Ecuaciones y desigualdades con módulo. Resolver ecuaciones y desigualdades con módulo.

Hoy, amigos, no habrá mocos ni sentimentalismos. En cambio, te enviaré, sin hacer preguntas, a la batalla con uno de los más oponentes formidables en el curso de álgebra de octavo y noveno grado.

Sí, entendiste todo correctamente: estamos hablando de desigualdades con módulo. Analizaremos cuatro técnicas básicas con las que aprenderá a resolver aproximadamente el 90% de estos problemas. ¿Qué pasa con el 10% restante? Bueno, hablaremos de ellos en una lección aparte :)

Sin embargo, antes de analizar cualquiera de las técnicas, me gustaría recordarte dos datos que ya necesitas saber. De lo contrario, corre el riesgo de no comprender en absoluto el material de la lección de hoy.

Lo que ya necesitas saber

El Capitán Obviedad parece insinuar que para resolver desigualdades con módulo es necesario saber dos cosas:

  1. Cómo se resuelven las desigualdades;
  2. ¿Qué es un módulo?

Empecemos por el segundo punto.

Definición del módulo

Aquí todo es sencillo. Hay dos definiciones: algebraica y gráfica. Para empezar - algebraico:

Definición. El módulo de un número $x$ es el número mismo, si no es negativo, o el número opuesto, si el $x$ original sigue siendo negativo.

Está escrito así:

\[\izquierda| x \right|=\left\( \begin(align) & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\\end(align) \right.\]

Discurso en lenguaje sencillo, el módulo es "un número sin menos". Y es en esta dualidad (en algunos lugares no hay que hacer nada con el número original, pero en otros hay que eliminar algún tipo de signo negativo) donde radica toda la dificultad para los estudiantes principiantes.

También hay una definición geométrica. También es útil saberlo, pero recurriremos a él sólo en casos complejos y algunos especiales, donde el enfoque geométrico es más conveniente que el algebraico (spoiler: hoy no).

Definición. Sea el punto $a$ marcado en la recta numérica. Entonces el módulo $\left| x-a \right|$ es la distancia desde el punto $x$ al punto $a$ en esta línea.

Si haces un dibujo, obtendrás algo como esto:


Definición del módulo gráfico.

De una forma u otra, de la definición de un módulo se desprende inmediatamente su propiedad clave: el módulo de un número es siempre una cantidad no negativa. Este hecho será un hilo rojo que atravesará toda nuestra narrativa de hoy.

Resolver desigualdades. método de intervalo

Ahora veamos las desigualdades. Hay muchísimos de ellos, pero nuestra tarea ahora es poder resolver al menos el más simple de ellos. Los que bajan a desigualdades lineales, así como al método del intervalo.

Tengo dos grandes lecciones sobre este tema (por cierto, muy, MUY útiles; recomiendo estudiarlas):

  1. Método de intervalos para desigualdades (especialmente mire el video);
  2. Las desigualdades racionales fraccionarias son muy lección extensa, pero después no tendrás ninguna pregunta.

Si sabes todo esto, si la frase “pasemos de la desigualdad a la ecuación” no te provoca un vago deseo de darte contra la pared, entonces estás listo: bienvenido al infierno al tema principal de la lección :)

1. Desigualdades de la forma “El módulo es menor que la función”

Este es uno de los problemas más comunes con los módulos. Se requiere resolver una desigualdad de la forma:

\[\izquierda| miedo\derecho| \ltg\]

Las funciones $f$ y $g$ pueden ser cualquier cosa, pero normalmente son polinomios. Ejemplos de tales desigualdades:

\[\begin(alinear) & \left| 2x+3 \derecha| \ltx+7; \\ & \izquierda| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \izquierda| ((x)^(2))-2\izquierda| x \right|-3 \right| \lt 2. \\\end(align)\]

Todos ellos se pueden resolver literalmente en una línea según el siguiente esquema:

\[\izquierda| Miedo| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\( \begin(align) & f \lt g, \\ & f \gt -g \\\end(align) \derecha.\derecha)\]

Es fácil ver que nos deshacemos del módulo, pero a cambio obtenemos una doble desigualdad (o, lo que es lo mismo, un sistema de dos desigualdades). Pero esta transición tiene en cuenta absolutamente todo. posibles problemas: si el número bajo el módulo es positivo, el método funciona; si es negativo, todavía funciona; e incluso con la función más inadecuada en lugar de $f$ o $g$, el método seguirá funcionando.

Naturalmente, surge la pregunta: ¿no podría ser más sencillo? Lamentablemente, no es posible. Este es el objetivo del módulo.

Pero basta ya de filosofar. Resolvamos un par de problemas:

Tarea. Resuelve la desigualdad:

\[\izquierda| 2x+3 \derecha| \ltx+7\]

Solución. Entonces, tenemos ante nosotros una desigualdad clásica de la forma “el módulo es menor”: ni siquiera hay nada que transformar. Trabajamos según el algoritmo:

\[\begin(alinear) & \left| Miedo| \lt g\Rightarrow -g \lt f \lt g; \\ & \izquierda| 2x+3 \derecha| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\\end(align)\]

No te apresures a abrir los paréntesis precedidos por un "menos": es muy posible que debido a tu prisa cometas un error ofensivo.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\( \begin(align) & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end(align) \right.\]

\[\left\( \begin(align) & -3x \lt 10 \\ & x \lt 4 \\ \end(align) \right.\]

\[\left\( \begin(align) & x \gt -\frac(10)(3) \\ & x \lt 4 \\ \end(align) \right.\]

El problema se redujo a dos desigualdades elementales. Observemos sus soluciones en rectas numéricas paralelas:

Intersección de conjuntos

La intersección de estos conjuntos será la respuesta.

