Logaritmų su ta pačia baze pavyzdžiai. Logaritmo taisyklės operacijoms su logaritmais

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra tiksliai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nei vienos rimtos problemos. logaritminis uždavinys. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tais pačiais pagrindais: log a x ir žurnalas a y. Tada juos galima pridėti ir atimti, ir:

  1. žurnalas a x+ žurnalas a y=log a (x · y);
  2. žurnalas a x− žurnalas a y=log a (x : y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis taškasČia - identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės jums apskaičiuoti logaritminė išraiška net kai atskiros jo dalys nėra skaičiuojamos (žr. pamoką „ Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Rąstas 6 4 + rąstas 6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log 2 48 − log 2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log 3 135 − log 3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis remiasi šiuo faktu bandymai. O kaip su valdikliais? panašias išraiškas Viso rimtumo (kartais praktiškai be pakeitimų) siūlomi vieningo valstybinio egzamino metu.

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Tai lengva pastebėti paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x> 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai, t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log 7 49 6 .

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslieji laipsniai: 16 = 2 4 ; 49 = 7 2. Turime:

[Paveikslo antraštė]

Manau, kad paskutinis pavyzdys reikalingas paaiškinimas. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log 2 7. Kadangi log 2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Tegu pateikiamas logaritmo žurnalas a x. Tada už bet kokį skaičių c toks kad c> 0 ir c≠ 1, lygybė yra teisinga:

[Paveikslo antraštė]

Visų pirma, jei įdėtume c = x, gauname:

[Paveikslo antraštė]

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai sutinkamos įprastose skaitinės išraiškos. Įvertinti, kiek jie patogūs, galima tik apsisprendus logaritmines lygtis ir nelygybės.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log 5 16 log 2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Dabar „atsukkime“ antrąjį logaritmą:

[Paveikslo antraštė]

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log 9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

[Paveikslo antraštė]

Dabar atsikratykime dešimtainis logaritmas, persikėlus į naują bazę:

[Paveikslo antraštė]

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa argumentu stovinčio laipsnio rodikliu. Skaičius n gali būti visiškai bet kas, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Štai kaip jis vadinamas: pagrindinis logaritminė tapatybė.

Tiesą sakant, kas atsitiks, jei numeris b pakelti iki tokios galios, kad skaičius bšiai galiai suteikia skaičių a? Teisingai: jūs gaunate tą patį numerį a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

[Paveikslo antraštė]

Atkreipkite dėmesį, kad log 25 64 = log 5 8 - mes tiesiog paėmėme kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgiant į galių dauginimo taisykles tuo pačiu pagrindu, gauname:

[Paveikslo antraštė]

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. žurnalas a a= 1 yra logaritminis vienetas. Prisiminkite kartą ir visiems laikams: logaritmas bet kokiam pagrindui a nuo šio pagrindo yra lygus vienetui.
  2. žurnalas a 1 = 0 yra logaritminis nulis. Bazė a gali būti bet kas, bet jei argumente yra vienas – logaritmas lygus nuliui! Nes a 0 = 1 yra tiesioginė pasekmė iš apibrėžimo.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Šiandien kalbėsime apie logaritmines formules ir pateiksime orientacinius sprendimų pavyzdžiai.

Jie patys reiškia sprendimų modelius pagal pagrindines logaritmų savybes. Prieš spręsdami taikydami logaritmines formules, priminsime visas savybes:

Dabar, remdamiesi šiomis formulėmis (ypatybėmis), parodysime logaritmų sprendimo pavyzdžiai.

Logaritmų sprendimo pagal formules pavyzdžiai.

Logaritmas teigiamas skaičius b bazei a (žymimas log a b) yra eksponentas, į kurį reikia pakelti a, kad gautume b, kai b > 0, a > 0 ir 1.

Pagal apibrėžimą log a b = x, kuris yra ekvivalentas a x = b, todėl log a a x = x.

Logaritmai, pavyzdžiai:

log 2 8 = 3, nes 2 3 = 8

log 7 49 = 2, nes 7 2 = 49

log 5 1/5 = -1, nes 5 -1 = 1/5

Dešimtainis logaritmas- tai paprastas logaritmas, kurio pagrindas yra 10. Jis žymimas kaip lg.

log 10 100 = 2, nes 10 2 = 100

Natūralus logaritmas- taip pat įprastas logaritmo logaritmas, bet su baze e (e = 2,71828... - neracionalus skaičius). Žymima kaip ln.

Patartina įsiminti logaritmų formules ar savybes, nes vėliau jų prireiks sprendžiant logaritmus, logaritmines lygtis ir nelygybes. Dar kartą panagrinėkime kiekvieną formulę su pavyzdžiais.

