik Denklemleri Çözme - Son Ders

Hepimiz ilkokuldan itibaren denklemlere aşinayız. Orada en basit örnekleri çözmeyi de öğrendik ve bunların yüksek matematikte bile uygulamalarını bulduklarını kabul etmeliyiz. İkinci dereceden denklemler de dahil olmak üzere denklemlerle her şey basittir. Bu konu ile ilgili sorun yaşıyorsanız mutlaka incelemenizi öneririz.

Muhtemelen zaten logaritmalardan da geçmişsinizdir. Ancak henüz bilmeyenler için ne olduğunu anlatmanın önemli olduğunu düşünüyoruz. Logaritma, logaritma işaretinin sağındaki sayıyı elde etmek için tabanın yükseltilmesi gereken kuvvete eşittir. Her şeyin sizin için netleşeceği bir örnek verelim.

3'ün dördüncü üssünü çıkarırsanız 81 elde edersiniz. Şimdi sayıları benzetmeyle değiştirin ve sonunda logaritmanın nasıl çözüldüğünü anlayacaksınız. Şimdi geriye kalan tek şey tartışılan iki kavramı birleştirmektir. Başlangıçta durum son derece karmaşık görünüyor, ancak daha yakından incelendiğinde ağırlık yerine oturuyor. Bu kısa makaleden sonra Birleşik Devlet Sınavının bu bölümünde sorun yaşamayacağınızdan eminiz.

Bugün bu tür yapıları çözmenin birçok yolu var. Birleşik Devlet Sınavı görevlerinde size en basit, en etkili ve en uygulanabilir olanı anlatacağız. Logaritmik denklemlerin çözümü en basit örnekle başlamalıdır. En basit logaritmik denklemler bir fonksiyon ve onun içindeki bir değişkenden oluşur.

X'in argümanın içinde olduğuna dikkat etmek önemlidir. A ve b sayı olmalıdır. Bu durumda, fonksiyonu bir sayının bir üssü cinsinden basitçe ifade edebilirsiniz. Şuna benziyor.

Elbette bu yöntemi kullanarak logaritmik bir denklem çözmek sizi doğru cevaba götürecektir. Bu durumda öğrencilerin büyük çoğunluğunun sorunu neyin nereden geldiğini anlamamalarıdır. Sonuç olarak hatalara katlanmak ve istediğiniz puanları alamamak zorunda kalıyorsunuz. En rahatsız edici hata, harfleri karıştırmanız olacaktır. Denklemi bu şekilde çözmek için bu standart okul formülünü ezberlemeniz gerekir çünkü anlaşılması zordur.

Bunu kolaylaştırmak için başka bir yönteme (kanonik form) başvurabilirsiniz. Fikir son derece basit. Dikkatinizi tekrar soruna çevirin. A harfinin bir fonksiyon veya değişken değil, bir sayı olduğunu unutmayın. A bire eşit değildir ve sıfırdan büyüktür. b'de herhangi bir kısıtlama yoktur. Şimdi tüm formüllerden birini hatırlayalım. B aşağıdaki gibi ifade edilebilir.

Bundan, logaritmalı tüm orijinal denklemlerin şu şekilde temsil edilebileceği sonucu çıkar:

Artık logaritmaları bırakabiliriz. Sonuç, daha önce gördüğümüz basit bir tasarımdır.

Bu formülün rahatlığı, yalnızca en basit tasarımlar için değil, çok çeşitli durumlarda kullanılabilmesinde yatmaktadır.

OOF'u dert etmeyin!

Birçok deneyimli matematikçi tanım alanına dikkat etmediğimizi fark edecektir. Kural, F(x)'in zorunlu olarak 0'dan büyük olduğu gerçeğine dayanmaktadır. Hayır, bu noktayı gözden kaçırmadık. Şimdi kanonik formun bir başka ciddi avantajından bahsediyoruz.

Burada fazladan kök olmayacak. Bir değişken yalnızca tek bir yerde görünecekse kapsam gerekli değildir. Otomatik olarak yapılır. Bu yargıyı doğrulamak için birkaç basit örneği çözmeyi deneyin.

Farklı tabanlara sahip logaritmik denklemler nasıl çözülür?

Bunlar zaten karmaşık logaritmik denklemlerdir ve bunları çözme yaklaşımının özel olması gerekir. Burada kendimizi kötü şöhretli kanonik biçimle sınırlamak nadiren mümkündür. Detaylı hikayemize başlayalım. Aşağıdaki yapıya sahibiz.

Fraksiyona dikkat edin. Logaritmayı içerir. Bunu bir görevde görürseniz, ilginç bir numarayı hatırlamaya değer.

Bu ne anlama geliyor? Her logaritma, uygun bir tabana sahip iki logaritmanın bölümü olarak temsil edilebilir. Ve bu formülün bu örnekte geçerli olan özel bir durumu vardır (c=b'yi kastediyoruz).

Bu tam olarak örneğimizde gördüğümüz kesirdir. Böylece.

Esasen kesri tersine çevirdik ve daha uygun bir ifade elde ettik. Bu algoritmayı unutmayın!

Artık logaritmik denklemin farklı tabanlar içermemesi gerekiyor. Tabanı kesir olarak temsil edelim.

Matematikte bir tabandan derece elde edebileceğiniz bir kural vardır. Aşağıdaki inşaat sonuçları.

Görünüşe göre bizi şimdi ifademizi kanonik forma dönüştürmekten ve onu temel bir şekilde çözmekten alıkoyan ne? O kadar basit değil. Logaritma öncesinde kesir olmamalıdır. Bu durumu düzeltelim! Kesirlerin derece olarak kullanılmasına izin verilir.

Sırasıyla.

Tabanlar aynıysa logaritmaları kaldırabilir ve ifadeleri eşitleyebiliriz. Bu şekilde durum eskisinden çok daha basit hale gelecektir. Geriye her birimizin 8. hatta 7. sınıfta nasıl çözeceğini bildiği temel bir denklem kalacak. Hesaplamaları kendiniz yapabilirsiniz.

Bu logaritmik denklemin tek gerçek kökünü elde ettik. Logaritmik denklem çözme örnekleri oldukça basit değil mi? Artık Birleşik Devlet Sınavına hazırlanmak ve geçmek için en karmaşık görevleri bile bağımsız olarak halledebileceksiniz.

Sonuç nedir?

Herhangi bir logaritmik denklem durumunda çok önemli bir kuraldan yola çıkıyoruz. İfadeyi mümkün olan en basit şekle indirgeyecek şekilde hareket etmek gerekir. Bu durumda, yalnızca görevi doğru bir şekilde çözmekle kalmayacak, aynı zamanda mümkün olan en basit ve en mantıklı şekilde yapma şansınız da artacaktır. Matematikçiler her zaman tam olarak böyle çalışır.

Özellikle bu durumda zor yolları aramanızı kesinlikle önermiyoruz. Herhangi bir ifadeyi dönüştürmenize olanak sağlayacak birkaç basit kuralı unutmayın. Örneğin iki veya üç logaritmayı aynı tabana indirgeyin veya tabandan bir kuvvet alın ve bundan kazanın.