Respuesta: $x\in \left(-\frac(10)(3);4 \right)$

Tarea. Resuelve la desigualdad:

\[\izquierda| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Solución. Esta tarea es un poco más difícil. Primero, aislamos el módulo moviendo el segundo término hacia la derecha:

\[\izquierda| ((x)^(2))+2x-3 \derecha| \lt -3\left(x+1 \right)\]

Obviamente, nuevamente tenemos una desigualdad de la forma “el módulo es más pequeño”, por lo que nos deshacemos del módulo usando el algoritmo ya conocido:

\[-\left(-3\left(x+1 \right) \right) \lt ((x)^(2))+2x-3 \lt -3\left(x+1 \right)\]

Ahora atención: alguien dirá que soy un poco pervertido con todos estos paréntesis. Pero permítanme recordarles una vez más que nuestro objetivo clave es resuelve correctamente la desigualdad y obtén la respuesta. Más adelante, cuando hayas dominado perfectamente todo lo descrito en esta lección, podrás pervertirlo tú mismo como quieras: abrir paréntesis, añadir menos, etc.

Para empezar, simplemente nos desharemos del doble menos de la izquierda:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right) =3\izquierda(x+1 \derecha)\]

Ahora abramos todos los corchetes en la doble desigualdad:

Pasemos a la doble desigualdad. Esta vez los cálculos serán más serios:

\[\left\( \begin(align) & ((x)^(2))+2x-3 \lt -3x-3 \\ & 3x+3 \lt ((x)^(2))+2x -3 \\ \end(align) \right.\]

\[\left\( \begin(align) & ((x)^(2))+5x \lt 0 \\ & ((x)^(2))-x-6 \gt 0 \\ \end( alinear)\derecha.\]

Ambas desigualdades son cuadráticas y se pueden resolver usando el método del intervalo (por eso digo: si no sabes qué es esto, mejor no tomar módulos todavía). Pasemos a la ecuación de la primera desigualdad:

\[\begin(align) & ((x)^(2))+5x=0; \\ & x\left(x+5 \right)=0; \\ & ((x)_(1))=0;((x)_(2))=-5. \\\end(alinear)\]

Como puede ver, el resultado es una ecuación cuadrática incompleta, que se puede resolver de forma elemental. Ahora veamos la segunda desigualdad del sistema. Allí tendrás que aplicar el teorema de Vieta:

\[\begin(align) & ((x)^(2))-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& ((x)_(1))=3;((x)_(2))=-2. \\\end(alinear)\]

Marcamos los números resultantes en dos líneas paralelas (separadas para la primera desigualdad y separadas para la segunda):

Nuevamente, dado que estamos resolviendo un sistema de desigualdades, nos interesa la intersección de los conjuntos sombreados: $x\in \left(-5;-2 \right)$. Ésta es la respuesta.

Respuesta: $x\in \left(-5;-2 \right)$

Creo que después de estos ejemplos el esquema de solución es sumamente claro:

  1. Aísle el módulo moviendo todos los demás términos a la parte opuesta desigualdades. Así obtenemos una desigualdad de la forma $\left| Miedo| \ltg$.
  2. Resuelva esta desigualdad deshaciéndose del módulo según el esquema descrito anteriormente. En algún momento será necesario pasar de la doble desigualdad a un sistema de dos expresiones independientes, cada uno de los cuales ya se puede resolver por separado.
  3. Finalmente, todo lo que queda es intersecar las soluciones de estas dos expresiones independientes, y eso es todo, obtendremos la respuesta final.

Existe un algoritmo similar para las desigualdades. siguiente tipo, cuando el módulo más características. Sin embargo, hay un par de “peros” serios. Hablaremos ahora de estos “peros”.

2. Desigualdades de la forma “El módulo es mayor que la función”

Se ven así:

\[\izquierda| Miedo| \gtg\]

¿Parecido al anterior? Parece. Y, sin embargo, estos problemas se resuelven de una manera completamente diferente. Formalmente, el esquema es el siguiente:

\[\izquierda| Miedo| \gt g\Rightarrow \left[ \begin(align) & f \gt g, \\ & f \lt -g \\\end(align) \right.\]

En otras palabras, consideramos dos casos:

  1. Primero, simplemente ignoramos el módulo y resolvemos la desigualdad habitual;
  2. Luego, en esencia, expandimos el módulo con el signo menos y luego multiplicamos ambos lados de la desigualdad por −1, mientras tengo el signo.

Las opciones se combinan corchete, es decir. Tenemos ante nosotros una combinación de dos requisitos.

Tenga en cuenta nuevamente: esto no es un sistema, sino una totalidad, por lo tanto en la respuesta los conjuntos se combinan, no se cruzan. Este diferencia fundamental del punto anterior!

En general, muchos estudiantes están completamente confundidos con las uniones y las intersecciones, así que solucionemos este problema de una vez por todas:

  • "∪" es un signo sindical. De hecho, esta es una letra estilizada "U" que nos llegó desde idioma en Inglés y es una abreviatura de “Unión”, es decir "Asociaciones".
  • "∩" es la señal de intersección. Esta basura no surgió de ninguna parte, sino que simplemente apareció como un contrapunto a “∪”.

Para que sea aún más fácil de recordar, simplemente dibuje piernas en estos carteles para hacer anteojos (pero no me acuse ahora de promover la adicción a las drogas y el alcoholismo: si está estudiando seriamente esta lección, entonces ya es un drogadicto):

Diferencia entre intersección y unión de conjuntos.

Traducido al ruso, esto significa lo siguiente: la unión (totalidad) incluye elementos de ambos conjuntos, por lo tanto, de ninguna manera es menos que cada uno de ellos; pero la intersección (sistema) incluye solo aquellos elementos que están simultáneamente tanto en el primer conjunto como en el segundo. Por lo tanto, la intersección de conjuntos nunca es mayor que los conjuntos fuente.

