Где используется барий. Бария сульфат для рентгеноскопии – применение, свойства, инструкция в медицине

Содержание статьи

БАРИЙ – химический элемент 2-й группы периодической системы, атомный номер 56, относительная атомная масса 137,33. Расположен в шестом периоде между цезием и лантаном. Природный барий состоит из семи стабильных изотопов с массовыми числами 130(0,101%), 132(0,097%), 134(2,42%), 135(6,59%), 136(7,81%), 137(11,32%) и 138 (71,66%). Барий в большинстве химических соединений проявляет максимальную степень окисления +2, но может иметь и нулевую. В природе барий встречается только в двухвалентном состоянии.

История открытия.

В 1602 Касциароло (болонский сапожник и алхимик) подобрал в окрестных горах камень, который настолько тяжелый, что Касциароло заподозрил в нем золото. Пытаясь выделить золото из камня, алхимик прокалил его с углем. Хотя выделить золото при этом не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым цветом. Известие о столь необычной находке произвело настоящую сенсацию в алхимической среде и необычный минерал, получивший целый ряд названий – солнечный камень (Lapis solaris), болонский камень (Lapis Boloniensis), болонский фосфор (Phosphorum Boloniensis) стал участником разнообразных экспериментов. Но время шло, а золото и не думало выделяться, поэтому интерес к новому минералу постепенно пропал, и долгое время его считали видоизмененной формой гипса или извести. Лишь через полтора столетия, в 1774 известные шведские химики Карл Шееле и Юхан Ган пристально изучили «болонский камень» и установили, что в нем содержится некая «тяжелая земля». Позднее, в 1779, Гитон де Морво назвал эту «землю» барот (barote) от греческого слова «barue » – тяжелый, а в дальнейшем изменил название на барит (baryte). Под этим названием бариевая земля фигурировала в учебниках химии конца 18 – начала 19 вв. Так, например, в учебнике А.Л.Лавуазье (1789) барит входит в список солеобразующих землистых простых тел, причем приводится и другое название барита – «тяжелая земля» (terre pesante, лат. terra ponderosa). Содержащийся в минерале неизвестный пока металл стали называть барием (лат. – Barium). В русской литературе 19 в. также употреблялись названия барит и барий. Следующим известным минералом бария стал природный карбонат бария, открытый в 1782 Витерингом и названный впоследствии в его честь витеритом. Металлический барий был впервые получен англичанином Гэмфри Дэви в 1808 путем электролиза влажного гидроксида бария с ртутным катодом и последующим испарением ртути из амальгамы бария. Следует отметить, что в том же 1808 несколько раньше Дэви амальгаму бария получил шведский химик Йенс Берцелиус . Несмотря на свое название, барий оказался сравнительно легким металлом с плотностью 3,78 г/см 3 , поэтому в 1816 английский химик Кларк выступил с предложением отклонить название «барий» на том основании, что если бариевая земля (оксид бария) действительно тяжелее других земель (оксидов), то металл, наоборот, легче других металлов. Кларк хотел назвать этот элемент плутонием в честь древнеримского бога, властителя подземного царства Плутона, однако это предложение не встретило поддержки у других ученых и легкий металл продолжал именоваться «тяжелым».

Барий в природе.

В земной коре содержится 0,065% бария, он встречается в виде сульфата, карбоната, силикатов и алюмосиликатов. Основные минералы бария – уже упоминавшиеся выше барит (сульфат бария), называемый также тяжелым или персидским шпатом, и витерит (карбонат бария). Мировые минерально-сырьевые ресурсы барита оценивались в 1999 в 2 млрд. тонн, значительная часть их сосредоточена в Китае (около 1 млрд. тонн) и в Казахстане (0,5 млрд. тонн). Большие запасы барита есть и в США, Индии, Турции, Марокко и Мексике. Российские ресурсы барита оцениваются в 10 миллионов тонн, его добыча ведется на трех основных месторождениях, расположенных в Хакасии, Кемеровской и Челябинской областях. Общая годовая добыча барита в мире составляет около 7 миллионов тонн, Россия производит 5 тыс. тонн и импортирует 25 тыс. тонн барита в год.

Получение.

Основным сырьем для получения бария и его соединений служат барит и, реже, витерит. Восстанавливая эти минералы каменным углем, коксом или природным газом, получают соответственно сульфид и оксид бария:

BaSO 4 + 4C = BaS + 4CO

BaSO 4 + 2CH 4 = BaS + 2C + 4H 2 O

BaCO 3 + C = BaO + 2CO

Металлический барий получают, восстанавливая его оксидом алюминия.

3BaO + 2Al = 3Ba + Al 2 O 3

Впервые этот процеcc осуществил русский физико-химик Н.Н.Бекетов . Вот как он описывал свои опыты: «Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (алюминия) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния...». Сейчас процесс восстановления алюминием проводят в вакууме при температурах от 1100 до 1250° C, при этом образующийся барий испаряется и конденсируется на более холодных частях реактора.

Кроме того, барий можно получить электролизом расплавленной смеси хлоридов бария и кальция.

Простое вещество.

Барий – серебристо-белый ковкий металл, при резком ударе раскалывается. Температура плавления 727° С, температура кипения 1637° С, плотность 3,780 г/см 3 . При обычном давлении существует в двух аллотропных модификациях: до 375° C устойчив a -Ba с кубической объемно-центрированной решеткой, выше 375° С устойчив b -Ba. При повышенном давлении образуется гексагональная модификация. Металлический барий обладает высокой химической активностью, он интенсивно окисляется на воздухе, образуя пленку, содержащую BaO, BaO 2 и Ba 3 N 2 , при незначительном нагревании или при ударе воспламеняется.

2Ba + O 2 = 2BaO; Ba + O 2 = BaO 2 ; 3Ba + N 2 = Ba 3 N 2 ,

поэтому барий хранят под слоем керосина или парафина. Барий энергично реагирует с водой и растворами кислот, образуя гидроксид бария или соответствующие соли:

Ba + 2H 2 O = Ba(OH) 2 + H 2

Ba + 2HCl = BaCl 2 + H 2

С галогенами барий образует галогениды, с водородом и азотом при нагревании – соответственно гидрид и нитрид.

Ba + Cl 2 = BaCl 2 ; Ba + H 2 = BaH 2

Металлический барий растворяется в жидком аммиаке с образованием темно-синего раствора, из которого можно выделить аммиакат Ba(NH 3) 6 – кристаллы с золотистым блеском, легко разлагающиеся с выделением аммиака. В этом соединении барий имеет нулевую степень окисления.

Применение в промышленности и науке.