Logaritmik denklemleri çözmenin sürekli pratik gerektirdiğini de hatırlamakta fayda var. Yavaş yavaş giderek daha karmaşık yapılara geçeceksiniz ve bu, Birleşik Devlet Sınavındaki tüm problem çeşitlerini güvenle çözmenize yol açacaktır. Sınavlarınıza önceden iyi hazırlanın, iyi şanslar!

b sayısının (b > 0) a tabanına (a > 0, a ≠ 1) logaritması– b'yi elde etmek için a sayısının yükseltilmesi gereken üs.

b'nin 10 tabanındaki logaritması şu şekilde yazılabilir: günlük(b) ve e tabanına göre logaritma (doğal logaritma) ln(b).

Logaritma problemlerini çözerken sıklıkla kullanılır:

Logaritmanın özellikleri

Dört ana var logaritmanın özellikleri.

a > 0, a ≠ 1, x > 0 ve y > 0 olsun.

Özellik 1. Çarpımın logaritması

Ürünün logaritması logaritmaların toplamına eşittir:

log a (x ⋅ y) = log a x + log a y

Özellik 2. Bölümün logaritması

Bölümün logaritması logaritma farkına eşit:

log a (x / y) = log a x – log a y

Özellik 3. Gücün logaritması

Derecenin logaritması gücün ve logaritmanın çarpımına eşittir:

Logaritmanın tabanı derece ise başka bir formül uygulanır:

Özellik 4. Kökün logaritması

Bu özellik, kuvvetin n'inci kökü 1/n'nin kuvvetine eşit olduğundan, bir kuvvetin logaritması özelliğinden elde edilebilir:

Bir tabandaki logaritmayı başka bir tabandaki logaritmaya dönüştürme formülü

Bu formül aynı zamanda logaritmalarla ilgili çeşitli görevleri çözerken sıklıkla kullanılır:

Özel durum:

Logaritmaları karşılaştırma (eşitsizlikler)

Logaritma altında aynı tabanlara sahip iki f(x) ve g(x) fonksiyonumuz olsun ve aralarında bir eşitsizlik işareti olsun:

Bunları karşılaştırmak için önce logaritmanın tabanına bakmanız gerekir:

  • a > 0 ise f(x) > g(x) > 0
  • 0 ise< a < 1, то 0 < f(x) < g(x)

Logaritmalarla ilgili problemler nasıl çözülür: örnekler

Logaritmalarla ilgili sorunlar Görev 5 ve Görev 7'de 11. sınıf için Matematikte Birleşik Devlet Sınavına dahil edilen görevleri web sitemizde uygun bölümlerde bulabilirsiniz. Ayrıca matematik görev bankasında logaritmalı görevler bulunur. Tüm örnekleri sitede arama yaparak bulabilirsiniz.

Logaritma nedir

Logaritmalar okul matematik derslerinde her zaman zor bir konu olarak görülmüştür. Logaritmanın birçok farklı tanımı vardır, ancak bazı nedenlerden dolayı ders kitaplarının çoğu bunlardan en karmaşık ve başarısız olanı kullanır.

Logaritmayı basit ve net bir şekilde tanımlayacağız. Bunu yapmak için bir tablo oluşturalım:

Yani iki gücümüz var.

Logaritmalar - özellikleri, formüller, nasıl çözüleceği

Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı kuvvetini artırmanız gerekiyor. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x argümanının a tabanı, x sayısını elde etmek için a sayısının yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı ile log 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1 günlük 2 4 = 2 günlük 2 8 = 3 günlük 2 16 = 4 günlük 2 32 = 5 günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmaya çalışın. Tabloda 5 sayısı yok ama mantık, logaritmanın aralıkta bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırıyor. Can sıkıcı yanlış anlamaları önlemek için resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Logaritmalar nasıl sayılır

Tanımı çözdük; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, bir derecenin rasyonel bir üsle tanımlanmasından kaynaklanır ve logaritmanın tanımı buna indirgenir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir kabul edilebilir değerler aralığı(ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒x > 0, a > 0, a ≠ 1.

b sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2 −1.

Ancak şimdi yalnızca logaritmanın VA'sını bilmenin gerekli olmadığı sayısal ifadeleri ele alıyoruz. Sorunların yazarları tarafından tüm kısıtlamalar zaten dikkate alınmıştır. Ancak logaritmik denklemler ve eşitsizlikler devreye girdiğinde DL gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi logaritmaları hesaplamak için genel şemaya bakalım. Üç adımdan oluşur:

  1. A tabanını ve x argümanını mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

Bu kadar! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın birden büyük olması gerekliliği çok önemlidir: bu, hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Ondalık kesirlerde de durum aynıdır: Bunları hemen sıradan kesirlere dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. Önceki paragraftan logaritmanın sayılmadığı anlaşılmaktadır;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; bunu asal çarpanlara ayırmanız yeterli. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Ayrıca asal sayıların her zaman kendilerinin tam kuvvetleri olduğuna dikkat edin.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

x argümanının 10 tabanına göre logaritması, yani X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; log100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında “lg 0.01'i bul” gibi bir ifade çıktığında bunun bir yazım hatası olmadığını bilin. Bu bir ondalık logaritmadır. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. Doğal logaritmadan bahsediyoruz.

x argümanının e tabanına göre logaritması, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x.

Birçok kişi şunu soracaktır: e sayısı nedir? Bu irrasyonel bir sayıdır; kesin değeri bulunup yazılamaz. Sadece ilk rakamları vereceğim:
e = 2,718281828459…

Bu sayının ne olduğu ve neden ihtiyaç duyulduğu konusunda detaya girmeyeceğiz. E'nin doğal logaritmanın tabanı olduğunu unutmayın:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir rasyonel sayının doğal logaritması irrasyoneldir. Elbette birlik hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Ayrıca bakınız:

Logaritma. Logaritmanın özellikleri (logaritmanın gücü).

Bir sayı logaritma olarak nasıl temsil edilir?

Logaritmanın tanımını kullanıyoruz.

Logaritma, logaritma işaretinin altındaki sayıyı elde etmek için tabanın yükseltilmesi gereken bir üsdür.

Bu nedenle, belirli bir c sayısını a tabanına göre logaritma olarak temsil etmek için, logaritmanın işaretinin altına logaritmanın tabanıyla aynı tabana sahip bir kuvvet koymanız ve bu c sayısını üs olarak yazmanız gerekir:

Kesinlikle herhangi bir sayı logaritma olarak temsil edilebilir - pozitif, negatif, tam sayı, kesirli, rasyonel, irrasyonel:

Bir testin veya sınavın stresli koşullarında a ve c'yi karıştırmamak için aşağıdaki ezberleme kuralını kullanabilirsiniz:

aşağıda olan aşağı iner, yukarıda olan ise yukarı çıkar.

Örneğin, 2 sayısını 3 tabanına göre logaritma olarak temsil etmeniz gerekir.

Elimizde iki sayımız var - 2 ve 3. Bu sayılar logaritmanın işaretinin altına yazacağımız taban ve üslerdir. Geriye bu sayılardan hangisinin derece tabanına, hangisinin üsse kadar yazılması gerektiğini belirlemek kalıyor.

Bir logaritma gösteriminde 3 tabanı en alttadır, yani ikiyi 3 tabanına göre logaritma olarak temsil ettiğimizde tabana da 3 yazacağız.

2, üçten büyüktür. Ve ikinci derecenin gösteriminde üçün üstüne, yani üslü olarak yazıyoruz:

Logaritmalar. İlk seviye.

