Единичная точка системы координат. Декартовы координаты

Декартова система координат — система координат, включающая в себя тела отсчёта () и 3 взаимно перпендикулярные оси (OX, OY и OZ). В школьном курсе физики и математики чаще всего обходятся двумерным (OX, OY) и одномерным (OX) случаем.

Рис. 1. Пример одномерной декартовой системы координат.

Поставим точку в любое место тетради. Данная точка будет началом отсчёта для нашей декартовой системы координат. На ней проведём линию (для упрощения, горизонтальную), которая будет делиться выбранной точкой примерно пополам. Представим нашу линию как (допишем стрелочку на правом окончании линии) и выставим обозначения: пусть точка называется О , а над стрелкой поставим букву X (рис. 1).

Возьмём точку А на луче OX. Также у нас уже готов единичный отрезок (для ясности, назовём его ). Заметим, что количество единичных отрезков, необходимых, чтобы «добраться» до точки A от начала координат, равно 5. Соответственно, и координата точки А есть 5. Аналогичные умозаключения приведут к тому, что координатой точки B станет -3 (знак «-» выберем из-за обратного оси OX направления на точку B).

Рис. 3. Введение единичного отрезка. Координаты точки.

Рис. 4. Двумерная декартова система координат

Теперь вспомним, что часто движение в задачах происходит в двумерном пространстве. Для описания положения тел в этом случае используется двумерная система координат (XOY). Для задания данной системы координат достаточно взять две перпендикулярные оси (вектора под углом 90 градусов). Единичные отрезки выбираются для нужд задачи (по каждой из осей они могут быть свои) (рис. 4).

Для наглядности, вдоль осей выбраны разные единичные отрезки ( и ). Поставим точку А в любое место плоскости. Опуская перпендикуляры на обе оси, мы находим точки пересечения перпендикуляров с осями. Сами точки пересечения отсекают какое-то количество единичных отрезков по соответствующим осям. Таким образом, мы можем приписать выбранной точке А два числа (в нашем случае, 5 и 3). Данные числа символизируют координаты (а значит, и положение) точки на координатной плоскости. Записывать координаты точки принято в форме (X,Y), т.е., в нашем случае, A(5,3).

Не особо часто, но встречается также трёхмерная декартова система система координат (рис. 5).

Рис. 5. Трёхмерная декартова система координат

Для наглядности, были выбраны три разные по длине единичные отрезки ( , и ). Данная система отличается от предыдущей только лишь введением третьей оси (OZ), перпендикулярной двум выбранным ранее осям. Данная система полностью описывает положение точки в нашем трёхмерном мире (задаёт три параметра тела: длину, ширину и высоту). Для третьей оси также вводят единичный отрезок и работают с ним с той же самой логикой, как и с описанными выше. Задание положения точки в этой системе происходит аналогично предыдущим, только с добавлением третьей координаты A(X,Y,Z).

Общий вывод. Введение декартовой системы координат позволяет математически описать положение и изменение положения точки на плоскости и в пространстве. Усвоив правила построения системы, каждый испытатель может проанализировать решения и выводы других исследователей и предложить своё решение любой задачи в математических формулах, которое будет понятно остальным.

Декартова система координат обновлено: Сентябрь 9, 2017 автором: Иван Иванович


Если на плоскости или в трехмерном пространстве ввести систему координат, то мы получим возможность описывать геометрические фигуры и их свойства с помощью уравнений и неравенств, то есть, мы сможем использовать методы алгебры. Поэтому понятие системы координат очень важно.

В этой статье мы покажем как задается прямоугольная декартова система координат на плоскости и в трехмерном пространстве и выясним как определяются координаты точек. Для наглядности приведем графические иллюстрации.

Навигация по странице.

Прямоугольная декартова система координат на плоскости.

Введем прямоугольную систему координат на плоскости.

Для этого проведем на плоскости две взаимно перпендикулярные прямые, выберем на каждой из них положительное направление , указав его стрелочкой, и выберем на каждой из них масштаб (единицу измерения длины). Обозначим точку пересечения этих прямых буквой О и будем считать ее началом отсчета . Так мы получили прямоугольную систему координат на плоскости.