Применение металлического бария весьма ограничено из-за его высокой химической активности, соединения бария используются гораздо шире. Сплав бария с алюминием – сплав альба, содержащий 56% Ba – основа геттеров (поглотителей остаточных газов в вакуумной технике). Для получения собственно геттера барий испаряют из сплава, нагревая его в вакуумированной колбе прибора, в результате на холодных частях колбы образуется «бариевое зеркало». В небольших количествах барий используется в металлургии для очистки расплавленных меди и свинца от примесей серы, кислорода и азота. Барий добавляют в типографские и антифрикционные сплавы, сплав бария с никелем используется для изготовления деталей радиоламп и электродов свечей зажигания в карбюраторных двигателях. Кроме того, есть нестандартные применения бария. Одно из них – создание искусственных комет: выпущенные с борта космического аппарата пары бария легко ионизируются солнечными лучами и превращаются в яркое плазменное облако. Первая искусственная комета была создана в 1959 во время полета советской автоматической межпланетной станции «Луна-1». В начале 1970-х германские и американские физики, проводя исследования электромагнитного поля Земли, выбросили над территорией Колумбии 15 килограмм мельчайшего порошка бария. Образовавшееся плазменное облако вытянулось вдоль линий магнитного поля, позволив уточнить их положение. В 1979 струи бариевых частиц использовали для изучения полярного сияния.

Соединения бария.

Наибольший практический интерес представляют соединения двухвалентного бария.

Оксид бария (BaO ): промежуточный продукт в производстве бария – тугоплавкий (температура плавления около 2020° C) белый порошок, реагирует с водой, образуя гидроксид бария, поглощает углекислый газ из воздуха, переходя в карбонат:

BaO + H 2 O = Ba(OH) 2 ; BaO + CO 2 = BaCO 3

Прокаливаемый на воздухе при температуре 500–600° C, оксид бария реагирует с кислородом, образуя пероксид, который при дальнейшем нагревании до 700° C вновь переходит в оксид, отщепляя кислород:

2BaO + O 2 = 2BaO 2 ; 2BaO 2 = 2BaO + O 2

Так получали кислород вплоть до конца 19 в., пока не был разработан метод выделения кислорода перегонкой жидкого воздуха.

В лаборатории оксид бария можно получить прокаливанием нитрата бария:

2Ba(NO 3) 2 = 2BaO + 4NO 2 + O 2

Сейчас оксид бария используется как водоотнимающее средство, для получения пероксида бария и изготовления керамических магнитов из феррата бария (для этого смесь порошков оксидов бария и железа спекают под прессом в сильном магнитном поле), но основное применение оксида бария – изготовление термоэмиссионных катодов. В 1903 молодой немецкий ученый Венельт проверял закон испускания электронов твердыми телами, открытый незадолго до этого английским физиком Ричардсоном . Первый из опытов с платиновой проволокой полностью подтвердил закон, но контрольный эксперимент не удался: поток электронов резко превышал ожидаемый. Поскольку свойства металла не могли измениться, Венельт предположил, что на поверхности платины есть какая-то примесь. Перепробовав возможные загрязнители поверхности, он убедился в том, что дополнительные электроны испускал оксид бария, входивший в состав смазки вакуумного насоса, используемого в эксперименте. Однако научный мир не сразу признал это открытие, так как его наблюдение не удавалось воспроизвести. Лишь почти через четверть века англичанин Колер показал, что для проявления высокой термоэлектронной эмиссии оксид бария нужно прогревать при очень низких давлениях кислорода. Объяснить это явление смогли только в 1935. Немецкий ученый Поль предположил, что электроны испускаются небольшой примесью бария в оксиде: при низких давлениях часть кислорода улетучивается из оксида, а оставшийся барий легко ионизируется с образованием свободных электронов, которые покидают кристалл при нагревании:

2BaO = 2Ba + O 2 ; Ba = Ba 2+ + 2е

Правильность этой гипотезы была окончательно установлена в конце 1950-х советскими химиками А.Бунделем и П.Ковтуном, которые измерили концентрацию примеси бария в оксиде и сопоставили ее с потоком термоэмиссии электронов. Сейчас оксид бария является активной действующей частью большинства термоэмиссионных катодов. Так например, пучок электронов, формирующий изображение на экране телевизора или компьютерного монитора, испускается оксидом бария.

Гидроксид бария, октагидрат (Ba(OH) 2 ·8H 2 O ). Белый порошок, хорошо растворимый в горячей воде (больше 50% при 80° C), хуже в холодной (3,7% при 20° C). Температура плавления октагидрата 78° C, при нагревании до 130° C он переходит в безводный Ba(OH) 2 . Гидроксид бария получают растворяя оксид в горячей воде или нагревая сульфид бария в потоке перегретого пара. Гидроксид бария легко реагирует с углекислым газом, поэтому его водный раствор, называемый «баритовой водой» используют в аналитической химии в качестве реактива на CO 2 . Кроме того, «баритовая вода» служит реактивом на сульфат- и карбонат-ионы. Гидроксид бария применяется для удаления сульфат-ионов из растительных и животных масел и промышленных растворов, для получения гидроксидов рубидия и цезия, в качестве компонента смазок.

Карбонат бария (BaCO 3 ). В природе – минерал витерит. Белый порошок, нерастворимый в воде, растворимый в сильных кислотах (кроме серной). При нагревании до 1000° С разлагается с выделением CO 2:

BaCO 3 = BaO + CO 2

Карбонат бария добавляют в стекло для увеличения его коэффициента преломления, вводят в состав эмалей и глазурей.

Сульфат бария (BaSO 4 ). В природе – барит (тяжелый или персидский шпат) – основной минерал бария – белый порошок (температура плавления около 1680° C), практически нерастворимый в воде (2,2 мг/л при 18° C), медленно растворяется в концентрированной серной кислоте.

С сульфатом бария издавна связано производство красок. Правда, вначале его использование носило криминальный характер: в измельченном виде барит подмешивали к свинцовым белилам, что значительно удешевляло конечный продукт и, одновременно, ухудшало качество краски. Тем не менее, такие модифицированные белила продавались по той же цене, что и обычные, принося значительную прибыль владельцам красильных заводов. Еще в 1859 в департамент мануфактур и внутренней торговли поступили сведения о жульнических махинациях ярославских заводчиков, добавлявших к свинцовым белилам тяжелый шпат, что «вводит потребителей в обман на счет истинного качества товара, причем поступила и просьба о воспрещении означенным заводчикам употребления шпата при выделке свинцовых белил». Но эти жалобы ни к чему не привели. Достаточно сказать, что в 1882 в Ярославле был основан шпатовый завод, который, в 1885 выпустил 50 тысяч пудов измельченного тяжелого шпата. В начале 1890-х Д.И.Менделеев писал: «...В подмесь к белилам на многих заводах примешивается барит, так как и привозимые из-за границы белила, для уменьшения цены, содержат эту подмесь».