¿Entonces quedó más claro? Genial. Pasemos a la práctica.

Tarea. Resuelve la desigualdad:

\[\izquierda| 3x+1 \derecha| \gt 5-4x\]

Solución. Procedemos según el esquema:

\[\izquierda| 3x+1 \derecha| \gt 5-4x\Rightarrow \left[ \begin(align) & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\\end(align) \ bien.\]

Resolvemos cada desigualdad de la población:

\[\left[ \begin(align) & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end(align) \right.\]

\[\left[ \begin(align) & 7x \gt 4 \\ & -x \lt -6 \\ \end(align) \right.\]

\[\left[ \begin(align) & x \gt 4/7\ \\ & x \gt 6 \\ \end(align) \right.\]

Marcamos cada conjunto resultante en la recta numérica y luego los combinamos:

unión de conjuntos

Es bastante obvio que la respuesta será $x\in \left(\frac(4)(7);+\infty \right)$

Respuesta: $x\in \left(\frac(4)(7);+\infty \right)$

Tarea. Resuelve la desigualdad:

\[\izquierda| ((x)^(2))+2x-3 \derecha| \gtx\]

Solución. ¿Bien? Nada, todo es igual. Pasamos de una desigualdad con módulo a un conjunto de dos desigualdades:

\[\izquierda| ((x)^(2))+2x-3 \derecha| \gt x\Rightarrow \left[ \begin(align) & ((x)^(2))+2x-3 \gt x \\ & ((x)^(2))+2x-3 \lt -x \\\end(align) \right.\]

Resolvemos cada desigualdad. Desafortunadamente, las raíces allí no serán muy buenas:

\[\begin(align) & ((x)^(2))+2x-3 \gt x; \\ & ((x)^(2))+x-3 \gt 0; \\&D=1+12=13; \\ & x=\frac(-1\pm \sqrt(13))(2). \\\end(alinear)\]

La segunda desigualdad también es un poco descabellada:

\[\begin(align) & ((x)^(2))+2x-3 \lt -x; \\ & ((x)^(2))+3x-3 \lt 0; \\&D=9+12=21; \\ & x=\frac(-3\pm \sqrt(21))(2). \\\end(alinear)\]

Ahora necesitas marcar estos números en dos ejes: un eje para cada desigualdad. Sin embargo, debes marcar los puntos en el orden correcto: cuanto mayor sea el número, más se moverá el punto hacia la derecha.

Y aquí nos espera una configuración. Si todo está claro con los números $\frac(-3-\sqrt(21))(2) \lt \frac(-1-\sqrt(13))(2)$ (los términos en el numerador del primer fracción son menores que los términos en el numerador de la segunda, por lo que la suma también es menor), con los números $\frac(-3-\sqrt(13))(2) \lt \frac(-1+\sqrt (21))(2)$ tampoco habrá dificultades (un número positivo obviamente es más negativo), luego con el último par no todo está tan claro. ¿Cuál es mayor: $\frac(-3+\sqrt(21))(2)$ o $\frac(-1+\sqrt(13))(2)$? La ubicación de los puntos en las rectas numéricas y, de hecho, la respuesta dependerán de la respuesta a esta pregunta.

Entonces comparemos:

\[\begin(matriz) \frac(-1+\sqrt(13))(2)\vee \frac(-3+\sqrt(21))(2) \\ -1+\sqrt(13)\ vee -3+\sqrt(21) \\ 2+\sqrt(13)\vee \sqrt(21) \\\end(matriz)\]

Aislamos la raíz, obtuvimos números no negativos en ambos lados de la desigualdad, por lo que tenemos derecho a elevar ambos lados al cuadrado:

\[\begin(matriz) ((\left(2+\sqrt(13) \right))^(2))\vee ((\left(\sqrt(21) \right))^(2)) \ \ 4+4\sqrt(13)+13\vee 21 \\ 4\sqrt(13)\vee 3 \\\end(matriz)\]

Creo que es una obviedad que $4\sqrt(13) \gt 3$, entonces $\frac(-1+\sqrt(13))(2) \gt \frac(-3+\sqrt(21)) ( 2)$, los puntos finales de los ejes quedarán así:

Un caso de raíces feas

Permítanme recordarles que estamos resolviendo una colección, por lo que la respuesta será una unión, no una intersección de conjuntos sombreados.

Respuesta: $x\in \left(-\infty ;\frac(-3+\sqrt(21))(2) \right)\bigcup \left(\frac(-1+\sqrt(13))(2 );+\infty \right)$

Como puede ver, nuestro esquema funciona muy bien para ambos. tareas simples, y para los muy duros. Lo único " punto débil"En este enfoque, es necesario comparar de manera competente los numeros racionales(y créanme: no son sólo las raíces). Pero se dedicará una lección aparte (y muy seria) a las cuestiones de comparación. Y seguimos adelante.

3. Desigualdades con “colas” no negativas

Ahora llegamos a la parte más interesante. Estas son desigualdades de la forma:

\[\izquierda| miedo\derecho| \gt\izquierda| g\derecho|\]

En términos generales, el algoritmo del que hablaremos ahora es correcto sólo para el módulo. Funciona en todas las desigualdades donde se garantizan expresiones no negativas a la izquierda y a la derecha:

¿Qué hacer con estas tareas? Solo recuerda:

En desigualdades con “colas” no negativas, ambos lados pueden elevarse a cualquier grado natural. No habrá restricciones adicionales.