Каждую из прямых с выбранным началом отсчета О , направлением и масштабом называют координатной прямой или координатной осью .

Прямоугольную систему координат на плоскости обычно обозначают Oxy , где Ox и Oy – ее координатные оси. Ось Ox называют осью абсцисс , а ось Oy – осью ординат .

Сейчас условимся с изображением прямоугольной системы координат на плоскости.

Обычно единица измерения длины на осях Ox и Oy выбирается одинаковая и откладывается от начала координат на каждой координатной оси в положительном направлении (отмечается штришком на координатных осях и рядом записывается единица), ось абсцисс направляется вправо, а ось ординат – вверх. Все остальные варианты направления координатных осей сводятся к озвученному (ось Ox - вправо, ось Oy - вверх) при помощи поворота системы координат на некоторый угол относительно начала координат и взгляда на нее с другой стороны плоскости (при необходимости).

Прямоугольную систему координат часто называют декартовой, так как ее на плоскости впервые ввел Рене Декарт. Еще чаще прямоугольную систему координат называют прямоугольной декартовой системой координат, собирая все воедино.

Прямоугольная система координат в трехмерном пространстве.

Аналогично задается прямоугольная система координат Oxyz в трехмерном евклидовом пространстве, только берется не две, а три взаимно перпендикулярных прямых. Другими словами, к координатным осям Оx и Oy добавляется координатная ось Oz , которую называют осью аппликат .

В зависимости от направления координатных осей различают правую и левую прямоугольные системы координат в трехмерном пространстве.

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит против хода часовой стрелки, то система координат называется правой .

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит по ходу часовой стрелки, то система координат называется левой .


Координаты точки в декартовой системе координат на плоскости.

Сначала рассмотрим координатную прямую Ox и возьмем некоторую точку M на ней.

Каждому действительному числу соответствует единственная точка M на этой координатной прямой. К примеру, точке, расположенной на координатной прямой на расстоянии от начала отсчета в положительном направлении, соответствует число , а числу -3 соответствует точка, расположенная на расстоянии 3 от начала отсчета в отрицательном направлении. Числу 0 соответствует начало отсчета.

С другой стороны, каждой точке M на координатной прямой Ox соответствует действительное число . Это действительное число есть ноль, если точка M совпадает с началом отсчета (с точкой O ). Это действительное число положительно и равно длине отрезка OM в данном масштабе, если точка M удалена от начала отсчета в положительном направлении. Это действительное число отрицательно и равно длине отрезка OM со знаком минус, если точка M удалена от начала отсчета в отрицательном направлении.

Число называется координатой точки M на координатной прямой.

Теперь рассмотрим плоскость с введенной прямоугольной декартовой системой координат. Отметим на этой плоскости произвольную точку М .

Пусть - проекция точки M на прямую Ox , а - проекции точки M на координатную прямую Oy (при необходимости смотрите статью ). То есть, если через точку M провести прямые, перпендикулярные координатным осям Ox и Oy , то точками пересечения этих прямых с прямыми Ox и Oy являются соответственно точки и .

Пусть точке на координатной оси Ox соответствует число , а точке на оси Oy - число .


Каждой точке М плоскости в заданной прямоугольной декартовой системе координат соответствует единственная упорядоченная пара действительных чисел , называемых координатами точки M на плоскости. Координату называют абсциссой точки М , а - ординатой точки М .

Верно и обратное утверждение: каждой упорядоченной паре действительных чисел соответствует точка М плоскости в заданной системе координат.

Координаты точки в прямоугольной системе координат в трехмерном пространстве.

Покажем как определяются координаты точки М в прямоугольной системе координат, заданной в трехмерном пространстве.

Пусть и - проекции точки M на координатные оси Ox , Oy и Oz соответственно. Пусть этим точкам на координатных осях Ox , Oy и Oz соответствуют действительные числа и .

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат X’X и Y’Y. Оси координат пересекаются в точке O, которая называется началом координат , на каждой оси выбрано положительное направление.Положительное направление осей (в правосторонней системе координат) выбирают так, чтобы при повороте оси X’X против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси Y’Y. Четыре угла (I, II, III, IV), образованные осями координат X’X и Y’Y, называются координатными углами (см. Рис. 1).