Сульфат бария входит в состав литопона – неядовитой белой краски с высокой кроющей способностью, широко востребованной на рынке. Для изготовления литопона смешивают водные растворы сульфида бария и сульфата цинка, при этом происходит обменная реакция и в осадок выпадает смесь мелкокристаллических сульфата бария и сульфида цинка – литопон, а в растворе остается чистая вода.

BaS + ZnSO 4 = BaSO 4 Ї + ZnSЇ

В производстве дорогих сортов бумаги сульфат бария играет роль наполнителя и утяжелителя, делая бумагу белее и плотнее, его используют и в качестве наполнителя резин и керамики.

Более 95% добываемого в мире барита используется для приготовления рабочих растворов для бурения глубоких скважин.

Сульфат бария сильно поглощает рентгеновские и гамма-лучи. Это свойство широко используется в медицине для диагностики желудочно-кишечных заболеваний. Для этого пациенту дают проглотить суспензию сульфата бария в воде или его смесь с манной кашей – «бариевую кашу» и затем просвечивают рентгеновскими лучами. Те участки пищеварительного тракта, по которым проходит «бариевая каша», на снимке выглядят темными пятнами. Так врач может получить представление о форме желудка и кишок, определить место возникновения заболевания. Сульфат бария используется также для изготовления баритобетона, используемого при строительстве атомных электростанций и атомных заводов для защиты от проникающей радиации.

Сульфид бария (BaS ). Промежуточный продукт в производстве бария и его соединений. Торговый продукт представляет собой серый рыхлый порошок, плохо растворимый в воде. Сульфид бария применяется для получения литопона, в кожевенной промышленности для удаления волосяного покрова со шкур, для получения чистого сероводорода. BaS – компонент многих люминофоров – веществ, светящихся после поглощения световой энергии. Именно его получил Касциароло, прокаливая барит с углем. Сам по себе сульфид бария не светится: необходимы добавки веществ-активаторов – солей висмута, свинца и других металлов.

Титанат бария (BaTiO 3 ). Одно из самых промышленно важных соединений бария – белое тугоплавкое (температура плавления 1616° C) кристаллическое вещество, нерастворимое в воде. Получают титанат бария сплавлением диоксида титана с карбонатом бария при температуре около 1300° C:

BaCO 3 + TiO 2 = BaTiO 3 + CO 2

Титанат бария – один из лучших сегнетоэлектриков (), очень ценных электротехнических материалов. В 1944 советский физик Б.М.Вул обнаружил незаурядные сегнетоэлектрические способности (очень высокую диэлектрическую проницаемость) у титаната бария, который сохранял их в широком температурном диапазоне – почти от абсолютного нуля до +125° C. Это обстоятельство, а также большая механическая прочность и влагостойкость титаната бария способствовали тому, что он стал одним из самых важных сегнетоэлектриков, используемых, например, для изготовления электрических конденсаторов. Титанат бария, как и все сегнетоэлектрики, обладает и пьезоэлектрическими свойствами: изменяет свои электрические характеристики под действием давления. При действии переменного электрического поля в его кристаллах возникают колебания, в связи с чем их используют в пьезоэлементах, радиосхемах и автоматических системах. Титанат бария применяли при попытках обнаружить гравитационные волны.

Другие соединения бария.

Нитрат и хлорат (Ba(ClO 3) 2) бария – составная часть фейерверков, добавки этих соединений придают пламени ярко-зеленую окраску. Пероксид бария входит в состав запальных смесей для алюминотермии. Тетрацианоплатинат(II) бария (Ba) светится под воздействием рентгеновских и гамма-лучей. В 1895 немецкий физик Вильгельм Рентген , наблюдая свечение этого вещества предположил существование нового излучения, названного впоследствии рентгеновским. Сейчас тетрацианоплатинатом(II) бария покрывают светящиеся экраны приборов. Тиосульфат бария (BaS 2 O 3) придает бесцветному лаку жемчужный оттенок, а, смешав его с клеем, можно добиться полной имитации перламутра.

Токсикология соединений бария.

Все растворимые соли бария ядовиты. Сульфат бария, применяемый при рентгеноскопии, практически нетоксичен. Смертельная доза хлорида бария составляет 0,8–0,9 г, карбоната бария – 2–4 г. При приеме внутрь ядовитых соединений бария возникают жжение во рту, боли в области желудка, слюнотечение, тошнота, рвота, головокружение, мышечная слабость, одышка, замедление пульса и падение артериального давления. Основной метод лечения отравлений барием – промывание желудка и употребление слабительных средств.

Основными источниками поступления бария в организм человека являются пища (особенно морепродукты) и питьевая вода. По рекомендации Всемирной организацией здравоохранения содержание бария в питьевой воде не должно превышать 0,7 мг/л, в России действуют гораздо более жесткие нормы – 0,1 мг/л.

Юрий Крутяков

ОПРЕДЕЛЕНИЕ

Барий - пятьдесят шестой элемент Периодической таблицы. Обозначение - Ba от латинского «barium». Расположен в шестом периоде, IIA группе. Относится к металлам. Заряд ядра равен 56.

Барий встречается в природе главным образом в виде сульфатов и карбонатов, образуя минералы барит BaSO 4 и витерит BaCO 3 . Содержание бария в земной коре равно 0,05% (масс.), что значительно меньше, чем содержание кальция.

В виде простого вещества барий представляет собой серебристо-белый металл (рис. 1), который на воздухе покрывается желтоватой пленкой продуктов взаимодействия с составными частями воздуха. Барий по твердости напоминает свинец. Плотность 3,76 г/см 3 . Температура плавления 727 o С, кипения 1640 o С. Имеет объемно центрированную кристаллическую решетку.

Рис. 1. Барий. Внешний вид.

Атомная и молекулярная масса бария

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии барий существует в виде одноатомных молекул Ba, значения его атомной и молекулярной масс совпадают. Они равны 137,327.

Изотопы бария

Известно, что в природе барий может находиться в виде семи стабильных изотопов 130 Ba, 132 Ba, 134 Ba, 135 Ba, 136 Ba, 137 Ba и 138 Ba, из которых 137 Ba является наиболее распространенным (71,66%). Их массовые числа равны 130, 132, 134, 135, 136, 137 и 138 соответственно. Ядро атома изотопа бария 130 Ba содержит пятьдесят шесть протонов и семьдесят четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы бария с массовыми числами от 114-ти до 153-х, а также десять изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 133 Ba с периодом полураспада равным 10,51 лет.

Ионы бария

На внешнем энергетическом уровне атома бария имеется два электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 6 6s 2 .

В результате химического взаимодействия барий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ba 0 -2e → Ba 2+ .