En primer lugar, nos interesará la cuadratura: quema módulos y raíces:

\[\begin(align) & ((\left(\left| f \right| \right))^(2))=((f)^(2)); \\ & ((\left(\sqrt(f) \right))^(2))=f. \\\end(alinear)\]

Pero no confundas esto con sacar la raíz de un cuadrado:

\[\sqrt(((f)^(2)))=\izquierda| f \right|\ne f\]

¡Se cometieron innumerables errores cuando un estudiante olvidó instalar un módulo! Pero esa es una historia completamente diferente (es como ecuaciones irracionales), por lo que no entraremos en esto ahora. Resolvamos mejor un par de problemas:

Tarea. Resuelve la desigualdad:

\[\izquierda| x+2 \right|\ge \left| 1-2x \derecha|\]

Solución. Notemos inmediatamente dos cosas:

  1. Esta no es una desigualdad estricta. Se perforarán los puntos de la recta numérica.
  2. Ambos lados de la desigualdad son obviamente no negativos (esta es una propiedad del módulo: $\left| f\left(x \right) \right|\ge 0$).

Por lo tanto, podemos elevar al cuadrado ambos lados de la desigualdad para deshacernos del módulo y resolver el problema usando el método de intervalo habitual:

\[\begin(align) & ((\left(\left| x+2 \right| \right))^(2))\ge ((\left(\left| 1-2x \right| \right) )^(2)); \\ & ((\left(x+2 \right))^(2))\ge ((\left(2x-1 \right))^(2)). \\\end(alinear)\]

En el último paso hice un poco de trampa: cambié la secuencia de términos, aprovechando la uniformidad del módulo (de hecho, multipliqué la expresión $1-2x$ por −1).

\[\begin(align) & ((\left(2x-1 \right))^(2))-((\left(x+2 \right))^(2))\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \ derecha)\derecha)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end(align)\]

Resolvemos usando el método del intervalo. Pasemos de la desigualdad a la ecuación:

\[\begin(align) & \left(x-3 \right)\left(3x+1 \right)=0; \\ & ((x)_(1))=3;((x)_(2))=-\frac(1)(3). \\\end(alinear)\]

Marcamos las raíces encontradas en la recta numérica. Una vez más: ¡todos los puntos están sombreados porque la desigualdad original no es estricta!

Deshacerse del signo del módulo

Permítanme recordarles a aquellos que son especialmente testarudos: tomamos los signos de la última desigualdad, que fue escrita antes de pasar a la ecuación. Y pintamos sobre las áreas requeridas en la misma desigualdad. En nuestro caso es $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Bueno, eso es todo. El problema está resuelto.

Respuesta: $x\in \left[ -\frac(1)(3);3 \right]$.

Tarea. Resuelve la desigualdad:

\[\izquierda| ((x)^(2))+x+1 \right|\le \left| ((x)^(2))+3x+4 \derecha|\]

Solución. Hacemos todo igual. No haré comentarios, solo mira la secuencia de acciones.

Cuadrarlo:

\[\begin(align) & ((\left(\left| ((x)^(2))+x+1 \right| \right))^(2))\le ((\left(\left | ((x)^(2))+3x+4 \derecha| \derecha))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))\le ((\left(((x)^(2))+3x+4 \derecha))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))-((\left(((x)^(2))+3x+4 \ derecha))^(2))\le 0; \\ & \left(((x)^(2))+x+1-((x)^(2))-3x-4 \right)\times \\ & \times \left(((x) ^(2))+x+1+((x)^(2))+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)\le 0. \\\end(align)\]

Método de intervalo:

\[\begin(align) & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)=0 \\ & -2x-3=0\ Flecha derecha x=-1,5; \\ & 2((x)^(2))+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing . \\\end(alinear)\]

Sólo hay una raíz en la recta numérica:

La respuesta es un intervalo completo.

Respuesta: $x\in \left[ -1.5;+\infty \right)$.

Una pequeña nota sobre última tarea. Como señaló con precisión uno de mis alumnos, ambas expresiones submodulares en esta desigualdad son obviamente positivas, por lo que el signo del módulo se puede omitir sin dañar la salud.

Pero este es un nivel de pensamiento completamente diferente y un enfoque diferente: convencionalmente se le puede llamar el método de las consecuencias. Sobre esto, en una lección separada. Ahora pasemos a la parte final de la lección de hoy y veamos un algoritmo universal que siempre funciona. Incluso cuando todos los enfoques anteriores fueron impotentes :)

4. Método de enumeración de opciones.

¿Qué pasa si todas estas técnicas no ayudan? ¿Si la desigualdad no se puede reducir a colas no negativas, si es imposible aislar el módulo, si en general hay dolor, tristeza, melancolía?

Entonces entra en escena la “artillería pesada” de todas las matemáticas: el método de la fuerza bruta. En relación con las desigualdades con módulo, se ve así:

  1. Escriba todas las expresiones submodulares e igualelas a cero;
  2. Resuelve las ecuaciones resultantes y marca las raíces encontradas en una recta numérica;
  3. La línea recta se dividirá en varios tramos, dentro de los cuales cada módulo tiene un signo fijo y por tanto se revela de forma única;
  4. Resuelva la desigualdad en cada una de estas secciones (puede considerar por separado los límites de las raíces obtenidos en el paso 2, para mayor confiabilidad). Combine los resultados: esta será la respuesta :)

Entonces ¿cómo? ¿Débil? ¡Fácilmente! Sólo por mucho tiempo. Veamos en la práctica:

Tarea. Resuelve la desigualdad:

\[\izquierda| x+2 \derecha| \lt \left| x-1 \right|+x-\frac(3)(2)\]

Solución. Esta basura no se reduce a desigualdades como $\left| Miedo| \lt g$, $\izquierda| Miedo| \gt g$ o $\left| Miedo| \lt \left| g \right|$, entonces actuamos con anticipación.