Logaritmalar

Logaritma pozitif sayı B dayalı A, Nerede a > 0, a ≠ 1, sayının yükseltilmesi gereken üs olarak adlandırılır A, Elde etmek üzere B.

logaritmanın tanımı kısaca şu şekilde yazılabilir:

Bu eşitlik aşağıdakiler için geçerlidir: b > 0, a > 0, a ≠ 1. Genellikle denir logaritmik özdeşlik.
Bir sayının logaritmasını bulma işlemine denir logaritma ile.

Logaritmanın özellikleri:

Ürünün logaritması:

Bölümün logaritması:

Logaritma tabanını değiştirmek:

Derecenin logaritması:

Kökün logaritması:

Güç tabanlı logaritma:





Ondalık ve doğal logaritmalar.

Ondalık logaritma sayılar bu sayının logaritmasını 10 tabanına çağırır ve   lg yazar B
Doğal logaritma sayılara o sayının tabana göre logaritması denir e, Nerede e- yaklaşık olarak 2,7'ye eşit irrasyonel bir sayı. Aynı zamanda ln yazıyorlar B.

Cebir ve geometri üzerine diğer notlar

Logaritmanın temel özellikleri

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log a x ve log a y. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. , yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma log a x verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir.

Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. log a a = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. log a 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü 0 = 1, tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen= günlük A (X · sen);
  2. kayıt A X- günlük A sen= günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır ("Logaritma nedir" dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için Cöyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. kayıt A A= 1 logaritmik bir birimdir. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfırdır. Temel A Herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Bu videoyla logaritmik denklemlerle ilgili uzun bir ders serisine başlıyorum. Şimdi önünüzde en basit problemleri çözmeyi öğreneceğimiz üç örnek var; bunlara - tek hücreli hayvan.

log 0,5 (3x − 1) = −3

günlük (x + 3) = 3 + 2 günlük 5

En basit logaritmik denklemin şu olduğunu hatırlatayım:

log a f(x) = b

Bu durumda x değişkeninin yalnızca argümanın içinde, yani yalnızca f(x) fonksiyonunda mevcut olması önemlidir. Ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenini içeren işlevler değildir.

Temel çözüm yöntemleri

Bu tür yapıları çözmenin birçok yolu vardır. Örneğin, okuldaki çoğu öğretmen şu yöntemi sunmaktadır: Aşağıdaki formülü kullanarak f(x) fonksiyonunu hemen ifade edin. F ( x) = bir b. Yani en basit yapıyla karşılaştığınızda ek işlemlere ve yapılara gerek kalmadan hemen çözüme geçebilirsiniz.

Evet elbette karar doğru olacaktır. Ancak bu formülle ilgili sorun çoğu öğrencinin anlamıyorum, nereden geliyor ve neden a harfini b harfine yükseltiyoruz?

Sonuç olarak, örneğin bu harflerin yerini değiştirirken sıklıkla çok can sıkıcı hatalar görüyorum. Bu formülün ya anlaşılması ya da sıkıştırılması gerekir ve ikinci yöntem en uygunsuz ve en önemli anlarda hatalara yol açar: sınavlar, testler vb.

Bu nedenle tüm öğrencilerime standart okul formülünden vazgeçmelerini ve logaritmik denklemleri çözmek için muhtemelen isminden de tahmin edebileceğiniz gibi ikinci yaklaşımı kullanmalarını öneriyorum. kanonik form.

Kanonik formun arkasındaki fikir basittir. Sorunumuza tekrar bakalım: solda log a var ve a harfiyle bir sayıyı kastediyoruz ve hiçbir durumda x değişkenini içeren bir fonksiyon değil. Sonuç olarak, bu mektup logaritma bazında uygulanan tüm kısıtlamalara tabidir. yani:

1 ≠ a > 0

Öte yandan, aynı denklemden logaritmanın b sayısına eşit olması gerektiğini ve bu harfe herhangi bir kısıtlama getirilmediğini görüyoruz çünkü hem pozitif hem de negatif herhangi bir değeri alabilir. Her şey f(x) fonksiyonunun hangi değerleri aldığına bağlıdır.

Ve burada, herhangi bir b sayısının a tabanının a üssü b'nin logaritması olarak temsil edilebileceğine dair harika kuralımızı hatırlıyoruz:

b = log a a b

Bu formülü nasıl hatırlayacağız? Evet, çok basit. Aşağıdaki yapıyı yazalım:

b = b 1 = b log a a

Elbette bu durumda başlangıçta yazdığımız tüm kısıtlamalar ortaya çıkıyor. Şimdi logaritmanın temel özelliğini kullanalım ve b çarpanını a'nın kuvveti olarak tanıtalım. Şunu elde ederiz:

b = b 1 = b log a a = log a a b

Sonuç olarak orijinal denklem şu şekilde yeniden yazılacaktır:

log a f (x) = log a a b → f (x) = a b

Bu kadar. Yeni fonksiyon artık logaritma içermiyor ve standart cebirsel teknikler kullanılarak çözülebiliyor.

Elbette birileri şimdi itiraz edecek: Neden bir tür kanonik formül bulmak gerekliydi, orijinal tasarımdan son formüle hemen geçmek mümkünse neden iki gereksiz adım daha uygulayalım? Evet, çoğu öğrencinin bu formülün nereden geldiğini anlamaması ve sonuç olarak onu uygularken düzenli olarak hata yapması nedeniyle.

Ancak üç adımdan oluşan bu eylem dizisi, son formülün nereden geldiğini anlamasanız bile orijinal logaritmik denklemi çözmenize olanak tanır. Bu arada, bu girdiye kanonik formül adı veriliyor:

log a f (x ) = log a a b

Kanonik formun rahatlığı aynı zamanda sadece bugün düşündüğümüz en basit olanları değil, çok geniş bir logaritmik denklem sınıfını çözmek için kullanılabilmesi gerçeğinde de yatmaktadır.

Çözüm örnekleri

Şimdi gerçek örneklere bakalım. Öyleyse karar verelim:

log 0,5 (3x − 1) = −3

Bunu şu şekilde yeniden yazalım:

log 0,5 (3x − 1) = log 0,5 0,5 −3

Pek çok öğrencinin acelesi var ve hemen 0,5 sayısını asıl problemden bize gelen kuvvete yükseltmeye çalışıyor. Aslında, bu tür sorunları çözme konusunda zaten iyi eğitimli olduğunuzda, bu adımı hemen gerçekleştirebilirsiniz.

Ancak şimdi bu konuyu incelemeye yeni başlıyorsanız, saldırgan hatalar yapmaktan kaçınmak için hiçbir yere acele etmemek daha iyidir. Yani kanonik formumuz var. Sahibiz:

3x − 1 = 0,5 −3

Bu artık logaritmik bir denklem değil, x değişkenine göre doğrusaldır. Bunu çözmek için önce 0,5 üssü −3 sayısına bakalım. 0,5'in 1/2 olduğunu unutmayın.

(1/2) −3 = (2/1) 3 = 8

Logaritmik bir denklemi çözerken tüm ondalık kesirleri ortak kesirlere dönüştürün.

Yeniden yazıyoruz ve şunu elde ediyoruz:

3x - 1 = 8
3x = 9
x = 3

İşte bu, cevabı aldık. İlk sorun çözüldü.

İkinci görev

Gelelim ikinci göreve:

Gördüğümüz gibi, bu denklem artık en basiti değil. Sırf solda bir fark olduğu ve bir tabana göre tek bir logaritma olmadığı için.