Молекула и атом бария

В свободном состоянии барий существует в виде одноатомных молекул Ba. Приведем некоторые свойства, характеризующие атом и молекулу бария:

Примеры решения задач

ПРИМЕР 1

С химической формулой BaSO 4 . Представляет собой белый порошок без запаха, нерастворимый в воде. Его белизна и непрозрачность, а также высокая плотность определяют основные области применения.

История названия

Барий относится к щёлочноземельным металлам. Последние названы так потому, что, по словам Д. И. Менделеева, их соединения образуют нерастворимую массу земли, а окислы "имеют землистый вид". Барий в природе содержится в виде минерала барита, который представляет собой бария сульфат с различными примесями.

Впервые он был обнаружен шведскими химиками Шееле и Ганом в 1774 году в составе так называемого тяжелого шпата. Отсюда возникло и название минерала (от греч. «барис» - тяжелый), а затем и самого металла, когда в 1808 г. его выделил в чистом виде Гемфри Деви.

Физические свойства

Поскольку BaSO 4 - это соль серной кислоты, то ее физические свойства отчасти определяются самим металлом, который является мягким, химически активным и серебристо-белым. Природный барит бесцветен (иногда белый) и прозрачен. Химически чистый BaSO 4 имеет цвет от белого до бледно-желтого, он негорючий, с температурой плавления 1580°С.

Какая масса сульфата бария? Молярная масса его равна 233,43 г/моль. Он обладает необычайно высоким удельным весом - от 4,25 до 4,50 г/см 3 . Учитывая нерастворимость в воде, высокая плотность делает его незаменимым в качестве наполнителя водных буровых растворов.

Химические свойства

BaSO 4 - это одно из самых труднорастворимых в воде соединений. Его можно получить из двух хорошо растворимых солей. Возьмем водный раствор натрия сульфата - Na 2 SO 4 . Его молекула в воде диссоциирует на три иона: два Na + и один SO 4 2- .

Na 2 SO 4 → 2Na + + SO 4 2-

Возьмем также водный раствор хлорида бария - BaCl 2 , молекула которого диссоциирует на три иона: один Ba 2+ и два Cl - .

BaCl 2 → Ba 2+ + 2Cl -

Смешаем водный раствор сульфата и смесь, содержащую хлорид. Бария сульфат образуется в результате соединения в одну молекулу двух ионов с одинаковым по величине и противоположным по знаку зарядом.

Ba 2+ + SO 4 2- → BaSO 4

Ниже вы можете увидеть полное уравнение этой реакции (так называемое молекулярное).

Na 2 SO 4 + BaCl 2 → 2NaCl + BaSO 4

В результате образуется нерастворимый осадок сульфата бария.

Товарный барит

На практике исходным сырьем для получения товарного сульфата бария, предназначенного для использования в буровых растворах при бурении нефтегазовых скважин, является, как правило, минеральный барит.

Термин "первичный" барит относится к товарной продукции, которая включает в себя сырой материал (получаемый из шахт и карьеров), а также продукты простого обогащения такими методами, как промывка, осаждение, сепарация в тяжелых средах, флотация. Большая часть сырого барита требует доведения его до минимальной чистоты и плотности. Минерал, который используется в качестве наполнителя, измельчают и просеивают до однородного размера так, чтобы, по меньшей мере, 97 % его частиц имели размер до 75 мкм, и не более 30 % были менее 6 мкм. Первичный барит также должен быть достаточно плотным, чтобы его удельный вес составил 4,2 г/см 3 или выше, но при этом достаточно мягким, чтобы не повредить подшипники.

Получение химически чистого продукта

Минеральный барит зачастую загрязнен различными примесями, в основном оксидами железа, окрашивающими его в различные цвета. Он обрабатывается карботермическим способом (нагревом с коксом). В результате получается сульфид бария.

BaSO 4 + 4 С → BaS + 4 СО

Последний, в отличие от сульфата, растворим в воде и легко реагирует с кислородом, галогенами и кислотами.

BaS + Н 2 SO 4 → BaSO 4 + Н 2 S

Чтобы получить высокочистый выходной продукт, используется серная кислота. Сульфат бария, образуемый по такому процессу, часто называют бланфиксом, что в переводе с французского означает "белый фиксированный". Он часто встречается в потребительских продуктах, таких как краски.

В лабораторных условиях сульфат бария образуется путем объединения в растворе ионов бария и сульфат-ионов (см. выше). Поскольку сульфат является наименее токсичной солью бария из-за ее нерастворимости, отходы, содержащие другие его соли, иногда обрабатывают сульфатом натрия, чтобы связать весь барий, являющийся достаточно токсичным.

Из сульфата в гидроксид и обратно

Исторически барит использовался для производства гидроксида бария Ba(OH) 2 , необходимого при рафинировании сахара. Это вообще очень интересное и широко используемое в промышленности соединение. Оно хорошо растворимо в воде, образует раствор, известный как баритовая вода. Ее удобно использовать для связывания сульфат-ионов в различных составах путем образования нерастворимого BaSO 4 .

Выше мы видели, что при нагреве в присутствии кокса из сульфата легко получить водорастворимый сульфид бария - BaS. Последний же при взаимодействии с горячей водой образует гидроксид.

BaS + 2H 2 O → Ba(OH) 2 + H 2 S

Гидроксид бария и сульфат натрия, взятые в растворах, при смешивании дадут нерастворимый осадок сульфата бария и едкий натрий.

Ba(OH) 2 + Na 2 SO 4 = BaSO 4 + 2NaOH

Получается, что природный бария сульфат (барит) промышленным способом сначала превращается в бария гидроксид, а затем служит для получения того же сульфата при очистке различных солевых систем от сульфат-ионов. Точно так же будет проходить реакция и при очистке от ионов SO 4 2- раствора сернокислой меди. Если сделать смесь "гидроксид бария + сульфат меди", то в результате получится гидроксид меди и нерастворимый бариевый сульфат.

CuSO 4 + Ba(OH) 2 → Cu(OH) 2 + BaSO 4 ↓

Даже в реакции с самой серной кислотой ее сульфат-ионы будут полностью связаны барием.

Использование в буровых растворах

Около 80 % мирового производства сульфата бария, очищенного и измельченного барита, потребляется в качестве компонента буровых растворов при создании нефтегазовых скважин. Добавка его увеличивает плотность жидкости, закачиваемой в скважину, с целью лучшего сопротивления высокому пластовому давлению и предотвращения прорывов.

Когда скважина бурится, долото проходит через различные образования, каждое из которых имеет свои характеристики. Чем больше глубина, тем больший процент барита должен присутствовать в структуре раствора. Дополнительным преимуществом является то, что бария сульфат - немагнитное вещество, поэтому он не мешает проведению различных измерений в скважине с помощью электронных устройств.