Escribimos expresiones submodulares, las igualamos a cero y encontramos las raíces:

\[\begin(align) & x+2=0\Rightarrow x=-2; \\ & x-1=0\Flecha derecha x=1. \\\end(alinear)\]

En total, tenemos dos raíces que dividen la recta numérica en tres secciones, dentro de las cuales cada módulo se revela de forma única:

Partición de la recta numérica por ceros de funciones submodulares

Veamos cada sección por separado.

1. Sea $x \lt -2$. Entonces ambas expresiones submodulares son negativas y la desigualdad original se reescribirá de la siguiente manera:

\[\begin(align) & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1.5 \\ & -x-2 \lt -x+1+ x- 1.5 \\ & x \gt 1.5 \\\end(align)\]

Tenemos una limitación bastante simple. Crucémoslo con la suposición inicial de que $x \lt -2$:

\[\left\( \begin(align) & x \lt -2 \\ & x \gt 1.5 \\\end(align) \right.\Rightarrow x\in \varnothing \]

Obviamente, la variable $x$ no puede ser simultáneamente menor que −2 y mayor que 1,5. No hay soluciones en este ámbito.

1.1. Consideremos por separado el caso límite: $x=-2$. Simplemente sustituyamos este número en la desigualdad original y comprobemos: ¿es cierto?

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1.5 \right|)_(x=-2) ) \ \ & 0 \lt \left| -3\derecha|-2-1.5; \\ & 0 \lt 3-3.5; \\ & 0 \lt -0.5\Rightarrow \varnothing . \\\end(alinear)\]

Es obvio que la cadena de cálculos nos ha llevado a una desigualdad incorrecta. Por lo tanto, la desigualdad original también es falsa y $x=-2$ no está incluido en la respuesta.

2. Sea ahora $-2 \lt x \lt 1$. El módulo izquierdo ya se abrirá con un "más", pero el derecho todavía se abrirá con un "menos". Tenemos:

\[\begin(align) & x+2 \lt -\left(x-1 \right)+x-1.5 \\ & x+2 \lt -x+1+x-1.5 \\& x \lt - 2.5 \\\end(alinear)\]

Nuevamente nos cruzamos con el requisito original:

\[\left\( \begin(align) & x \lt -2.5 \\ & -2 \lt x \lt 1 \\\end(align) \right.\Rightarrow x\in \varnothing \]

Y nuevamente, el conjunto de soluciones está vacío, ya que no hay números que sean menores que −2,5 y mayores que −2.

2.1. Y otra vez caso especial: $x=1$. Sustituimos en la desigualdad original:

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1.5 \right|)_(x=1)) \\ &\izquierda| 3\derecha| \lt \left| 0\derecha|+1-1,5; \\ & 3 \lt -0,5; \\ & 3 \lt -0.5\Rightarrow \varnothing . \\\end(alinear)\]

Al igual que en el “caso especial” anterior, el número $x=1$ claramente no está incluido en la respuesta.

3. La última parte de la línea: $x \gt 1$. Aquí todos los módulos se abren con un signo más:

\[\begin(align) & x+2 \lt x-1+x-1.5 \\ & x+2 \lt x-1+x-1.5 \\ & x \gt 4.5 \\ \end(align)\ ]

Y nuevamente cruzamos el conjunto encontrado con la restricción original:

\[\left\( \begin(align) & x \gt 4.5 \\ & x \gt 1 \\\end(align) \right.\Rightarrow x\in \left(4.5;+\infty \right)\ ]

Bueno, ¡por fin! Hemos encontrado un intervalo que será la respuesta.

Respuesta: $x\in \left(4,5;+\infty \right)$

Finalmente, una nota que puede salvarte de errores estúpidos al resolver problemas reales:

Las soluciones a desigualdades con módulos suelen representar conjuntos continuos en la recta numérica: intervalos y segmentos. Mucho menos común puntos aislados. Y con menos frecuencia sucede que el límite de la solución (el final del segmento) coincide con el límite del rango considerado.

En consecuencia, si los límites (los mismos “casos especiales”) no se incluyen en la respuesta, entonces es casi seguro que las áreas a la izquierda y a la derecha de estos límites no se incluirán en la respuesta. Y viceversa: la frontera entró en la respuesta, lo que significa que algunas áreas a su alrededor también serán respuestas.

Tenga esto en cuenta al revisar sus soluciones.

Módulo de números este número en sí se llama si no es negativo, o el mismo número con el signo opuesto si es negativo.

Por ejemplo, el módulo del número 6 es 6 y el módulo del número -6 también es 6.

Es decir, el módulo de un número se entiende como un valor absoluto, valor absoluto este número sin tener en cuenta su signo.

Se designa de la siguiente manera: |6|, | incógnita|, |A| etc.

(Más detalles en el apartado “Módulo numérico”).

Ecuaciones con módulo.

Ejemplo 1 . Resuelve la ecuación|10 incógnita - 5| = 15.

Solución.

Según la regla, la ecuación equivale a la combinación de dos ecuaciones:

10incógnita - 5 = 15
10incógnita - 5 = -15

Decidimos:

10incógnita = 15 + 5 = 20
10incógnita = -15 + 5 = -10

incógnita = 20: 10
incógnita = -10: 10

incógnita = 2
incógnita = -1

Respuesta: incógnita 1 = 2, incógnita 2 = -1.

Ejemplo 2 . Resuelve la ecuación|2 incógnita + 1| = incógnita + 2.

Solución.

Dado que el módulo es un número no negativo, entonces incógnita+ 2 ≥ 0. En consecuencia:

incógnita ≥ -2.

Hagamos dos ecuaciones:

2incógnita + 1 = incógnita + 2
2incógnita + 1 = -(incógnita + 2)

Decidimos:

2incógnita + 1 = incógnita + 2
2incógnita + 1 = -incógnita - 2

2incógnita - incógnita = 2 - 1
2incógnita + incógnita = -2 - 1

incógnita = 1
incógnita = -1

Ambos números son mayores que -2. Entonces ambas son raíces de la ecuación.