Положение точки A на плоскости определяется двумя координатами x и y. Координата x равна длине отрезка OB, координата y - длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям Y’Y и X’X соответственно. Координата x называется абсциссой точки A, координата y - ординатой точки A. Записывают так: A(x, y).

Если точка A лежит в координатном угле I, то точка A имеет положительные абсциссу и ординату. Если точка A лежит в координатном угле II, то точка A имеет отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном угле III, то точка A имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном угле IV, то точка A имеет положительную абсциссу и отрицательную ординату.

Прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX, OY и OZ. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения одинаковы для всех осей. OX - ось абсцисс, OY - ось ординат, OZ - ось апликат. Положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY, если этот поворот наблюдать со стороны положительного направления оси OZ. Такая система координат называется правой. Если большой палец правой руки принять за направление X, указательный за направление Y, а средний за направление Z, то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (см. Рис. 2).

Положение точки A в пространстве определяется тремя координатами x, y и z. Координата x равна длине отрезка OB, координата y - длине отрезка OC, координата z - длине отрезка OD в выбранных единицах измерения. Отрезки OB, OC и OD определяются плоскостями, проведёнными из точки A параллельно плоскостям YOZ, XOZ и XOY соответственно. Координата x называется абсциссой точки A, координата y - ординатой точки A, координата z - аппликатой точки A. Записывают так: A(a, b, c).

Орты

Прямоугольная система координат (любой размерности) также описывается набором ортов , сонаправленных с осями координат. Количество ортов равно размерности системы координат и все они перпендикулярны друг другу.

В трёхмерном случае такие орты обычно обозначаются i j k или e x e y e z . При этом в случае правой системы координат действительны следующие формулы с векторным произведением векторов :

  • [i j ]=k ;
  • [j k ]=i ;
  • [k i ]=j .

История

Впервые прямоугольную систему координат ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году . Поэтому прямоугольную систему координат называют также - Декартова система координат . Координатный метод описания геометрических объектов положил начало аналитической геометрии. Вклад в развитие координатного метода внес также Пьер Ферма , однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости.

Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Декартовы координаты" в других словарях:

    - (декартова система координат) система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные декартовы координаты. Названы по имени Р. Декарта … Большой Энциклопедический словарь

    декартовы координаты - Система координат, состоящая из двух перпендикулярных осей. Положение точки в такой системе формируется с помощью двух чисел, определяющих расстояние от центра координат по каждой из осей. Тематики информационные… … Справочник технического переводчика

    - (декартова система координат), система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные декартовы координаты. Названы по имени Р. Декарта … Энциклопедический словарь

    декартовы координаты - Dekarto koordinatės statusas T sritis Standartizacija ir metrologija apibrėžtis Tiesinė plokštumos arba erdvės koordinačių sistema. Joje ašių masteliai paprastai būna lygūs. atitikmenys: angl. Cartesian coordinates vok. kartesische Koordinaten, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    декартовы координаты - Dekarto koordinatės statusas T sritis fizika atitikmenys: angl. Cartesian coordinates; grid coordinates vok. kartesische Koordinaten, f rus. декартовы координаты, f pranc. coordonnées cartésiennes, f … Fizikos terminų žodynas

    Способ определения положения точек на плоскости их расстояниями до двух фиксированных перпендикулярных прямых осей. Это понятие усматривается уже у Архимеда и Аппология Пергского более двух тысяч лет назад и даже у древних египтян. Впервые эта… … Математическая энциклопедия

    Декартова система координат [по имени франц. философа и математика Р. Декарта (R. Descartes; 1596 1650)], система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные Д … Большой энциклопедический политехнический словарь

    - (декартова система координат), система координат на плоскости или в пространстве, обычно с взаимно перпендикулярными осями и одинаковыми масштабами по осям прямоугольные Д. к. Названы по имени Р. Декарта … Естествознание. Энциклопедический словарь

    ДЕКАРТОВЫ КООРДИНАТЫ - Система расположения любой точки нашли кости относительно двух осей, перекрещивающихся под прямым углом. Разработанная Рене Декартом, эта система стала основой для стандартных методов графического представления данных. Горизонтальная линия… … Толковый словарь по психологии

    Координаты - Координаты. На плоскости (слева) и в пространстве (справа). КООРДИНАТЫ (от латинского co совместно и ordinatus упорядоченный), числа, которые определяют положение точки на прямой, плоскости, поверхности, в пространстве. Координаты суть расстояния … Иллюстрированный энциклопедический словарь

Во II веке до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами, покрыв его как бы условной сеткой, и ввести географические координаты - широту и долготу.