Dolayısıyla bir şekilde bu farktan kurtulmamız gerekiyor. Bu durumda her şey çok basittir. Tabanlara daha yakından bakalım: solda kökün altındaki sayı var:

Genel öneri: tüm logaritmik denklemlerde radikallerden kurtulmaya çalışın, yani kökleri olan girişlerden ve kuvvet fonksiyonlarına geçin, çünkü bu kuvvetlerin üsleri kolayca logaritmanın işaretinden çıkarılır ve sonuçta böyle olur. bir giriş, hesaplamaları önemli ölçüde basitleştirir ve hızlandırır. Bunu şu şekilde yazalım:

Şimdi logaritmanın dikkate değer özelliğini hatırlayalım: kuvvetler tabandan olduğu gibi argümandan da elde edilebilir. Gerekçe durumunda aşağıdakiler gerçekleşir:

log a k b = 1/k loga b

Yani temel kuvvette olan sayı öne çıkarılır ve aynı zamanda ters çevrilir, yani karşılıklı sayı haline gelir. Bizim olgumuzda taban derecesi 1/2 idi. Bu nedenle 2/1 olarak çıkarabiliriz. Şunu elde ederiz:

5 2 log 5 x − log 5 x = 18
10 günlük 5 x − günlük 5 x = 18

Lütfen dikkat: Bu adımda hiçbir durumda logaritmalardan kurtulmamalısınız. 4.-5. sınıf matematiğini ve işlem sırasını hatırlayın: önce çarpma yapılır, ancak daha sonra toplama ve çıkarma yapılır. Bu durumda 10 elementten aynı elementlerden birini çıkarıyoruz:

9 log 5 x = 18
günlük 5 x = 2

Artık denklemimiz olması gerektiği gibi görünüyor. Bu en basit yapıdır ve bunu kanonik formu kullanarak çözüyoruz:

günlük 5 x = günlük 5 5 2
x = 5 2
x = 25

Bu kadar. İkinci sorun çözüldü.

Üçüncü örnek

Gelelim üçüncü göreve:

günlük (x + 3) = 3 + 2 günlük 5

Size şu formülü hatırlatayım:

günlük b = günlük 10 b

Herhangi bir nedenle log b notasyonuyla kafanız karıştıysa, tüm hesaplamaları yaparken log 10 b yazabilirsiniz. Ondalık logaritmalarla diğerleriyle aynı şekilde çalışabilirsiniz: kuvvetleri alın, herhangi bir sayıyı ekleyin ve lg 10 biçiminde temsil edin.

Dersimizin en başında yazdığımız en basit özellik olmadığından, şimdi sorunu çözmek için kullanacağımız bu özelliklerdir.

İlk olarak, lg 5'in önündeki faktör 2'nin toplanabileceğini ve 5 tabanındaki bir kuvvet haline gelebileceğini unutmayın. Ayrıca, serbest terim 3 bir logaritma olarak da temsil edilebilir - bunu notasyonumuzdan gözlemlemek çok kolaydır.

Kendiniz karar verin: herhangi bir sayı, 10 tabanına göre log olarak temsil edilebilir:

3 = günlük 10 10 3 = günlük 10 3

Elde edilen değişiklikleri dikkate alarak orijinal problemi yeniden yazalım:

log (x − 3) = log 1000 + log 25
log (x − 3) = log 1000 25
günlük (x - 3) = günlük 25.000

Önümüzde yine kanonik form var ve onu dönüşüm aşamasından geçmeden elde ettik, yani. en basit logaritmik denklem hiçbir yerde görünmedi.

Dersin başında bahsettiğim şey tam olarak buydu. Kanonik form, çoğu okul öğretmeni tarafından verilen standart okul formülünden daha geniş bir problem sınıfını çözmenize olanak tanır.

İşte bu kadar, ondalık logaritmanın işaretinden kurtuluyoruz ve basit bir doğrusal yapı elde ediyoruz:

x + 3 = 25.000
x = 24,997

Tüm! Problem çözüldü.

Kapsamla ilgili bir not

Burada tanımın kapsamına ilişkin önemli bir açıklama yapmak istiyorum. Artık mutlaka şöyle diyecek öğrenci ve öğretmenler olacaktır: “Logaritmalı ifadeleri çözerken f(x) argümanının sıfırdan büyük olması gerektiğini unutmamalıyız!” Bu bağlamda mantıksal bir soru ortaya çıkıyor: Ele alınan sorunların hiçbirinde neden bu eşitsizliğin giderilmesini talep etmedik?

Üzülmeyin. Bu durumlarda fazladan kök görünmeyecektir. Bu da çözümü hızlandırmanıza olanak tanıyan bir başka harika numaradır. Sadece şunu bilin: Eğer problemde x değişkeni yalnızca tek bir yerde (veya daha doğrusu, tek bir logaritmanın tek bir argümanında) ortaya çıkıyorsa ve bizim durumumuzda x değişkeni başka hiçbir yerde görünmüyorsa, o zaman tanımın tanım kümesini yazın. gerek yokçünkü otomatik olarak yürütülecektir.

Kendiniz karar verin: ilk denklemde 3x − 1 elde ettik, yani argüman 8'e eşit olmalıdır. Bu otomatik olarak 3x − 1'in sıfırdan büyük olacağı anlamına gelir.

Aynı başarıyla, ikinci durumda x'in 5 2'ye eşit olması gerektiğini, yani kesinlikle sıfırdan büyük olduğunu yazabiliriz. Ve üçüncü durumda, x + 3 = 25.000, yani yine açıkça sıfırdan büyüktür. Başka bir deyişle, kapsam otomatik olarak karşılanır, ancak yalnızca x yalnızca bir logaritmanın argümanında yer alıyorsa.

En basit sorunları çözmek için bilmeniz gereken tek şey bu. Tek başına bu kural, dönüşüm kurallarıyla birlikte çok geniş bir problem sınıfını çözmenize olanak sağlayacaktır.

Ancak dürüst olalım: Bu tekniği nihayet anlamak için, logaritmik denklemin kanonik formunun nasıl uygulanacağını öğrenmek için sadece bir video dersi izlemek yeterli değildir. Bu nedenle hemen şimdi bu video dersinde yer alan bağımsız çözüm seçeneklerini indirin ve bu iki bağımsız çalışmadan en az birini çözmeye başlayın.

Kelimenin tam anlamıyla birkaç dakikanızı alacak. Ancak böyle bir eğitimin etkisi, bu video dersini izlemiş olmanızdan çok daha yüksek olacaktır.

Umarım bu ders logaritmik denklemleri anlamanıza yardımcı olur. Kanonik formu kullanın, logaritmalarla çalışma kurallarını kullanarak ifadeleri basitleştirin; herhangi bir sorundan korkmayacaksınız. Bugünlük elimde olan tek şey bu.

Tanım alanı dikkate alınarak

Şimdi logaritmik fonksiyonun tanım alanından ve bunun logaritmik denklemlerin çözümünü nasıl etkilediğinden bahsedelim. Formun bir yapısını düşünün

loga f(x) = b

Böyle bir ifadeye en basit denir - yalnızca bir işlev içerir ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenine bağlı bir işlev değildir. Çok basit bir şekilde çözülebilir. Sadece formülü kullanmanız gerekir:

b = log a a b

Bu formül logaritmanın temel özelliklerinden biridir ve orijinal ifademizi yerine koyduğumuzda aşağıdakileri elde ederiz:

log a f (x) = log a a b

f(x) = a b

Bu okul ders kitaplarından tanıdık bir formüldür. Pek çok öğrencinin muhtemelen bir sorusu olacaktır: Orijinal ifadede f(x) fonksiyonu log işaretinin altında olduğundan, ona aşağıdaki kısıtlamalar getirilmiştir:

f(x) > 0

Negatif sayıların logaritması mevcut olmadığı için bu sınırlama geçerlidir. Peki belki de bu sınırlamanın bir sonucu olarak cevaplara yönelik bir kontrol getirilmeli? Belki de kaynağa eklenmeleri gerekiyor?