Лакокрасочная и бумажная промышленность

Большая часть синтетического BaSO 4 используется в качестве компонента белого пигмента для красок. Так, бланфикс в смеси с двуокисью титана (TiO 2) продается в качестве белой масляной краски, применяемой в живописи.

Сочетание BaSO 4 и ZnS (сульфид цинка) дает неорганический пигмент, который называется литопоном. Он используется в качестве покрытия для определенных сортов фотобумаги.

Совсем недавно бария сульфат был применен для осветления бумаги, предназначенной для струйных принтеров.

Применение в химической промышленности и цветной металлургии

В производстве полипропилена и полистирола BaSO 4 используют в качестве наполнителя в пропорции до 70 %. Он имеет эффект увеличения стойкости пластмасс к кислотам и щелочам, а также придает им непрозрачность.

Он также используется для производства других соединений бария, в частности его карбоната, который применяется для изготовления светодиодного стекла для телевизионных и компьютерных экранов (исторически в электронно-лучевых трубках).

Формы, используемые в отливке металлов, часто покрывают бария сульфатом для предотвращения сцепления с расплавленным металлом. Так поступают при изготовлении анодных медных пластин. Их отливают в медные изложницы, покрытые слоем сульфата бария. Когда жидкая медь затвердевает в виде готовой анодной пластины, она может быть легко извлечена из литейной формы.

Пиротехнические устройства

Поскольку соединения бария испускают зеленый свет при горении, то соли этого вещества часто используются пиротехнических формулах. Хотя нитрат и хлорат являются более распространенными, чем сульфат, последний широко используется в качестве компонента пиротехнических стробоскопов.

Рентгеноконтрастный препарат

Бария сульфат является рентгеноконтрастным агентом, используемым для диагностики определенных медицинских проблем. Так как подобные вещества являются непрозрачными для рентгеновских лучей (блокируют их в результате своей высокой плотности), то области тела, в которых они локализуются, появляются как белые участки на рентгеновской пленке. Это создает необходимое различие между одним (диагностируемым) органом и другими (окружающими его) тканями. Контраст поможет врачу увидеть любые особые условия, которые могут существовать в этом органе или части тела.

Бария сульфат принимается через рот или ректально при помощи клизмы. В первом случае он делает пищевод, желудок или тонкий кишечник непрозрачным для рентгеновских лучей. Таким образом, они могут быть сфотографированы. Если вещество введено при помощи клизмы, то толстую кишку или кишечник можно увидеть и зафиксировать рентгеновскими лучами.

Доза сульфата бария будет разной для разных пациентов, все зависит от типа теста. Препарат выпускается в виде специальной медицинской бариевой суспензии или в таблетках. Различные тесты, при которых нужен контраст и рентгеновское оборудование, требуют различного количества суспензии (в некоторых случаях необходим прием препарата в форме таблетки). Контрастное вещество должно использоваться только под непосредственным контролем врача.

– химический элемент 2-й группы периодической системы, атомный номер 56, относительная атомная масса 137,33. Расположен в шестом периоде между цезием и лантаном. Природный барий состоит из семи стабильных изотопов с массовыми числами 130(0,101%), 132(0,097%), 134(2,42%), 135(6,59%), 136(7,81%), 137(11,32%) и 138 (71,66%). Барий в большинстве химических соединений проявляет максимальную степень окисления +2, но может иметь и нулевую. В природе барий встречается только в двухвалентном состоянии. История открытия. В 1602 Касциароло (болонский сапожник и алхимик) подобрал в окрестных горах камень, который настолько тяжелый, что Касциароло заподозрил в нем золото. Пытаясь выделить золото из камня, алхимик прокалил его с углем. Хотя выделить золото при этом не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым цветом. Известие о столь необычной находке произвело настоящую сенсацию в алхимической среде и необычный минерал, получивший целый ряд названий – солнечный камень (Lapis solaris ), болонский камень (Lapis Boloniensis ), болонский фосфор (Phosphorum Boloniensis) стал участником разнообразных экспериментов. Но время шло, а золото и не думало выделяться, поэтому интерес к новому минералу постепенно пропал, и долгое время его считали видоизмененной формой гипса или извести. Лишь через полтора столетия, в 1774 известные шведские химики Карл Шееле и Юхан Ган пристально изучили «болонский камень» и установили, что в нем содержится некая «тяжелая земля». Позднее, в 1779, Гитон де Морво назвал эту «землю» барот (barote ) от греческого слова « barue » – тяжелый, а в дальнейшем изменил название на барит (baryte ). Под этим названием бариевая земля фигурировала в учебниках химии конца 18 – начала 19 вв. Так, например, в учебнике А.Л.Лавуазье (1789) барит входит в список солеобразующих землистых простых тел, причем приводится и другое название барита – «тяжелая земля» (terre pesante , лат. terra ponderosa). Содержащийся в минерале неизвестный пока металл стали называть барием (лат. – Barium ). В русской литературе 19 в. также употреблялись названия барит и барий. Следующим известным минералом бария стал природный карбонат бария, открытый в 1782 Витерингом и названный впоследствии в его честь витеритом. Металлический барий был впервые получен англичанином Гэмфри Дэви в 1808 путем электролиза влажного гидроксида бария с ртутным катодом и последующим испарением ртути из амальгамы бария. Следует отметить, что в том же 1808 несколько раньше Дэви амальгаму бария получил шведский химик Йенс Берцелиус . Несмотря на свое название, барий оказался сравнительно легким металлом с плотностью 3,78 г/см 3 , поэтому в 1816 английский химик Кларк выступил с предложением отклонить название «барий» на том основании, что если бариевая земля (оксид бария) действительно тяжелее других земель (оксидов), то металл, наоборот, легче других металлов. Кларк хотел назвать этот элемент плутонием в честь древнеримского бога, властителя подземного царства Плутона, однако это предложение не встретило поддержки у других ученых и легкий металл продолжал именоваться «тяжелым». Барий в природе. В земной коре содержится 0,065% бария, он встречается в виде сульфата, карбоната, силикатов и алюмосиликатов. Основные минералы бария – уже упоминавшиеся выше барит (сульфат бария), называемый также тяжелым или персидским шпатом, и витерит (карбонат бария). Мировые минерально-сырьевые ресурсы барита оценивались в 1999 в 2 млрд. тонн, значительная часть их сосредоточена в Китае (около 1 млрд. тонн) и в Казахстане (0,5 млрд. тонн). Большие запасы барита есть и в США, Индии, Турции, Марокко и Мексике. Российские ресурсы барита оцениваются в 10 миллионов тонн, его добыча ведется на трех основных месторождениях, расположенных в Хакасии, Кемеровской и Челябинской областях. Общая годовая добыча барита в мире составляет около 7 миллионов тонн, Россия производит 5 тыс. тонн и импортирует 25 тыс. тонн барита в год. Получение. Основным сырьем для получения бария и его соединений служат барит и, реже, витерит. Восстанавливая эти минералы каменным углем, коксом или природным газом, получают соответственно сульфид и оксид бария: BaSO 4 + 4C = BaS + 4CO

BaSO 4 + 2CH 4 = BaS + 2C + 4H 2 O

BaCO 3 + C = BaO + 2CO

Металлический барий получают, восстанавливая его оксидом алюминия.