Respuesta: incógnita 1 = -1, incógnita 2 = 1.

Ejemplo 3 . Resuelve la ecuación

|incógnita + 3| - 1
————— = 4
incógnita - 1

Solución.

La ecuación tiene sentido si el denominador no es igual a cero- significa si incógnita≠ 1. Tengamos en cuenta esta condición. Nuestra primera acción es simple: no sólo nos deshacemos de la fracción, sino que la transformamos para obtener el módulo en su forma pura:

|incógnita+ 3| - 1 = 4 · ( incógnita - 1),

|incógnita + 3| - 1 = 4incógnita - 4,

|incógnita + 3| = 4incógnita - 4 + 1,

|incógnita + 3| = 4incógnita - 3.

Ahora sólo tenemos una expresión bajo el módulo en el lado izquierdo de la ecuación. Sigamos adelante.
El módulo de un número es un número no negativo, es decir, debe ser mayor que cero o igual a cero. En consecuencia, resolvemos la desigualdad:

4incógnita - 3 ≥ 0

4incógnita ≥ 3

incógnita ≥ 3/4

Por tanto, tenemos una segunda condición: la raíz de la ecuación debe ser al menos 3/4.

De acuerdo con la regla, formamos un conjunto de dos ecuaciones y las resolvemos:

incógnita + 3 = 4incógnita - 3
incógnita + 3 = -(4incógnita - 3)

incógnita + 3 = 4incógnita - 3
incógnita + 3 = -4incógnita + 3

incógnita - 4incógnita = -3 - 3
incógnita + 4incógnita = 3 - 3

incógnita = 2
incógnita = 0

Recibimos dos respuestas. Comprobemos si son raíces de la ecuación original.

Teníamos dos condiciones: la raíz de la ecuación no puede ser igual a 1 y debe ser al menos 3/4. Eso es incógnita ≠ 1, incógnita≥ 3/4. Ambas condiciones corresponden solo a una de las dos respuestas recibidas: el número 2. Esto significa que solo esta es la raíz de la ecuación original.

Respuesta: incógnita = 2.

Desigualdades con módulo.

Ejemplo 1 . Resolver desigualdad| incógnita - 3| < 4

Solución.

La regla del módulo establece:

|A| = A, Si A ≥ 0.

|A| = -A, Si A < 0.

El módulo puede tener números negativos y no negativos. Entonces tenemos que considerar ambos casos: incógnita- 3 ≥ 0 y incógnita - 3 < 0.

1) cuando incógnita- 3 ≥ 0 nuestra desigualdad original permanece como está, sólo que sin el signo del módulo:
incógnita - 3 < 4.

2) cuando incógnita - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(incógnita - 3) < 4.

Abriendo los paréntesis obtenemos:

-incógnita + 3 < 4.

Así, de estas dos condiciones llegamos a la unificación de dos sistemas de desigualdades:

incógnita - 3 ≥ 0
incógnita - 3 < 4

incógnita - 3 < 0
-incógnita + 3 < 4

Resolvámoslos:

incógnita ≥ 3
incógnita < 7

incógnita < 3
incógnita > -1

Entonces, nuestra respuesta es una unión de dos conjuntos:

3 ≤ incógnita < 7 U -1 < incógnita < 3.

Determine el menor y valor más alto. Estos son -1 y 7. Además incógnita mayor que -1 pero menor que 7.
Además, incógnita≥ 3. Esto significa que la solución a la desigualdad es el conjunto completo de números del -1 al 7, excluyendo estos números extremos.

Respuesta: -1 < incógnita < 7.

O: incógnita ∈ (-1; 7).

Complementos.

1) Existe una forma más sencilla y breve de resolver nuestra desigualdad: gráficamente. Para hacer esto, dibuje un eje horizontal (Fig. 1).

Expresión | incógnita - 3| < 4 означает, что расстояние от точки incógnita al punto 3 es inferior a cuatro unidades. Marcamos el número 3 en el eje y contamos 4 divisiones a la izquierda y a la derecha del mismo. A la izquierda llegaremos al punto -1, a la derecha - al punto 7. Así, los puntos incógnita simplemente los vimos sin calcularlos.

Además, según la condición de desigualdad, -1 y 7 no están incluidos en el conjunto de soluciones. Así, obtenemos la respuesta:

1 < incógnita < 7.

2) Pero hay otra solución que es incluso más sencilla que el método gráfico. Para ello, nuestra desigualdad debe presentarse de la siguiente forma:

4 < incógnita - 3 < 4.

Después de todo, así es según la regla del módulo. El número no negativo 4 y el número negativo similar -4 son los límites para resolver la desigualdad.

4 + 3 < incógnita < 4 + 3

1 < incógnita < 7.

Ejemplo 2 . Resolver desigualdad| incógnita - 2| ≥ 5

Solución.

Este ejemplo es significativamente diferente del anterior. El lado izquierdo es mayor que 5 o igual a 5. C punto geométrico Desde el punto de vista, la solución a la desigualdad son todos los números que están a una distancia de 5 unidades o más del punto 2 (Fig. 2). El gráfico muestra que estos son todos números menores o iguales a -3 y mayores o iguales a 7. Esto significa que ya hemos recibido la respuesta.

Respuesta: -3 ≥ incógnita ≥ 7.

De paso, resolvamos la misma desigualdad reordenando miembro gratis izquierda y derecha con signo opuesto:

5 ≥ incógnita - 2 ≥ 5

5 + 2 ≥ incógnita ≥ 5 + 2

La respuesta es la misma: -3 ≥ incógnita ≥ 7.