Hayır, en basit logaritmik denklemlerde ek kontrole gerek yoktur. Ve bu yüzden. Son formülümüze bir göz atın:

f(x) = a b

Gerçek şu ki, a sayısı her durumda 0'dan büyüktür - bu gereklilik aynı zamanda logaritma tarafından da dayatılmaktadır. A sayısı tabandır. Bu durumda b sayısına herhangi bir kısıtlama getirilmemektedir. Ancak bu önemli değil, çünkü pozitif bir sayıyı hangi kuvvete yükseltirsek yükseltelim, çıktıda yine pozitif bir sayı elde edeceğiz. Böylece f(x) > 0 şartı otomatik olarak karşılanır.

Gerçekten kontrol etmeye değer olan şey, log işaretinin altındaki fonksiyonun etki alanıdır. Oldukça karmaşık yapılar olabilir ve çözüm sürecinde mutlaka bunlara dikkat etmeniz gerekir. Bir göz atalım.

İlk görev:

İlk adım: Sağdaki kesri dönüştürün. Şunu elde ederiz:

Logaritma işaretinden kurtuluruz ve olağan irrasyonel denklemi elde ederiz:

Elde edilen köklerden sadece birincisi bize uygundur çünkü ikinci kök sıfırdan küçüktür. Tek cevap 9 rakamı olacaktır. İşte bu, sorun çözüldü. Logaritma işaretinin altındaki ifadenin 0'dan büyük olması için ek bir kontrol yapılmasına gerek yoktur çünkü sadece 0'dan büyük değil, denklemin koşuluna göre 2'ye eşittir. Dolayısıyla “sıfırdan büyük” şartı ” otomatik olarak karşılanır.

Gelelim ikinci göreve:

Burada her şey aynı. Üçlüyü değiştirerek yapıyı yeniden yazıyoruz:

Logaritma işaretlerinden kurtuluruz ve irrasyonel bir denklem elde ederiz:

Kısıtlamaları dikkate alarak her iki tarafın karesini alırız ve şunu elde ederiz:

4 − 6x − x 2 = (x − 4) 2

4 − 6x − x 2 = x 2 + 8x + 16

x 2 + 8x + 16 −4 + ​​6x + x 2 = 0

2x2 + 14x + 12 = 0 |:2

x 2 + 7x + 6 = 0

Ortaya çıkan denklemi diskriminant aracılığıyla çözüyoruz:

D = 49 - 24 = 25

x 1 = −1

x 2 = −6

Ancak x = −6 bize uymuyor çünkü bu sayıyı eşitsizliğimizde yerine koyarsak şunu elde ederiz:

−6 + 4 = −2 < 0

Bizim durumumuzda 0'dan büyük veya aşırı durumlarda eşit olması gerekiyor. Fakat x = −1 bize uyar:

−1 + 4 = 3 > 0

Bizim durumumuzda tek cevap x = −1 olacaktır. Çözüm bu. Hesaplamalarımızın en başına dönelim.

Bu dersten çıkan ana sonuç, basit logaritmik denklemlerde bir fonksiyon üzerindeki kısıtlamaları kontrol etmenize gerek olmadığıdır. Çünkü çözüm sürecinde tüm kısıtlar otomatik olarak karşılanır.

Ancak bu hiçbir şekilde kontrol etmeyi tamamen unutabileceğiniz anlamına gelmez. Logaritmik bir denklem üzerinde çalışma sürecinde, bugün iki farklı örnekte gördüğümüz sağ taraf için kendi kısıtlamaları ve gereksinimleri olacak irrasyonel bir denklem haline gelebilir.

Bu tür sorunları çözmekten çekinmeyin ve tartışmanın bir kökü varsa özellikle dikkatli olun.

Farklı tabanlara sahip logaritmik denklemler

Logaritmik denklemleri incelemeye devam ediyoruz ve daha karmaşık yapıları çözmenin moda olduğu iki ilginç tekniğe daha bakıyoruz. Ama önce en basit sorunların nasıl çözüldüğünü hatırlayalım:

loga f(x) = b

Bu girdide a ve b sayılardır ve f(x) fonksiyonunda x değişkeni mevcut olmalıdır ve yalnızca orada, yani x yalnızca argümanda bulunmalıdır. Bu tür logaritmik denklemleri kanonik formu kullanarak dönüştüreceğiz. Bunu yapmak için şunu unutmayın

b = log a a b

Üstelik a b tam olarak bir argümandır. Bu ifadeyi şu şekilde yeniden yazalım:

log a f (x) = log a a b

Bizim de ulaşmaya çalıştığımız şey tam olarak budur, yani a'yı hem sol hem de sağ temel alan bir logaritma vardır. Bu durumda mecazi anlamda log işaretlerinin üzerini çizebiliriz ve matematiksel açıdan argümanları basitçe eşitlediğimizi söyleyebiliriz:

f(x) = a b

Sonuç olarak çözülmesi çok daha kolay olacak yeni bir ifade elde edeceğiz. Bu kuralı bugünkü sorunlarımıza uygulayalım.

Yani ilk tasarım:

Öncelikle sağda paydası log olan bir kesir olduğunu belirteyim. Bunun gibi bir ifade gördüğünüzde logaritmanın harika bir özelliğini hatırlamak iyi bir fikirdir:

Rusçaya çevrildiğinde bu, herhangi bir logaritmanın herhangi bir c tabanına sahip iki logaritmanın bölümü olarak temsil edilebileceği anlamına gelir. tabii ki 0< с ≠ 1.

Yani: bu formülde c değişkeninin değişkene eşit olduğu harika bir özel durum vardır. B. Bu durumda şöyle bir yapı elde ederiz:

Denklemimizde sağdaki işarette gördüğümüz yapı tam olarak budur. Bu yapıyı log a b ile değiştirelim, şunu elde ederiz:

Başka bir deyişle, orijinal göreve kıyasla argümanı ve logaritmanın tabanını değiştirdik. Bunun yerine kesri tersine çevirmek zorunda kaldık.

Aşağıdaki kurala göre herhangi bir derecenin tabandan türetilebileceğini hatırlıyoruz:

Başka bir deyişle bazın kuvveti olan k katsayısı ters kesir olarak ifade edilir. Bunu ters kesir olarak gösterelim:

Kesirli faktör önde bırakılamaz çünkü bu durumda bu gösterimi kanonik formda gösteremeyeceğiz (sonuçta kanonik formda ikinci logaritmadan önce ek bir faktör yoktur). Bu nedenle argümana 1/4 kesirini kuvvet olarak ekleyelim:

Şimdi tabanları aynı olan (ve tabanlarımız gerçekten aynı olan) argümanları eşitliyoruz ve şunu yazıyoruz:

x + 5 = 1

x = −4

Bu kadar. İlk logaritmik denklemin cevabını bulduk. Lütfen unutmayın: orijinal problemde, x değişkeni yalnızca bir günlükte görünür ve argümanında görünür. Bu nedenle tanım kümesini kontrol etmeye gerek yoktur ve x = −4 sayımız aslında cevaptır.