BaO + 2 Al = 3 Ba + Al 2 O 3

Впервые этот проце

cc осуществил русский физико-химик Н.Н.Бекетов . Вот как он описывал свои опыты: «Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (алюминия) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния...». Сейчас процесс восстановления алюминием проводят в вакууме при температурах от 1100 до 1250° C , при этом образующийся барий испаряется и конденсируется на более холодных частях реактора.

Кроме того, барий можно получить электролизом расплавленной смеси хлоридов бария и кальция.

Простое вещество. Барий – серебристо-белый ковкий металл, при резком ударе раскалывается. Температура плавления 727° С, температура кипения 1637° С, плотность 3,780 г/см 3 . При обычном давлении существует в двух аллотропных модификациях: до 375° C устойчив a - Ba с кубической объемно-центрированной решеткой, выше 375° С устойчив b - Ba . При повышенном давлении образуется гексагональная модификация. Металлический барий обладает высокой химической активностью, он интенсивно окисляется на воздухе, образуя пленку, содержащую BaO , BaO 2 и Ba 3 N 2 , при незначительном нагревании или при ударе воспламеняется. 2Ba + O 2 = 2BaO; Ba + O 2 = BaO 2 ; 3Ba + N 2 = Ba 3 N 2 , поэтому барий хранят под слоем керосина или парафина. Барий энергично реагирует с водой и растворами кислот, образуя гидроксид бария или соответствующие соли: Ba + 2H 2 O = Ba(OH) 2 + H 2

Ba + 2HCl = BaCl 2 + H 2

С галогенами барий образует галогениды, с водородом и азотом при нагревании – соответственно гидрид и нитрид. Ba + Cl 2 = BaCl 2 ; Ba + H 2 = BaH 2 Металлический барий растворяется в жидком аммиаке с образованием темно-синего раствора, из которого можно выделить аммиакат Ba (NH 3) 6 – кристаллы с золотистым блеском, легко разлагающиеся с выделением аммиака. В этом соединении барий имеет нулевую степень окисления. Применение в промышленности и науке. Применение металлического бария весьма ограничено из-за его высокой химической активности, соединения бария используются гораздо шире. Сплав бария с алюминием – сплав альба, содержащий 56% Ba – основа геттеров (поглотителей остаточных газов в вакуумной технике). Для получения собственно геттера барий испаряют из сплава, нагревая его в вакуумированной колбе прибора, в результате на холодных частях колбы образуется «бариевое зеркало». В небольших количествах барий используется в металлургии для очистки расплавленных меди и свинца от примесей серы, кислорода и азота. Барий добавляют в типографские и антифрикционные сплавы, сплав бария с никелем используется для изготовления деталей радиоламп и электродов свечей зажигания в карбюраторных двигателях. Кроме того, есть нестандартные применения бария. Одно из них – создание искусственных комет: выпущенные с борта космического аппарата пары бария легко ионизируются солнечными лучами и превращаются в яркое плазменное облако. Первая искусственная комета была создана в 1959 во время полета советской автоматической межпланетной станции «Луна-1». В начале 1970-х германские и американские физики, проводя исследования электромагнитного поля Земли, выбросили над территорией Колумбии 15 килограмм мельчайшего порошка бария. Образовавшееся плазменное облако вытянулось вдоль линий магнитного поля, позволив уточнить их положение. В 1979 струи бариевых частиц использовали для изучения полярного сияния. Соединения бария. Наибольший практический интерес представляют соединения двухвалентного бария.

Оксид бария (

BaO ): промежуточный продукт в производстве бария – тугоплавкий (температура плавления около 2020° C ) белый порошок, реагирует с водой, образуя гидроксид бария, поглощает углекислый газ из воздуха, переходя в карбонат: BaO + H 2 O = Ba(OH) 2 ; BaO + CO 2 = BaCO 3 Прокаливаемый на воздухе при температуре 500–600° C , оксид бария реагирует с кислородом, образуя пероксид, который при дальнейшем нагревании до 700° C вновь переходит в оксид, отщепляя кислород: 2BaO + O 2 = 2BaO 2 ; 2BaO 2 = 2BaO + O 2 Так получали кислород вплоть до конца 19 в., пока не был разработан метод выделения кислорода перегонкой жидкого воздуха.

В лаборатории оксид бария можно получить прокаливанием нитрата бария:

2Ba(NO 3) 2 = 2BaO + 4NO 2 + O 2 Сейчас оксид бария используется как водоотнимающее средство, для получения пероксида бария и изготовления керамических магнитов из феррата бария (для этого смесь порошков оксидов бария и железа спекают под прессом в сильном магнитном поле), но основное применение оксида бария – изготовление термоэмиссионных катодов. В 1903 молодой немецкий ученый Венельт проверял закон испускания электронов твердыми телами, открытый незадолго до этого английским физиком Ричардсоном . Первый из опытов с платиновой проволокой полностью подтвердил закон, но контрольный эксперимент не удался: поток электронов резко превышал ожидаемый. Поскольку свойства металла не могли измениться, Венельт предположил, что на поверхности платины есть какая-то примесь. Перепробовав возможные загрязнители поверхности, он убедился в том, что дополнительные электроны испускал оксид бария, входивший в состав смазки вакуумного насоса, используемого в эксперименте. Однако научный мир не сразу признал это открытие, так как его наблюдение не удавалось воспроизвести. Лишь почти через четверть века англичанин Колер показал, что для проявления высокой термоэлектронной эмиссии оксид бария нужно прогревать при очень низких давлениях кислорода. Объяснить это явление смогли только в 1935. Немецкий ученый Поль предположил, что электроны испускаются небольшой примесью бария в оксиде: при низких давлениях часть кислорода улетучивается из оксида, а оставшийся барий легко ионизируется с образованием свободных электронов, которые покидают кристалл при нагревании: 2BaO = 2Ba + O 2 ; Ba = Ba 2+ + 2 е Правильность этой гипотезы была окончательно установлена в конце 1950-х советскими химиками А.Бунделем и П.Ковтуном, которые измерили концентрацию примеси бария в оксиде и сопоставили ее с потоком термоэмиссии электронов. Сейчас оксид бария является активной действующей частью большинства термоэмиссионных катодов. Так например, пучок электронов, формирующий изображение на экране телевизора или компьютерного монитора, испускается оксидом бария.