  • Pagrindinė logaritminė tapatybė
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Produkto logaritmas lygi sumai logaritmus
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Dalinio logaritmas lygus skirtumui logaritmus
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Logaritminio skaičiaus laipsnio ir logaritmo pagrindo savybės

    Logaritminio skaičiaus eksponentas log a b m = mlog a b

    Logaritmo pagrindo eksponentas log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    jei m = n, gauname log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Perėjimas prie naujo pagrindo
    log a b = log c b/log c a,

    jei c = b, gauname log b b = 1

    tada log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Kaip matote, logaritmų formulės nėra tokios sudėtingos, kaip atrodo. Dabar, pažvelgę ​​į logaritmų sprendimo pavyzdžius, galime pereiti prie logaritminių lygčių. Išsamiau pažvelgsime į logaritminių lygčių sprendimo pavyzdžius straipsnyje: "". Nepraleiskite!

Jei vis dar turite klausimų apie sprendimą, parašykite juos straipsnio komentaruose.

Pastaba: nusprendėme įgyti kitos klasės išsilavinimą ir studijuoti užsienyje.

pagrindinės savybės.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identiškais pagrindais

Log6 4 + log6 9.

Dabar šiek tiek apsunkinkime užduotį.

Logaritmų sprendimo pavyzdžiai

Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x >

Užduotis. Raskite posakio prasmę:

Perėjimas prie naujo pagrindo

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Užduotis. Raskite posakio prasmę:

Taip pat žiūrėkite:


Pagrindinės logaritmo savybės

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus.

Pagrindinės logaritmų savybės

Žinodami šią taisyklę, žinosite ir tikslią vertę parodos dalyviai ir Levo Tolstojaus gimimo data.


Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.

3.

4. Kur .



2 pavyzdys. Raskite x jei


3 pavyzdys. Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei




Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu.

Logaritminės formulės. Logaritmų sprendimų pavyzdžiai.

Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „atsukkime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Taip pat žiūrėkite:

B logaritmas iki a pagrindo reiškia išraišką. Apskaičiuoti logaritmą reiškia rasti laipsnį x (), kuriai esant lygybė tenkinama

Pagrindinės logaritmo savybės

Būtina žinoti aukščiau pateiktas savybes, nes jų pagrindu išsprendžiamos beveik visos su logaritmais susijusios problemos ir pavyzdžiai. Likusias egzotines savybes galima gauti atliekant matematines manipuliacijas su šiomis formulėmis

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Skaičiuodami logaritmų sumos ir skirtumo formulę (3.4) susiduri gana dažnai. Likusieji yra šiek tiek sudėtingi, tačiau atliekant daugybę užduočių jie yra būtini norint supaprastinti sudėtingas išraiškas ir apskaičiuoti jų reikšmes.

Dažni logaritmų atvejai

Kai kurie iš labiausiai paplitusių logaritmų yra tie, kurių bazė yra lygi dešimčiai, eksponentinė arba dvi.
Logaritmas iki dešimties pagrindo paprastai vadinamas dešimtainiu logaritmu ir tiesiog žymimas lg(x).

Iš įrašo aišku, kad pagrindai įraše neparašyti. Pavyzdžiui

Natūralusis logaritmas yra logaritmas, kurio bazė yra eksponentas (žymimas ln(x)).

Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus. Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.

Ir dar vienas svarbus logaritmas dviem pagrindams žymimas

Funkcijos logaritmo išvestinė lygi vienetui, padalytam iš kintamojo

Integralinis arba antiderivinis logaritmas nustatomas pagal ryšį

Pateiktos medžiagos pakanka, kad išspręstumėte plačią su logaritmais ir logaritmais susijusių problemų klasę. Kad padėčiau suprasti medžiagą, pateiksiu tik kelis įprastus pavyzdžius iš mokyklos mokymo programa ir universitetai.

Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.
Pagal logaritmų skirtumo savybę turime

3.
Naudodami savybes 3.5 randame

4. Kur .

Pagal išvaizdą sudėtinga išraiška naudojant keletą taisyklių yra supaprastinta forma

Logaritmo reikšmių paieška

2 pavyzdys. Raskite x jei

Sprendimas. Skaičiavimui taikome paskutinio termino 5 ir 13 savybių

Įrašome tai ir gedime

Kadangi bazės yra lygios, išraiškas sulyginame

Logaritmai. Pradinis lygis.

Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei

Sprendimas: Paimkime kintamojo logaritmą, kad užrašytume logaritmą per jo terminų sumą


Tai tik mūsų pažinties su logaritmais ir jų savybėmis pradžia. Praktikuokite skaičiavimus, praturtinkite savo praktinius įgūdžius – greitai jums prireiks įgytų žinių sprendžiant logaritmines lygtis. Išstudijavę pagrindinius tokių lygčių sprendimo būdus, jūsų žinias išplėsime į kitą ne mažiau svarbią temą - logaritmines nelygybes...

Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Užduotis. Raskite išraiškos reikšmę: log6 4 + log6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi, bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą.

Kaip išspręsti logaritmus

Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „atsukkime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji užstringa.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemose ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

\(a^(b)=c\) \(\Rodyklė į kairę\) \(\log_(a)(c)=b\)

Paaiškinkime tai paprasčiau. Pavyzdžiui, \(\log_(2)(8)\) lygus galiai, iki kurio reikia pakelti \(2\), kad gautumėte \(8\). Iš to aišku, kad \(\log_(2)(8)=3\).

Pavyzdžiai:

\(\log_(5)(25)=2\)

nes \(5^(2)=25\)

\(\log_(3)(81)=4\)

nes \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

nes \(2^(-5)=\)\(\frac(1)(32)\)

Argumentas ir logaritmo pagrindas

Bet kuris logaritmas turi tokią „anatomiją“:

Logaritmo argumentas paprastai rašomas jo lygyje, o bazė rašoma apatiniu indeksu arčiau logaritmo ženklo. Ir šis įrašas skamba taip: „logaritmas nuo dvidešimt penkių iki bazinių penkių“.

Kaip apskaičiuoti logaritmą?

Norėdami apskaičiuoti logaritmą, turite atsakyti į klausimą: iki kokios galios reikia pakelti bazę, kad gautumėte argumentą?

Pavyzdžiui, apskaičiuokite logaritmą: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\) sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) Kokia galia turi būti padidinta \(4\), kad gautume \(16\)? Akivaizdu, kad antrasis. Štai kodėl:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Kokia galia turi būti padidinta \(\sqrt(5)\), kad gautume \(1\)? Kokia galia daro bet kurį pirmą numerį? Nulis, žinoma!

\(\log_(\sqrt(5))(1)=0\)

d) Kokia galia turi būti padidinta \(\sqrt(7)\), kad gautume \(\sqrt(7)\)? Pirma, bet kuris skaičius iki pirmosios laipsnio yra lygus sau pačiam.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Kokia galia turi būti padidinta \(3\), kad gautume \(\sqrt(3)\)? Iš mūsų žinome, kas tai yra trupmeninė galia, ir tai reiškia kvadratinė šaknis yra \(\frac(1)(2)\) laipsnis.

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Pavyzdys : Apskaičiuokite logaritmą \(\log_(4\sqrt(2))(8)\)

Sprendimas :

\(\log_(4\sqrt(2))(8)=x\)

Turime rasti logaritmo reikšmę, pažymėkime ją x. Dabar naudokime logaritmo apibrėžimą:
\(\log_(a)(c)=b\) \(\Rodyklė į kairę\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Kas jungia \(4\sqrt(2)\) ir \(8\)? Du, nes abu skaičiai gali būti pavaizduoti dviem:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Kairėje mes naudojame laipsnio savybes: \(a^(m)\cdot a^(n)=a^(m+n)\) ir \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Bazės lygios, pereiname prie rodiklių lygybės

\(\frac(5x)(2)\) \(=3\)


Padauginkite abi lygties puses iš \(\frac(2)(5)\)


Gauta šaknis yra logaritmo reikšmė

Atsakymas : \(\log_(4\sqrt(2))(8)=1,2\)

Kodėl buvo išrastas logaritmas?

Norėdami tai suprasti, išspręskime lygtį: \(3^(x)=9\). Tiesiog suderinkite \(x\), kad lygtis veiktų. Žinoma, \(x=2\).

Dabar išspręskite lygtį: \(3^(x)=8\).Kodėl lygus x? Tai esmė.

Protingiausi pasakys: „X yra šiek tiek mažiau nei du“. Kaip tiksliai parašyti šį skaičių? Norint atsakyti į šį klausimą, buvo išrastas logaritmas. Jo dėka atsakymas čia gali būti parašytas kaip \(x=\log_(3)(8)\).

Noriu pabrėžti, kad \(\log_(3)(8)\), patinka bet koks logaritmas yra tik skaičius. Taip, atrodo neįprastai, bet trumpas. Nes jei norėtume tai parašyti formoje dešimtainis, tada jis atrodytų taip: \(1.892789260714.....\)

Pavyzdys : Išspręskite lygtį \(4^(5x-4)=10\)

Sprendimas :

\(4^(5x-4)=10\)

\(4^(5x-4)\) ir \(10\) negalima perkelti į tą pačią bazę. Tai reiškia, kad jūs negalite išsiversti be logaritmo.