Şimdi ikinci ifadeye geçelim:

log 56 = log 2 log 2 7 − 3log (x + 4)

Burada olağan logaritmalara ek olarak log f(x) ile çalışmamız gerekecek. Böyle bir denklem nasıl çözülür? Hazırlıksız bir öğrenciye bu zor bir görev gibi görünebilir, ancak aslında her şey basit bir şekilde çözülebilir.

lg 2 log 2 7 terimine yakından bakın. Bu konuda ne söyleyebiliriz? Log ve lg'nin temelleri ve argümanları aynıdır ve bu bazı fikirler vermelidir. Logaritmanın işaretinin altındaki kuvvetlerin nasıl çıkarıldığını bir kez daha hatırlayalım:

log a b n = nlog a b

Başka bir deyişle, argümanda b'nin kuvveti olan şey log'un önünde bir faktör haline gelir. Bu formülü lg 2 log 2 7 ifadesine uygulayalım. lg 2'den korkmayın - bu en yaygın ifadedir. Aşağıdaki şekilde yeniden yazabilirsiniz:

Herhangi bir logaritmaya uygulanan kuralların tümü onun için de geçerlidir. Özellikle öndeki faktör argümanın derecesine eklenebilir. Hadi yazalım:

Çoğu zaman öğrenciler bu eylemi doğrudan görmezler çünkü bir günlüğe diğerinin işareti altında girmek iyi değildir. Aslında bunda suç teşkil edecek bir durum yok. Üstelik önemli bir kuralı hatırlarsanız hesaplaması kolay bir formül elde ederiz:

Bu formül hem tanım olarak hem de onun özelliklerinden biri olarak düşünülebilir. Her durumda, eğer logaritmik bir denklemi dönüştürüyorsanız, herhangi bir sayının log gösterimini bildiğiniz gibi bu formülü de bilmelisiniz.

Görevimize dönelim. Eşittir işaretinin sağındaki ilk terimin lg 7'ye eşit olacağı gerçeğini dikkate alarak yeniden yazıyoruz. Elimizde:

lg 56 = lg 7 − 3lg (x + 4)

LG 7'yi sola hareket ettirelim, şunu elde ederiz:

lg 56 − log 7 = −3lg (x + 4)

Tabanları aynı olduğundan soldaki ifadeleri çıkarıyoruz:

lg (56/7) = −3lg (x + 4)

Şimdi elde ettiğimiz denkleme daha yakından bakalım. Pratik olarak kanonik formdur, ancak sağda −3 çarpanı vardır. Bunu sağ lg argümanına ekleyelim:

log 8 = log (x + 4) −3

Önümüzde logaritmik denklemin kanonik formu var, bu yüzden lg işaretlerinin üstünü çiziyoruz ve argümanları eşitliyoruz:

(x + 4) −3 = 8

x + 4 = 0,5

Bu kadar! İkinci logaritmik denklemi çözdük. Bu durumda hiçbir ek kontrole gerek yoktur çünkü orijinal problemde x yalnızca bir bağımsız değişkende mevcuttu.

Bu dersin önemli noktalarını tekrar sıralayayım.

Bu sayfadaki logaritmik denklemlerin çözümüne ayrılmış tüm derslerde öğretilen ana formül kanonik formdur. Ve çoğu okul ders kitabının size bu tür sorunları farklı şekilde çözmeyi öğrettiği gerçeğinden korkmayın. Bu araç çok etkili çalışır ve dersimizin başında incelediğimiz en basit sorunlardan çok daha geniş bir sorun sınıfını çözmenize olanak tanır.

Ayrıca logaritmik denklemlerin çözümünde temel özelliklerin bilinmesi yararlı olacaktır. Yani:

  1. Tek tabana geçme formülü ve logu ters çevirdiğimizdeki özel durum (bu ilk problemde bizim için çok yararlıydı);
  2. Logaritma işaretine kuvvet ekleme ve çıkarma formülü. Burada birçok öğrenci takılıp kalıyor ve alınan ve tanıtılan derecenin kendisinin log f (x) içerebileceğini göremiyor. Bunda yanlış bir şey yok. Bir kütüğü diğerinin işaretine göre tanıtabiliriz ve aynı zamanda ikinci durumda gözlemlediğimiz gibi sorunun çözümünü önemli ölçüde basitleştirebiliriz.

Sonuç olarak, bu durumların her birinde tanım alanını kontrol etmenin gerekli olmadığını eklemek isterim, çünkü x değişkeni her yerde log'un yalnızca bir işaretinde mevcuttur ve aynı zamanda onun argümanındadır. Sonuç olarak kapsamın tüm gereklilikleri otomatik olarak yerine getirilir.

Değişken tabanla ilgili sorunlar

Bugün birçok öğrenci için tamamen çözülemez olmasa da standart dışı görünen logaritmik denklemlere bakacağız. Sayılara değil, değişkenlere, hatta fonksiyonlara dayalı ifadelerden bahsediyoruz. Bu tür yapıları standart tekniğimizi, yani kanonik formu kullanarak çözeceğiz.

Öncelikle sıradan sayılara dayanarak en basit problemlerin nasıl çözüldüğünü hatırlayalım. Yani en basit yapıya denir

loga f(x) = b

Bu tür problemleri çözmek için aşağıdaki formülü kullanabiliriz:

b = log a a b

Orijinal ifademizi yeniden yazarsak şunu elde ederiz:

log a f (x) = log a a b

Sonra argümanları eşitliyoruz, yani şunu yazıyoruz:

f(x) = a b

Böylece log işaretinden kurtulup alışılagelmiş sorunu çözmüş oluyoruz. Bu durumda çözümden elde edilen kökler orijinal logaritmik denklemin kökleri olacaktır. Ek olarak, hem sol hem de sağın aynı logaritmada ve aynı tabanda olduğu bir kayda tam olarak kanonik form adı verilir. Öyle bir rekora varıyoruz ki, bugünün tasarımlarını azaltmaya çalışacağız. O zaman hadi gidelim.

İlk görev:

log x - 2 (2x 2 - 13x + 18) = 1

1'i log x − 2 (x − 2) 1 ile değiştirin. Argümanda gözlemlediğimiz derece aslında eşittir işaretinin sağında bulunan b sayısıdır. Böylece ifademizi yeniden yazalım. Şunu elde ederiz:

log x − 2 (2x 2 − 13x + 18) = log x − 2 (x − 2)

Ne görüyoruz? Önümüzde logaritmik denklemin kanonik formu var, bu yüzden argümanları güvenli bir şekilde eşitleyebiliriz. Şunu elde ederiz:

2x 2 − 13x + 18 = x − 2

Ancak çözüm burada bitmiyor çünkü bu denklem orijinaline eşdeğer değil. Sonuçta ortaya çıkan yapı, sayı doğrusunun tamamında tanımlanan fonksiyonlardan oluşur ve orijinal logaritmalarımız her zaman ve her yerde tanımlanmaz.

Bu nedenle tanım alanını ayrıca yazmamız gerekir. Saçmalamayalım ve önce tüm gereksinimleri yazalım:

İlk olarak, logaritmaların her birinin argümanı 0'dan büyük olmalıdır:

2x 2 − 13x + 18 > 0

x - 2 > 0

İkincisi, tabanın yalnızca 0'dan büyük olması değil aynı zamanda 1'den farklı olması gerekir:

x - 2 ≠ 1

Sonuç olarak, sistemi elde ediyoruz:

Ancak paniğe kapılmayın: logaritmik denklemleri işlerken böyle bir sistem önemli ölçüde basitleştirilebilir.