Гидроксид бария, октагидрат (

Ba (OH ) 2 ·8 H 2 O ). Белый порошок, хорошо растворимый в горячей воде (больше 50% при 80° C ), хуже в холодной (3,7% при 20° C ). Температура плавления октагидрата 78° C , при нагревании до 130° C он переходит в безводный Ba (OH ) 2 . Гидроксид бария получают растворяя оксид в горячей воде или нагревая сульфид бария в потоке перегретого пара. Гидроксид бария легко реагирует с углекислым газом, поэтому его водный раствор, называемый «баритовой водой» используют в аналитической химии в качестве реактива на CO 2 . Кроме того, «баритовая вода» служит реактивом на сульфат- и карбонат-ионы. Гидроксид бария применяется для удаления сульфат-ионов из растительных и животных масел и промышленных растворов, для получения гидроксидов рубидия и цезия, в качестве компонента смазок.

Карбонат бария (

BaCO 3). В природе – минерал витерит. Белый порошок, нерастворимый в воде, растворимый в сильных кислотах (кроме серной). При нагревании до 1000° С разлагается с выделением CO 2: BaCO 3 = BaO + CO 2

Карбонат бария добавляют в стекло для увеличения его коэффициента преломления, вводят в состав эмалей и глазурей.

Сульфат бария (

BaSO 4). В природе – барит (тяжелый или персидский шпат) – основной минерал бария – белый порошок (температура плавления около 1680° C ), практически нерастворимый в воде (2,2 мг/л при 18° C ), медленно растворяется в концентрированной серной кислоте.

С сульфатом бария издавна связано производство красок. Правда, вначале его использование носило криминальный характер: в измельченном виде барит подмешивали к свинцовым белилам, что значительно удешевляло конечный продукт и, одновременно, ухудшало качество краски. Тем не менее, такие модифицированные белила продавались по той же цене, что и обычные, принося значительную прибыль владельцам красильных заводов. Еще в 1859 в департамент мануфактур и внутренней торговли поступили сведения о жульнических махинациях ярославских заводчиков, добавлявших к свинцовым белилам тяжелый шпат, что «вводит потребителей в обман на счет истинного качества товара, причем поступила и просьба о воспрещении означенным заводчикам употребления шпата при выделке свинцовых белил». Но эти жалобы ни к чему не привели. Достаточно сказать, что в 1882 в Ярославле был основан шпатовый завод, который, в 1885 выпустил 50 тысяч пудов измельченного тяжелого шпата. В начале 1890-х Д.И.Менделеев писал: «...В подмесь к белилам на многих заводах примешивается барит, так как и привозимые из-за границы белила, для уменьшения цены, содержат эту подмесь».

Сульфат бария входит в состав литопона – неядовитой белой краски с высокой кроющей способностью, широко востребованной на рынке. Для изготовления литопона смешивают водные растворы сульфида бария и сульфата цинка, при этом происходит обменная реакция и в осадок выпадает смесь мелкокристаллических сульфата бария и сульфида цинка – литопон, а в растворе остается чистая вода.

BaS + ZnSO 4 = BaSO 4 Ї + ZnS Ї

В производстве дорогих сортов бумаги сульфат бария играет роль наполнителя и утяжелителя, делая бумагу белее и плотнее, его используют и в качестве наполнителя резин и керамики.

Более 95% добываемого в мире барита используется для приготовления рабочих растворов для бурения глубоких скважин.

Сульфат бария сильно поглощает рентгеновские и гамма-лучи. Это свойство широко используется в медицине для диагностики желудочно-кишечных заболеваний. Для этого пациенту дают проглотить суспензию сульфата бария в воде или его смесь с манной кашей – «бариевую кашу» и затем просвечивают рентгеновскими лучами. Те участки пищеварительного тракта, по которым проходит «бариевая каша», на снимке выглядят темными пятнами. Так врач может получить представление о форме желудка и кишок, определить место возникновения заболевания. Сульфат бария используется также для изготовления баритобетона, используемого при строительстве атомных электростанций и атомных заводов для защиты от проникающей радиации.

Сульфид бария (

BaS ). Промежуточный продукт в производстве бария и его соединений. Торговый продукт представляет собой серый рыхлый порошок, плохо растворимый в воде. Сульфид бария применяется для получения литопона, в кожевенной промышленности для удаления волосяного покрова со шкур, для получения чистого сероводорода. BaS – компонент многих люминофоров – веществ, светящихся после поглощения световой энергии. Именно его получил Касциароло, прокаливая барит с углем. Сам по себе сульфид бария не светится: необходимы добавки веществ-активаторов – солей висмута, свинца и других металлов.

Титанат бария (

BaTiO 3). Одно из самых промышленно важных соединений бария – белое тугоплавкое (температура плавления 1616° C ) кристаллическое вещество, нерастворимое в воде. Получают титанат бария сплавлением диоксида титана с карбонатом бария при температуре около 1300° C : BaCO 3 + TiO 2 = BaTiO 3 + CO 2

Титанат бария – один из лучших сегнетоэлектриков (см . также СЕГНЕТОЭЛЕКТРИКИ ), очень ценных электротехнических материалов. В 1944 советский физик Б.М.Вул обнаружил незаурядные сегнетоэлектрические способности (очень высокую диэлектрическую проницаемость) у титаната бария, который сохранял их в широком температурном диапазоне – почти от абсолютного нуля до +125°

C . Это обстоятельство, а также большая механическая прочность и влагостойкость титаната бария способствовали тому, что он стал одним из самых важных сегнетоэлектриков, используемых, например, для изготовления электрических конденсаторов. Титанат бария, как и все сегнетоэлектрики, обладает и пьезоэлектрическими свойствами: изменяет свои электрические характеристики под действием давления. При действии переменного электрического поля в его кристаллах возникают колебания, в связи с чем их используют в пьезоэлементах, радиосхемах и автоматических системах. Титанат бария применяли при попытках обнаружить гравитационные волны. Другие соединения бария. Нитрат и хлорат (Ba (ClO 3) 2) бария – составная часть фейерверков, добавки этих соединений придают пламени ярко-зеленую окраску. Пероксид бария входит в состав запальных смесей для алюминотермии. Тетрацианоплатинат(II ) бария (Ba [ Pt (CN ) 4 ]) светится под воздействием рентгеновских и гамма-лучей. В 1895 немецкий физик Вильгельм Рентген , наблюдая свечение этого вещества предположил существование нового излучения, названного впоследствии рентгеновским. Сейчас тетрацианоплатинатом(II ) бария покрывают светящиеся экраны приборов. Тиосульфат бария (BaS 2 O 3) придает бесцветному лаку жемчужный оттенок, а, смешав его с клеем, можно добиться полной имитации перламутра. Токсикология соединений бария. Все растворимые соли бария ядовиты. Сульфат бария, применяемый при рентгеноскопии, практически нетоксичен. Смертельная доза хлорида бария составляет 0,8–0,9 г, карбоната бария – 2–4 г. При приеме внутрь ядовитых соединений бария возникают жжение во рту, боли в области желудка, слюнотечение, тошнота, рвота, головокружение, мышечная слабость, одышка, замедление пульса и падение артериального давления. Основной метод лечения отравлений барием – промывание желудка и употребление слабительных средств.