Naudokime logaritmo apibrėžimą:
\(a^(b)=c\) \(\Rodyklė į kairę\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Apverskime lygtį taip, kad X būtų kairėje

\(5x-4=\log_(4)(10)\)

Prieš mus. Perkelkime \(4\) į dešinę.

Ir nebijokite logaritmo, traktuokite jį kaip paprastą skaičių.

\(5x=\log_(4)(10)+4\)

Padalinkite lygtį iš 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Tai mūsų šaknis. Taip, atrodo neįprasta, bet jie nesirenka atsakymo.

Atsakymas : \(\frac(\log_(4)(10)+4)(5)\)

Dešimtainiai ir natūralūs logaritmai

Kaip nurodyta logaritmo apibrėžime, jo bazė gali būti bet kokia teigiamas skaičius, išskyrus vienetą \((a>0, a\neq1)\). Ir tarp visų galimų bazių yra du, kurie pasitaiko taip dažnai, kad logaritmams su jais buvo išrastas specialus trumpas žymėjimas:

Natūralusis logaritmas: logaritmas, kurio pagrindas yra Eulerio skaičius \(e\) (lygus apytiksliai \(2,7182818…\)), o logaritmas parašytas kaip \(\ln(a)\).

tai yra \(\ln(a)\) yra toks pat kaip \(\log_(e)(a)\)

Dešimtainis logaritmas: logaritmas, kurio bazė yra 10, rašoma \(\lg(a)\).

tai yra \(\lg(a)\) yra toks pat kaip \(\log_(10)(a)\), kur \(a\) yra koks nors skaičius.

Pagrindinė logaritminė tapatybė

Logaritmai turi daug savybių. Vienas iš jų vadinamas „pagrindiniu logaritminiu tapatumu“ ir atrodo taip:

\(a^(\log_(a)(c))=c\)

Ši savybė tiesiogiai išplaukia iš apibrėžimo. Pažiūrėkime, kaip tiksliai atsirado ši formulė.

Prisiminkime trumpa pastaba logaritmo apibrėžimai:

jei \(a^(b)=c\), tada \(\log_(a)(c)=b\)

Tai reiškia, kad \(b\) yra toks pat kaip \(\log_(a)(c)\). Tada galime parašyti \(\log_(a)(c)\) vietoj \(b\) formulėje \(a^(b)=c\). Paaiškėjo, kad \(a^(\log_(a)(c))=c\) - pagrindinė logaritminė tapatybė.

Galite rasti kitų logaritmų savybių. Jų pagalba galite supaprastinti ir apskaičiuoti logaritmų išraiškų reikšmes, kurias sunku tiesiogiai apskaičiuoti.

Pavyzdys : Raskite išraiškos reikšmę \(36^(\log_(6)(5))\)

Sprendimas :

Atsakymas : \(25\)

Kaip parašyti skaičių kaip logaritmą?

Kaip minėta aukščiau, bet koks logaritmas yra tik skaičius. Taip pat yra atvirkščiai: bet kurį skaičių galima parašyti logaritmu. Pavyzdžiui, žinome, kad \(\log_(2)(4)\) yra lygus dviem. Tada vietoj dviejų galite parašyti \(\log_(2)(4)\).

Tačiau \(\log_(3)(9)\) taip pat yra lygus \(2\), o tai reiškia, kad galime parašyti ir \(2=\log_(3)(9)\) . Panašiai ir su \(\log_(5)(25)\) ir su \(\log_(9)(81)\) ir kt. Tai yra, pasirodo

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Taigi, jei reikia, galime parašyti du kaip logaritmą su bet kuria baze bet kur (net į lygtį, net į išraišką, net į nelygybę) – tiesiog kvadratinę bazę rašome kaip argumentą.

Taip pat ir su trigubu – jis gali būti parašytas kaip \(\log_(2)(8)\), arba kaip \(\log_(3)(27)\), arba kaip \(\log_(4)( 64) \)... Čia kaip argumentą įrašome bazę kube:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Ir su keturiais:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Ir su minusu vienu:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1) (7)\) \(...\)

Ir su trečdaliu:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Bet koks skaičius \(a\) gali būti pavaizduotas kaip logaritmas su baze \(b\): \(a=\log_(b)(b^(a))\)

Pavyzdys : Raskite posakio prasmę \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Sprendimas :

Atsakymas : \(1\)



Ar jums patiko straipsnis? Pasidalinkite su draugais!