Kendiniz karar verin: Bir yandan ikinci dereceden fonksiyonun sıfırdan büyük olması gerekiyor, diğer yandan bu ikinci dereceden fonksiyon belirli bir doğrusal ifadeye eşitleniyor ve bunun da sıfırdan büyük olması gerekiyor.

Bu durumda, x − 2 > 0 olmasını istersek, 2x 2 − 13x + 18 > 0 gereksinimi otomatik olarak karşılanacaktır. Dolayısıyla ikinci dereceden fonksiyonu içeren eşitsizliğin üzerini güvenle çizebiliriz. Böylece sistemimizde yer alan ifade sayısı üçe düşecektir.

Elbette, aynı başarı ile doğrusal eşitsizliğin üzerini çizebiliriz, yani x − 2 > 0'ın üzerini çizebilir ve 2x 2 − 13x + 18 > 0 olmasını isteyebiliriz. Ancak en basit doğrusal eşitsizliği çözmenin çok daha hızlı olduğunu kabul edeceksiniz. ve ikinci dereceden daha basit, hatta tüm bu sistemin çözülmesinin bir sonucu olarak aynı kökleri elde etmemiz koşuluyla bile.

Genel olarak mümkün olduğunca hesaplamaları optimize etmeye çalışın. Logaritmik denklemler söz konusu olduğunda en zor eşitsizliklerin üzerini çizin.

Sistemimizi yeniden yazalım:

Burada üç ifadeden oluşan bir sistem var, bunlardan ikisini daha önce ele almıştık. İkinci dereceden denklemi ayrı ayrı yazıp çözelim:

2x 2 − 14x + 20 = 0

x 2 − 7x + 10 = 0

Önümüzde indirgenmiş ikinci dereceden bir üç terimli var ve bu nedenle Vieta formüllerini kullanabiliriz. Şunu elde ederiz:

(x − 5)(x − 2) = 0

x 1 = 5

x 2 = 2

Şimdi sistemimize dönüyoruz ve x = 2'nin bize uymadığını görüyoruz çünkü x'in kesinlikle 2'den büyük olması gerekiyor.

Ancak x = 5 bize çok yakışıyor: 5 sayısı 2'den büyüktür ve aynı zamanda 5, 3'e eşit değildir. Dolayısıyla bu sistemin tek çözümü x = 5 olacaktır.

İşte bu, ODZ dikkate alınarak sorun çözüldü. İkinci denkleme geçelim. Burada bizi daha ilginç ve bilgilendirici hesaplamalar bekliyor:

İlk adım: Geçen seferki gibi, tüm bu konuyu kanonik forma getiriyoruz. Bunun için 9 sayısını şu şekilde yazabiliriz:

Kök temele dokunulmadan bırakılabilir, ancak argümanı dönüştürmek daha iyidir. Rasyonel bir üsle kökten kuvvete doğru ilerleyelim. Hadi yazalım:

Büyük logaritmik denklemimizin tamamını yeniden yazmama izin verin, ancak hemen argümanları eşitleyelim:

x 3 + 10x 2 + 31x + 30 = x 3 + 9x 2 + 27x + 27

x 2 + 4x + 3 = 0

Önümüzde yeni indirgenmiş ikinci dereceden bir trinomial var, Vieta formüllerini kullanıp yazalım:

(x + 3)(x + 1) = 0

x 1 = −3

x 2 = −1

Yani kökleri bulduk ama kimse bize bunların orijinal logaritmik denkleme uyacağını garanti etmedi. Sonuçta, log işaretleri ek kısıtlamalar getirmektedir (burada sistemi yazmamız gerekirdi, ancak tüm yapının hantal doğası nedeniyle tanım alanını ayrı olarak hesaplamaya karar verdim).

Her şeyden önce, argümanların 0'dan büyük olması gerektiğini unutmayın; yani:

Bunlar tanımın kapsamının gerektirdiği gerekliliklerdir.

Hemen belirtelim ki sistemin ilk iki ifadesini birbirine eşitlediğimiz için herhangi birinin üzerini çizebiliriz. İlkinin üzerini çizelim çünkü ikincisinden daha tehditkar görünüyor.

Ek olarak, ikinci ve üçüncü eşitsizliklerin çözümünün aynı kümeler olacağını unutmayın (eğer bu sayının kendisi sıfırdan büyükse, bir sayının küpü sıfırdan büyüktür; benzer şekilde, üçüncü derecenin köküyle - bu eşitsizlikler) tamamen benzerdir, dolayısıyla üzerini çizebiliriz).

Ancak üçüncü eşitsizlikte bu işe yaramayacaktır. Her iki parçayı da küp haline getirerek soldaki kök işaretinden kurtulalım. Şunu elde ederiz:

Böylece aşağıdaki gereksinimleri alıyoruz:

− 2 ≠ x > −3

Köklerimizden hangisi: x 1 = −3 veya x 2 = −1 bu gereksinimleri karşılıyor? Açıkçası, yalnızca x = −1, çünkü x = −3 ilk eşitsizliği karşılamıyor (eşitsizliğimiz katı olduğu için). Yani problemimize dönersek bir kök elde ederiz: x = −1. İşte bu, sorun çözüldü.

Bir kez daha, bu görevin kilit noktaları:

  1. Kanonik formu kullanarak logaritmik denklemleri uygulamaktan ve çözmekten çekinmeyin. Böyle bir gösterim yapan öğrenciler, doğrudan orijinal problemden log a f(x) = b gibi bir yapıya geçmek yerine, hesaplamaların ara adımlarını atlayarak bir yere acele edenlere göre çok daha az hata yaparlar;
  2. Logaritmada değişken bir taban ortaya çıktığı anda problem en basit olmaktan çıkar. Bu nedenle, çözerken tanım alanını dikkate almak gerekir: argümanlar sıfırdan büyük olmalı ve tabanlar yalnızca 0'dan büyük olmamalı, aynı zamanda 1'e eşit olmamalıdır.

Nihai gereksinimler, nihai cevaplara farklı şekillerde uygulanabilir. Örneğin tanım alanına ait tüm gereksinimleri içeren bir sistemin tamamını çözebilirsiniz. Öte yandan, önce problemin kendisini çözebilir, sonra tanım alanını hatırlayabilir, bunu bir sistem şeklinde ayrı ayrı çözebilir ve elde edilen köklere uygulayabilirsiniz.

Belirli bir logaritmik denklemi çözerken hangi yöntemi seçeceğinize karar vermek size kalmıştır. Her durumda cevap aynı olacaktır.

    İle başlayalım bir logaritmasının özellikleri. Formülasyonu şu şekildedir: Birliğin logaritması sıfıra eşittir, yani, 1=0'ı günlüğe kaydet herhangi bir a>0 için a≠1. Kanıt zor değildir: Yukarıdaki a>0 ve a≠1 koşullarını karşılayan herhangi bir a için a 0 = 1 olduğundan, kanıtlanacak log a 1=0 eşitliği logaritmanın tanımından hemen çıkar.

    Dikkate alınan özelliğin uygulamasına örnekler verelim: log 3 1=0, log1=0 ve .