Правда, еще до этого астрономы использовали данный прием, изучая небесный свод.

Во II веке н.э. знаменитый древнегреческий астроном и математик Клавдий Птолемей активно пользовался долготой и широтой в качестве географических координат.
Но систематизировал эти понятия в 17 веке Рене Декарт.

Рене́ Дека́рт (1596 - 1650) - французский математик, философ, физик и физиолог.
Именно он придумал в 1637 году систему координат, которая используется во всем мире и известна каждому школьнику. Ее называют также «Декартова система координат».

Что же за человек был Декарт?

Декарт происходил из дворянского рода и был младшим (третьим) сыном в семье. Он родился в 1596 году во Франции. Его мать умерла, когда ему был 1 год. Рене получил прекрасное начальное образование в престижном коллеже Ла Флеш. Здесь он обучался у священников-иезуитов.

За десять лет, проведенных в колледже, Декарт приобрел писательские навыки, изучил музыкальное и драматическое искусства и даже овладел такими благородными занятиями, как верховая езда и фехтование.
Проведя еще два года в Университете Пуатье, он получил ученую степень в области юриспруденции, но отказался от карьеры юриста.
Рене поступил на военную службу и стал много путешествовать по Европе.

Затем Декарт около двадцати лет жил в Нидерландах. Терпимые голландцы в XVII веке спокойно обходились без таких вещей, как инквизиция, ересь, дыба и сожжение на костре, которые грозили всем европейским оригинальным мыслителям. Здесь, в отличие от других стран, не требовалось расплачиваться за свои идеи.
Декарт ведёт обширную переписку с лучшими учёными Европы, изучает самые различные науки, пишет книги. Он занимался астрономией и медициной.

Великий физиолог Иван Петрович Павлов считал Декарта предтечей

своих исследований. Рене Декарт первым предложил понятие рефлекса.

(Памятник Р. Декарту. Скульптор: И.Ф. Безпалов. Адрес: Аллея бюстов великих ученых в Колтушах.)

Ему принадлежит знаменитая фраза: «Cogito, ergo sum»,
что в переводе с латинского означает:
«Мыслю, следовательно, существую».

Декартова система координат

Чтобы задать декартову прямоугольную систему координат на плоскости выбирают взаимно перпендикулярные прямые, называемые осями.
Точка пересечения осей – «O» называется началом координат.
На каждой оси (ОX и ОY) задается положительное направление и выбирается единица масштаба (единичный отрезок).

Положение точки A на плоскости определяется двумя координатами x и y.
Координата x равна длине отрезка OB, координата y - длине отрезка OC в выбранных единицах измерения.
Координата x называется абсциссой точки A, координата y - ординатой точки A.
Каждой точке на координатной плоскости соответствует пара чисел: ее абсцисса и ордината: (х; у). И обратно: каждой паре чисел соответствует единственная точка на координатной плоскости.

Министерство образования и науки РФ

ФГБОУ ВПО «Марийский государственный университет»

Кафедра педагогики

реферат

По дисциплине: методика обучения математике

на тему: «Декартовая система координат»

Выполнила:

Викторова О.К.

Проверил:

канд. пед. наук, профессор

Бородина М.В.

Йошкар-Ола

2015

  1. Рене Декарт. Биография………………………………………………….3
  2. Вклад Декарта в развитие математики как науки…………………….6
  3. Возможный метод изучения декартовой системы координат на примере легенды об ее открытии……………………………………………………8
  4. Заключение………………………………………………………………15
  5. Список используемой литературы……………………………………..16
  1. Биография

Рене́ Дека́рт — французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики, автор метода радикального сомнения в философии, механицизма в физике, предтеча рефлексологии.