O: incógnita ∈ [-3; 7]

El ejemplo está solucionado.

Ejemplo 3 . Resolver desigualdad 6 incógnita 2 - | incógnita| - 2 ≤ 0

Solución.

Número incógnita puede ser un número positivo, un número negativo o cero. Por tanto, debemos tener en cuenta las tres circunstancias. Como sabes, se tienen en cuenta en dos desigualdades: incógnita≥ 0 y incógnita < 0. При incógnita≥ 0 simplemente reescribimos nuestra desigualdad original tal como está, solo que sin el signo del módulo:

6x2- incógnita - 2 ≤ 0.

Ahora sobre el segundo caso: si incógnita < 0. Модулем número negativo es el mismo número con el signo opuesto. Es decir, escribimos el número debajo del módulo con el signo opuesto y nuevamente nos liberamos del signo del módulo:

6incógnita 2 - (-incógnita) - 2 ≤ 0.

Ampliando los corchetes:

6incógnita 2 + incógnita - 2 ≤ 0.

Así, obtuvimos dos sistemas de ecuaciones:

6incógnita 2 - incógnita - 2 ≤ 0
incógnita ≥ 0

6incógnita 2 + incógnita - 2 ≤ 0
incógnita < 0

Necesitamos resolver desigualdades en sistemas, y esto significa que necesitamos encontrar las raíces de dos ecuaciones cuadráticas. Para hacer esto, igualamos los lados izquierdos de las desigualdades a cero.

Empecemos por el primero:

6incógnita 2 - incógnita - 2 = 0.

Cómo resolver una ecuación cuadrática: consulte la sección "Ecuación cuadrática". Inmediatamente nombraremos la respuesta:

incógnita 1 = -1/2, x 2 = 2/3.

Del primer sistema de desigualdades obtenemos que la solución a la desigualdad original es el conjunto completo de números desde -1/2 hasta 2/3. Escribimos la unión de soluciones en incógnita ≥ 0:
[-1/2; 2/3].

Ahora resolvamos la segunda ecuación cuadrática:

6incógnita 2 + incógnita - 2 = 0.

Sus raíces:

incógnita 1 = -2/3, incógnita 2 = 1/2.

Conclusión: cuando incógnita < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Combinemos las dos respuestas y obtengamos la respuesta final: la solución es el conjunto completo de números desde -2/3 hasta 2/3, incluidos estos números extremos.

Respuesta: -2/3 ≤ incógnita ≤ 2/3.

O: incógnita ∈ [-2/3; 2/3].

Esta calculadora matemática en línea te ayudará resolver una ecuación o desigualdad con módulos. Programa para resolver ecuaciones y desigualdades con módulos no sólo da la respuesta al problema, sino que conduce solución detallada con explicaciones

, es decir. muestra el proceso de obtención del resultado. Este programa puede ser útil para estudiantes de secundaria. escuelas secundarias en preparación para pruebas y exámenes, al evaluar conocimientos antes del Examen Estatal Unificado, para que los padres controlen la solución de muchos problemas de matemáticas y álgebra.¿O tal vez le resulte demasiado caro contratar un tutor o comprar libros de texto nuevos? ¿O simplemente quieres hacerlo lo más rápido posible?

tarea ¿En matemáticas o álgebra? En este caso, también puede utilizar nuestros programas con soluciones detalladas. De esta forma podrás realizar tu propia formación y/o formación tuya.

hermanos menores

o hermanas, mientras aumenta el nivel de educación en el campo de los problemas a resolver.

o abs(x) - módulo x

Ingrese una ecuación o desigualdad con módulos
x^2 + 2|x-1| -6 = 0
Resolver una ecuación o desigualdad

Se descubrió que algunos scripts necesarios para resolver este problema no estaban cargados y es posible que el programa no funcione.
Es posible que tengas habilitado AdBlock.
En este caso, desactívelo y actualice la página.

JavaScript está deshabilitado en su navegador.
Para que aparezca la solución, debe habilitar JavaScript.
Aquí hay instrucciones sobre cómo habilitar JavaScript en su navegador. Porque Hay mucha gente dispuesta a solucionar el problema, tu solicitud ha quedado en cola.


En unos segundos la solución aparecerá a continuación. Espere por favor, entonces puedes escribir sobre esto en el formulario de comentarios.
no lo olvides indicar que tarea tu decides que entrar en los campos.



Nuestros juegos, rompecabezas, emuladores:

Un poco de teoría.

Ecuaciones y desigualdades con módulos.

En un curso de álgebra escolar básico, es posible que encuentres las ecuaciones y desigualdades con módulos más simples. Para solucionarlos puedes utilizar método geométrico, basado en el hecho de que \(|x-a| \) es la distancia en la recta numérica entre los puntos x y a: \(|xa| = \rho (x;\; a)\). Por ejemplo, para resolver la ecuación \(|x-3|=2\) necesitas encontrar puntos en la recta numérica que estén distantes del punto 3 a una distancia de 2. Hay dos de esos puntos: \(x_1=1 \) y \(x_2=5\) .

Resolviendo la desigualdad \(|2x+7|

Pero la principal forma de resolver ecuaciones y desigualdades con módulos está asociada a la llamada “revelación del módulo por definición”:
si \(a \geq 0 \), entonces \(|a|=a \);
si \(a Como regla general, una ecuación (desigualdad) con módulos se reduce a un conjunto de ecuaciones (desigualdades) que no contienen el signo del módulo.