Основными источниками поступления бария в организм человека являются пища (особенно морепродукты) и питьевая вода. По рекомендации Всемирной организацией здравоохранения содержание бария в питьевой воде не должно превышать 0,7 мг/л, в России действуют гораздо более жесткие нормы – 0,1 мг/л.

Юрий Крутяков

ЛИТЕРАТУРА Фигуровский Н.А. История открытия элементов и происхождения ихneназваний . М., Наука, 1970
Венецкий С.И. О редких и рассеянных. Рассказы о металлах . М.,neМеталлургия, 1980
Популярная библиотека химических элементов . Под. ред.neИ.В.Петрянова-Соколова М., Наука, 1983
Информационно-аналитический обзор Состояние и перспективы мирового и внутреннего рынков цветных, редких и благородных металлов . Выпуск 18. Барит. М., 2002

Бария сульфат – это активное вещество, которое применяется в диагностических целях при некоторых заболеваниях пищеварительного тракта. Оно представляет собой рыхлый порошок белого цвета, не обладающий запахом и каким-либо вкусом, он нерастворим в органических растворителях, а также в щелочах и кислотах. Рассмотрю характеристики этого компонента. Поговорим о том для чего нужен бария сульфат для рентгеноскопии, применение в медицине этого вещества опишем, его свойства, что говорит инструкция расскажем.

Какое у Бария сульфат действие?

Бария сульфат – это рентгеноконтрастное вещество, оно используется с диагностической целью, так как хорошо повышает контрастность рентгеновского изображения при проведении соответствующих исследований, и не обладает токсичностью. Максимальная рентгеноконтрастность таких органов, как пищевод, желудок, а также и двенадцатиперстная кишка, достигается очень быстро, сразу же после введения его внутрь.

Что касается тонкого кишечника, то рентгеноконтрастность наступает примерно через 15 минут или через полтора часа, все будет зависеть от вязкости препарата и от скорости непосредственного опорожнения желудка. Максимальная визуализация дистальных отделов как тонкого, так и толстого кишечника будет зависть от положения тела пациента, а также от гидростатического давления.

Бария сульфат не всасывается из пищеварительного тракта, поэтому не попадает непосредственно в системный кровоток, конечно, если отсутствует перфорация органов ЖКТ. Выводится это вещество со стулом.

Какие у Бария сульфат показания к применению?

Назначается средство для рентгенографии ЖКТ, в особенности тонкого кишечника, а именно его верхних отделов.

Какие у Бария сульфат противопоказания к применению?

Среди противопоказаний к применению Бария сульфат можно отметить такие состояния:

Наличие гиперчувствительности к этому веществу;
Не назначают его при непроходимости толстой кишки;
При перфорации ЖКТ противопоказано использование бария;
При наличии бронхиальной астмы в анамнезе;
При обезвоживании организма;
При язвенном колите острой формы;
При аллергических реакциях.

Кроме перечисленного, это вещество не используют при наличии у пациента муковисцидоза, также противопоказанием считается острый дивертикулит.

Какие у Бария сульфат побочные действия?

Среди побочных проявления Бария сульфат инструкция по применению отмечает такие состояния: может развиться длительный запор тяжелого характера, не исключены спазмы в некоторых отделах кишечника, может присоединиться диарея.

Кроме этого развиваются анафилактоидные реакции, которые проявляются затрудненным дыханием, присоединяется болезненное вздутие живота, стеснённость в груди, боль в желудка и в кишечнике.

Если после первого проведенного рентгеноконтрастного исследования у пациента развились какие-либо побочные эффекты, обязательно следует сообщить об этом лечащему врачу.

Какие у Бария сульфат применение и дозировка?

Для проведения исследования верхних отделов пищеварительного тракта суспензию из бария сульфата принимают внутрь, чтобы провести двойное контрастирование необходимо добавить сорбит, а также цитрат натрия. Так называемая «бариевая кашица» в этом случае готовится так: 80 г порошка разводят в ста миллилитрах воды, после чего выполняют диагностическую процедуру.

Для рентгенодиагностики толстой кишки суспензию готовят из 750 г порошка Бария сульфат и литра воды, кроме этого 0,5% раствор танина вводят через клизму непосредственно в прямую кишку.

Накануне проведения диагностической процедуры не рекомендуется принимать твердую пищу. После исследования нужно употреблять достаточно большое количество жидкости, тем самым можно ускорить эвакуацию из кишечника сульфата бария.

Особые указания

Препараты, содержащие Бария сульфат (аналоги)

Препарат Бар-ВИПС содержит в своем составе Бария сульфат, он выпускается в порошке для приготовления диагностической суспензии для внутреннего приема. Это рентгеноконтрастное средство комплексного состава, обладает низкой токсичностью.

Следующий препарат – это Корибар-Д, он тоже производится в пасте, обладает выраженными адгезивными свойствами, обеспечивает качественное изображение рельефа слизистой пищеварительного тракта.

Микропак – его лекарственная форма тоже представлена пастой, из которой готовят суспензию, а также препарат производится в порошке. Следующее средство - Микропак Колон, при его применении можно получить четкое изображение микрорельефа.

Микропак Ораль, Микропак СТ, Микротраст эзофагус паста, Со 2-гранулят, Сульфобар, Фалибарит, Фалибарит ХДЕ, а также Адсобар, все эти перечисленные рентгеноконтрастные препараты также содержат в своем составе активное вещество Бария сульфат. Выпускаются они как в виде пасты, из которой готовят суспензию, так и в форме мелкодисперсного порошка.

Применяют рентгеноконтрастные средства с диагностической целью, чтобы выявить какую-либо патологию пищеварительного тракта, в частности пищевода, желудка, а также и всех отделов кишечника. Кроме этого Бария сульфат содержится в одноимённом препарате.

Заключение

Перед тем как проводить рентгеноконтрастное исследование, накануне необходимо воздержаться от употребления твердой, долго перевариваемой пищи. При этом подобное контрастное обследование должно назначаться лечащим доктором в соответствии с имеющимися показаниями.



Понравилась статья? Поделитесь с друзьями!