Декарт происходил из старинного, но обедневшего дворянского рода де Карт — отсюда впоследствии возникло его латинизированное имя Картезиус и направление в философии — картезианство; и был младшим (третьим) сыном в семье. Он родился 31 марта 1596 года в городе Лаэ, Франция. Его мать умерла, когда ему был 1 год. Отец Декарта был судьёй в городе Ренн и в Лаэ появлялся редко; воспитанием мальчика занималась бабушка по матери. В детстве Рене отличался хрупким здоровьем и невероятной любознательностью.

Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа. В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов.

В 1612 году Декарт закончил коллеж, некоторое время изучал право в Пуатье, затем уехал в Париж, где несколько лет чередовал рассеянную жизнь с математическими исследованиями. Затем он поступил на военную службу (1617) — сначала в революционной Голландии (в те годы — союзнице Франции), затем в Германии, где участвовал в недолгой битве за Прагу (Тридцатилетняя война). В Голландии в 1618 г. Декарт познакомился с выдающимся физиком и натурфилософом Исааком Бекманом, оказавшим значительное влияние на его формирование как учёного. Несколько лет Декарт провёл в Париже, предаваясь научной работе, где, помимо прочего, открыл принцип виртуальных скоростей, который в то время никто ещё не был готов оценить по достоинству.

Затем — ещё несколько лет участия в войне (осада Ля-Рошели). По возвращении во Францию оказалось, что свободомыслие Декарта стало известно иезуитам, и те обвинили его в ереси. Поэтому Декарт переезжает в Голландию (1628), где проводит 20 лет в уединённых научных занятиях.

Он ведёт обширную переписку с лучшими учёными Европы (через верного Мерсенна), изучает самые различные науки — от медицины до метеорологии. Наконец, в 1634 году он заканчивает свою первую, программную книгу под названием «Мир» (Le Monde), состоящую из двух частей: «Трактат о свете» и «Трактат о человеке». Но момент для издания был неудачным — годом ранее инквизиция чуть не замучила Галилея. Поэтому Декарт решил при жизни не печатать этот труд. Он писал Мерсенну об осуждении Галилея:

«Это меня так поразило, что я решил сжечь все мои бумаги, по крайней мере никому их не показывать; ибо я не в состоянии был вообразить себе, что он, итальянец, пользовавшийся расположением даже Папы, мог быть осуждён за то, без сомнения, что хотел доказать движение Земли… Признаюсь, если движение Земли есть ложь, то ложь и все основания моей философии, так как они явно ведут к этому же заключению».

Вскоре, однако, одна за другой, появляются другие книги Декарта:

«Рассуждение о методе…» (1637)

«Размышления о первой философии…» (1641)

«Первоначала философии» (1644)

В «Первоначалах философии» сформулированы главные тезисы Декарта:

«Бог сотворил мир и законы природы, а далее Вселенная действует как самостоятельный механизм».

«В мире нет ничего, кроме движущейся материи различных видов. Материя состоит из элементарных частиц, локальное взаимодействие которых и производит все природные явления».

«Математика — мощный и универсальный метод познания природы, образец для других наук».

Кардинал Ришельё благожелательно отнёсся к трудам Декарта и разрешил их издание во Франции, а вот протестантские богословы Голландии наложили на них проклятие (1642); без поддержки принца Оранского учёному пришлось бы нелегко.

В 1649 году Декарт, измученный многолетней травлей за вольнодумство, поддался уговорам шведской королевы Кристины (с которой много лет активно переписывался) и переехал в Стокгольм. Почти сразу после переезда он серьёзно простудился и вскоре умер. Предположительной причиной смерти явилась пневмония. Существует также гипотеза о его отравлении, поскольку симптомы болезни Декарта были сходны с симптомами, возникающими при остром отравлении мышьяком. Эту гипотезу выдвинул Айки Пиз, немецкий учёный, а затем поддержал Теодор Эберт. Поводом для отравления, по этой версии, послужило опасение католических агентов, что вольнодумство Декарта может помешать их усилиям по обращению королевы Кристины в католичество (это обращение действительно произошло в 1654 году).

К концу жизни Декарта отношение церкви к его учению стало резко враждебным. Вскоре после его смерти основные сочинения Декарта были внесены в пресловутый «Индекс», а Людовик XIV специальным указом запретил преподавание философии Декарта («картезианства») во всех учебных заведениях Франции.