    Bir sonraki özelliğe geçelim: tabanına eşit bir sayının logaritması bire eşittir, yani, log a=1 a>0 için a≠1. Aslında, herhangi bir a için a 1 =a olduğundan, logaritmanın tanımı gereği log a a=1 olur.

    Logaritmaların bu özelliğini kullanma örnekleri log 5 5=1, log 5,6 5,6 ve lne=1 eşitlikleridir.

    Örneğin, log 2 2 7 =7, log10 -4 =-4 ve .

    İki pozitif sayının çarpımının logaritması x ve y bu sayıların logaritmasının çarpımına eşittir: log a (x y)=log a x+log a y, a>0 , a≠1 . Bir çarpımın logaritmasının özelliğini kanıtlayalım. Derecenin özelliklerinden dolayı a log a x+log a y =a log a x ·a log a y ve ana logaritmik özdeşliğe göre a log a x =x ve a log a y =y olduğundan, a log a x ·a log a y =x·y. Böylece, logaritmanın tanımına göre eşitliğin kanıtlandığı log a x+log a y =x·y olur.

    Bir çarpımın logaritması özelliğinin kullanımına ilişkin örnekler gösterelim: log 5 (2 3)=log 5 2+log 5 3 ve .

    Bir çarpımın logaritmasının özelliği, x 1 , x 2 , …, x n pozitif sayılarından oluşan sonlu bir n sayısının çarpımına genelleştirilebilir: log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Bu eşitlik sorunsuz bir şekilde kanıtlanabilir.

    Örneğin, çarpımın doğal logaritması 4, e ve sayılarının üç doğal logaritmasının toplamı ile değiştirilebilir.

    İki pozitif sayının bölümünün logaritması x ve y bu sayıların logaritmaları arasındaki farka eşittir. Bir bölümün logaritmasının özelliği, a>0, a≠1, x ve y'nin bazı pozitif sayılar olduğu formdaki bir formüle karşılık gelir. Bu formülün geçerliliği, bir çarpımın logaritması formülünün yanı sıra kanıtlanmıştır: çünkü , daha sonra logaritmanın tanımı gereği.

    Logaritmanın bu özelliğini kullanmanın bir örneği: .

    Konusuna geçelim kuvvetin logaritmasının özelliği. Bir derecenin logaritması, üssün çarpımına ve bu derecenin tabanının modülünün logaritmasına eşittir. Bir kuvvetin logaritmasının bu özelliğini formül olarak yazalım: log a b p =p·log a |b| burada a>0, a≠1, b ve p, b p derecesi anlamlı ve b p >0 olacak şekilde sayılardır.

    Öncelikle bu özelliği pozitif b için kanıtlayalım. Temel logaritmik özdeşlik, b sayısını a log a b, ardından b p =(a log a b) p olarak göstermemize olanak tanır ve ortaya çıkan ifade, kuvvet özelliği nedeniyle a p·log a b'ye eşittir. Böylece b p =a p·log a b eşitliğine ulaşıyoruz ve bundan logaritmanın tanımına göre log a b p =p·log a b sonucunu çıkarıyoruz.

    Geriye bu özelliği negatif b için kanıtlamak kalıyor. Burada negatif b için log a b p ifadesinin yalnızca çift p üstelleri için anlamlı olduğunu not ediyoruz (çünkü b p derecesinin değeri sıfırdan büyük olmalıdır, aksi takdirde logaritmanın bir anlamı olmayacaktır) ve bu durumda b p =|b| P. Daha sonra b p =|b| p =(a log a |b|) p =a p·log a |b|, buradan log a b p =p·log a |b| .

    Örneğin, ve ln(-3) 4 =4·ln|-3|=4·ln3 .

    Önceki mülkten kaynaklanmaktadır kökten logaritmanın özelliği: n'inci kökün logaritması, 1/n kesrinin radikal ifadenin logaritması ile çarpımına eşittir, yani, , burada a>0, a≠1, n birden büyük bir doğal sayıdır, b>0.

    Kanıt, herhangi bir pozitif b için geçerli olan eşitliğe (bkz.) ve kuvvetin logaritmasının özelliğine dayanmaktadır: .

    Bu özelliği kullanmanın bir örneğini burada bulabilirsiniz: .

    Şimdi kanıtlayalım yeni bir logaritma tabanına geçme formülü tip . Bunu yapmak için log c b=log a b·log c a eşitliğinin geçerliliğini kanıtlamak yeterlidir. Temel logaritmik kimlik, b sayısını a log a b olarak temsil etmemize ve ardından log c b=log ca log a b olarak göstermemize olanak tanır. Derecenin logaritmasının özelliğini kullanmaya devam ediyor: log c a log a b =log a b log c a. Bu, log c b=log a b·log c a eşitliğini kanıtlar; bu, yeni bir logaritma tabanına geçme formülünün de kanıtlanmış olduğu anlamına gelir.

    Logaritmanın bu özelliğini kullanmaya ilişkin birkaç örnek gösterelim: ve .

    Yeni bir tabana geçme formülü, "uygun" bir tabana sahip logaritmalarla çalışmaya devam etmenizi sağlar. Örneğin, doğal veya ondalık logaritmalara geçmek için kullanılabilir; böylece bir logaritma tablosundan bir logaritmanın değerini hesaplayabilirsiniz. Yeni bir logaritma tabanına geçme formülü, bazı durumlarda, bazı logaritmaların diğer tabanlarla değerleri bilindiğinde belirli bir logaritmanın değerini bulmayı da sağlar.

    Formun c=b'si için yeni bir logaritma tabanına geçiş için formülün özel bir durumu sıklıkla kullanılır . Bu, log a b ve log b a – olduğunu gösterir. Örneğin, .

    Formül de sıklıkla kullanılır Logaritma değerlerini bulmak için uygundur. Sözlerimizi doğrulamak için, formun logaritmasının değerini hesaplamak için nasıl kullanılabileceğini göstereceğiz. Sahibiz . Formülü kanıtlamak için logaritmanın yeni bir tabanına geçiş için formülü kullanmak yeterlidir: .

    Logaritmaların karşılaştırılması özelliklerini kanıtlamak için kalır.

    Herhangi bir pozitif sayı için b 1 ve b 2, b 1 olduğunu kanıtlayalım. log a b 2 ve a>1 için – eşitsizlik log a b 1

    Son olarak, logaritmanın listelenen özelliklerinin sonuncusunu kanıtlamak kalıyor. Kendimizi bunun ilk kısmının ispatıyla sınırlayalım, yani a 1 >1, a 2 >1 ve a 1 ise ispatlayacağız. 1 doğrudur log a 1 b>log a 2 b . Logaritmanın bu özelliğinin geri kalan ifadeleri benzer bir prensibe göre kanıtlanmıştır.

    Tam tersi yöntemi kullanalım. 1 >1, 2 >1 ve 1 için olduğunu varsayalım. 1 doğrudur log a 1 b≤log a 2 b . Logaritmanın özelliklerine dayanarak bu eşitsizlikler şu şekilde yeniden yazılabilir: Ve sırasıyla log b a 1 ≤log b a 2 ve log b a 1 ≥log b a 2 olur. O halde, aynı tabanlara sahip derecelerin özelliklerine göre, b log b a 1 ≥b log b a 2 ve b log b a 1 ≥b log b a 2 eşitliklerinin geçerli olması gerekir, yani a 1 ≥a 2 . Böylece a 1 koşuluyla çelişkiye geldik

Kaynakça.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).