Además de la definición anterior, se utilizan las siguientes declaraciones:
1) Si \(c > 0\), entonces la ecuación \(|f(x)|=c \) es equivalente al conjunto de ecuaciones: \(\left[\begin(array)(l) f(x )=c \\ f(x)=-c \end(array)\right.
2) Si \(c > 0 \), entonces la desigualdad \(|f(x)| 3) Si \(c \geq 0 \), entonces la desigualdad \(|f(x)| > c \) es equivalente a un conjunto de desigualdades: \(\left[\begin(array)(l) f(x) c \end(array)\right. \)
4) Si ambos lados de la desigualdad \(f(x) EJEMPLO 1. Resuelve la ecuación \(x^2 +2|x-1| -6 = 0\).

Si \(x-1 \geq 0\), entonces \(|x-1| = x-1\) y ecuación dada toma la forma
\(x^2 +2(x-1) -6 = 0 \Rightarrow x^2 +2x -8 = 0 \).
Si \(x-1 \(x^2 -2(x-1) -6 = 0 \Rightarrow x^2 -2x -4 = 0 \).
Por tanto, la ecuación dada debe considerarse por separado en cada uno de los dos casos indicados.
1) Sea \(x-1 \geq 0 \), es decir \(x\geq 1\). De la ecuación \(x^2 +2x -8 = 0\) encontramos \(x_1=2, \; x_2=-4\).
La condición \(x \geq 1 \) se cumple únicamente con el valor \(x_1=2\).

2) Sea \(x-1 Respuesta: \(2; \;\; 1-\sqrt(5) \)

EJEMPLO 2. Resuelve la ecuación \(|x^2-6x+7| = \frac(5x-9)(3)\). primera manera
(expansión del módulo por definición).

Razonando como en el ejemplo 1, llegamos a la conclusión de que la ecuación dada debe considerarse por separado si se cumplen dos condiciones: \(x^2-6x+7 \geq 0 \) o \(x^2-6x+7
Averigüemos si el valor \(x_1=6\) satisface la condición \(x^2-6x+7 \geq 0\). Para hacer esto, sustituyamos valor especificado V desigualdad cuadrática. Obtenemos: \(6^2-6 \cdot 6+7 \geq 0 \), es decir \(7 \geq 0 \) es una desigualdad verdadera. Esto significa que \(x_1=6\) es la raíz de.
ecuación dada

Averigüemos si el valor \(x_2=\frac(5)(3) \) satisface la condición \(x^2-6x+7 \geq 0 \). Para hacer esto, sustituya el valor indicado en la desigualdad cuadrática. Obtenemos: \(\left(\frac(5)(3) \right)^2 -\frac(5)(3) \cdot 6 + 7 \geq 0 \), es decir \(\frac(25)(9) -3 \geq 0 \) es una desigualdad incorrecta. Esto significa que \(x_2=\frac(5)(3)\) no es una raíz de la ecuación dada.

2) Si \(x^2-6x+7 Valor \(x_3=3\) satisface la condición \(x^2-6x+7 Valor \(x_4=\frac(4)(3) \) no satisface la condición \ (x^2-6x+7 Entonces, la ecuación dada tiene dos raíces: \(x=6, \; x=3 \). Segunda vía.
Si la ecuación se da \(|f(x)| = h(x) \), entonces con \(h(x) \(\left[\begin(array)(l) x^2-6x+7 = \frac (5x-9)(3) \\ x^2-6x+7 = -\frac(5x-9)(3) \end(array)\right \)

Ambas ecuaciones se resolvieron anteriormente (usando el primer método para resolver la ecuación dada), sus raíces son las siguientes: \(6,\; \frac(5)(3),\; 3,\; \frac(4 )(3)\). La condición \(\frac(5x-9)(3) \geq 0 \) de estos cuatro valores se satisface solo con dos: 6 y 3. Esto significa que la ecuación dada tiene dos raíces: \(x=6 ,\;x=3\). Tercera vía
(gráfico).
1) Construyamos una gráfica de la función \(y = |x^2-6x+7| \). Primero, construyamos una parábola \(y = x^2-6x+7\).
Tenemos \(x^2-6x+7 = (x-3)^2-2 \). La gráfica de la función \(y = (x-3)^2-2\) se puede obtener a partir de la gráfica de la función \(y = x^2\) desplazándola 3 unidades de escala hacia la derecha (a lo largo del eje x) y 2 unidades de escala hacia abajo (a lo largo del eje y).

Es importante que el punto x = 1,8 de la intersección de la línea recta con el eje de abscisas esté ubicado a la derecha del punto izquierdo de intersección de la parábola con el eje de abscisas; este es el punto \(x=3-\ sqrt(2) \) (ya que \(3-\sqrt(2 ) 3) A juzgar por el dibujo, las gráficas se cruzan en dos puntos: A(3; 2) y B(6; 7). Sustituyendo las abscisas de estas puntos x = 3 y x = 6 en la ecuación dada, estamos convencidos de que en ambos casos, en otro valor, se obtiene la igualdad numérica correcta. Esto significa que nuestra hipótesis fue confirmada: la ecuación tiene dos raíces: x = 3 y. x = 6. Respuesta: 3;

Comentario. Método gráfico A pesar de su elegancia, no es muy confiable. En el ejemplo considerado, funcionó sólo porque las raíces de la ecuación son números enteros.

EJEMPLO 3. Resuelve la ecuación \(|2x-4|+|x+3| = 8\)

EJEMPLO 2. Resuelve la ecuación \(|x^2-6x+7| = \frac(5x-9)(3)\).
La expresión 2x–4 se vuelve 0 en el punto x = 2, y la expresión x + 3 se vuelve 0 en el punto x = –3. Estos dos puntos dividen la recta numérica en tres intervalos: \(x

Considere el primer intervalo: \((-\infty; \; -3) \).
Si x Considere el segundo intervalo: \([-3; \; 2) \).
Si \(-3 \leq x Considere el tercer intervalo: \()

¿Te gustó el artículo? ¡Comparte con tus amigos!