  1. Вклад Декарта в развитие математики как науки

В 1637 году вышел в свет главный философско-математический труд Декарта, «Рассуждение о методе» (полное название: «Рассуждение о методе, позволяющем направлять свой разум и отыскивать истину в науках»).

В этой книге излагалась аналитическая геометрия, а в приложениях — многочисленные результаты в алгебре, геометрии, оптике (в том числе — правильная формулировка закона преломления света) и многое другое.

Особо следует отметить переработанную им математическую символику Виета, с этого момента близкую к современной. Коэффициенты он обозначал a, b, c…, а неизвестные — x, y, z. Натуральный показатель степени принял современный вид (дробные и отрицательные утвердились благодаря Ньютону). Появилась черта над подкоренным выражением. Уравнения приводятся к канонической форме (в правой части — ноль).

Символическую алгебру Декарт называл «Всеобщей математикой», и писал, что она должна объяснить «всё относящееся к порядку и мере».

Создание аналитической геометрии позволило перевести исследование геометрических свойств кривых и тел на алгебраический язык, то есть анализировать уравнение кривой в некоторой системе координат. Этот перевод имел тот недостаток, что теперь надо было аккуратно определять подлинные геометрические свойства, не зависящие от системы координат (инварианты). Однако достоинства нового метода были исключительно велики, и Декарт продемонстрировал их в той же книге, открыв множество положений, неизвестных древним и современным ему математикам.

В приложении «Геометрия» были даны методы решения алгебраических уравнений (в том числе геометрические и механические), классификация алгебраических кривых. Новый способ задания кривой — с помощью уравнения — был решающим шагом к понятию функции. Декарт формулирует точное «правило знаков» для определения числа положительных корней уравнения, хотя и не доказывает его.

Декарт исследовал алгебраические функции (многочлены), а также ряд «механических» (спирали, циклоида). Для трансцендентных функций, по мнению Декарта, общего метода исследования не существует.

Комплексные числа ещё не рассматривались Декартом на равных правах с вещественными, однако он сформулировал (хотя и не доказал) основную теорему алгебры: общее число вещественных и комплексных корней многочлена равно его степени. Отрицательные корни Декарт по традиции именовал ложными, однако объединял их с положительными термином действительные числа, отделяя от мнимых (комплексных). Этот термин вошёл в математику. Впрочем, Декарт проявил некоторую непоследовательность: коэффициенты a, b, c… у него считались положительными, а случай неизвестного знака специально отмечался многоточием слева.

Все неотрицательные вещественные числа, не исключая иррациональные, рассматриваются Декартом как равноправные; они определяются как отношения длины некоторого отрезка к эталону длины. Позже аналогичное определение числа приняли Ньютон и Эйлер. Декарт пока ещё не отделяет алгебру от геометрии, хотя и меняет их приоритеты; решение уравнения он понимает как построение отрезка с длиной, равной корню уравнения. Этот анахронизм был вскоре отброшен его учениками, прежде всего — английскими, для которых геометрические построения — чисто вспомогательный приём.

Книга «Метод» сразу сделала Декарта признанным авторитетом в математике и оптике. Примечательно, что издана она была на французском, а не на латинском языке. Приложение «Геометрия» было, однако, тут же переведено на латинский и неоднократно издавалось отдельно, разрастаясь от комментариев и став настольной книгой европейских учёных. Труды математиков второй половины XVII века отражают сильнейшее влияние Декарта.

  1. Возможный метод изучения декартовой системы координат на примере легенды об ее открытии

Существует несколько легенд об изобретении системы координат, которая носит имя Декарта.

Однажды Рене Декарт весь день пролежал в кровати, думая о чем-то, а муха жужжала вокруг и не давала ему сосредоточиться. Он стал размышлять, как бы описать положение мухи в любой момент времени математически, чтобы иметь возможность прихлопнуть ее без промаха. И... придумал декартовы координаты, одно из величайших изобретений в истории человечества. Проследим путь открытия системы координат согласно этой легенде в картинках.

Время открытия: 1637 год.

Действующие лица:

Место действия: "кабинет" Рене Декарта.

На рисунке условно показаны три стены кабинета:

стена с дверным проемом

Профильная плоскость

пол - горизонтальная плоскость

стена с оконными проемами

Фронтальная плоскость;

Обратите внимание! Каждые две плоскости пересекаются по прямой

линии.

  1. На фронтальную плоскость садится муха
  1. Предположим, что

Рене Декарт смотрит на

фронтальную плоскость в

перпендикулярном ей

направлении.

Мы видим, что муха

находится на

фронтальной плоскости.

Но как точно определить

ее положение ?

  1. Эврика!

Нужно взять две взаимно перпендикулярные числовые прямые. Точку пересечения прямых обозначим как О - начало системы координат. Одну из прямых назовем ось X, другую - ось Y.

На нашем рисунке расстояние между делениями на числовых прямых

равно единице.

Внимание! Вы можете выбрать начало координат и направление осей

так, как это удобно в конкретной задаче.

  1. Определим точное положение "соавтора" - мухи.

Проведем через точку, где находится муха две прямые:

  1. Параллельно оси X. Прямая пересекает ось Y в точке с числовым

значением, равным 4. Это значение назовем координатой "у" нашего

  1. Параллельно оси Y. Прямая пересекает ось Х в точке с числовым

значением, равным (-2). Это значение назовем координатой "х" нашего объекта.

Принято координаты объекта, обычно точки, записывать в форме (x, y). Для нашей мухи мы можем сказать, что она находится в точке с координатами (-2, 4).

Задача точного определения положения мухи решена!

Новизна идеи состоит в том, что положение точки или объекта на

плоскости определяется с помощью двух пересекающихся осей.

Точно так же можно поступить и для определения положения мухи на

потолке.

Определите положение жука и бабочки на координатной плоскости.

Все эти примеры демонстрируют преимущества координатного способа определения положения мухи, жука и бабочки на плоскости с помощью системы координат Декарта. А как определить координаты тех же насекомых, если они летают, ведь в этом случае они не ползают по поверхности стены или потолка.

Для измерения положения объектов в пространстве в начале 19-го века

была добавлена ось Z, которая направлена перпендикулярно осям X и Y.

На рисунке ось Z направлена вверх.


Представьте себе, что амурский кот сидит на ветке дерева.

Если бы кот упал на горизонтальную плоскость - плоскость XOY, точка

его падения имела координаты (X1, Y1). Кот сидит на высоте Z1 от горизонтальной плоскости. Итак, положение амурского кота в пространстве

можно описать тремя координатами (X1, Y1 Z1), он находится на некоторой

высоте над поверхностью земли.

Координаты могут иметь различные числовые значения, в том числе и

нулевые, это означает, что объект находится на какой-то координатной оси.

Если все три координаты имеют нулевые значения - объект находится в начале системы координат.

Давайте определим координаты различных объектов на следующем

рисунке.

Попугай находится в точке с координатами (0, 0, Z1) .

Бобер слева - (X1 0 0) . Бобер справа - (0 Y1 0) .

Мышь - (X1 Y1 0) . Кот амурский - (X1 Y1 Z1) .

Ответьте на вопрос:

"Куда нужно сесть этому хамелеону?"

  1. Заключение

Декартовая система координат подтолкнула науку математику, вывела ее на совершенно новый уровень. Геометрия стала развиваться стремительнее. В данной работе рассмотрена координатная система на уровне 5-6 классов, чтобы дети заинтересовались и главное поняли, каким образом работать с системой координат. Конечно же в дальнейшем изучение декартовой системы координат будет более углубленное. В более старших классах речь пойдет о трехмерном пространстве. О построении объемных фигур и т. д. Изучение декартовой системы координат является одним из самых важных аспектов математики как науки, и каждый учитель должен донести свои знания до каждого ученика так, чтобы эти знания усвоились на всю жизнь.

  1. Список используемой литературы
  1. Любимов Н.А. Философия Декарта. СПб., 1886
  2. Лят-кер Я.А. Декарт. М., 1975
  3. Фишер К. Декарт: его жизнь, сочинения и учение. СПб., 1994
  4. Мамардашвили М.К. Картезианские размышления. М., 1995
  5. Используемые сайты: https://ru.wikipedia.org


Понравилась статья? Поделитесь с друзьями!