Shumëzimi i thyesave. Shumëzimi dhe pjesëtimi i thyesave

Përmbajtja e mësimit

Mbledhja e thyesave me emërues të ngjashëm

Ekzistojnë dy lloje të mbledhjes së thyesave:

  1. Mbledhja e thyesave me emërues të njëjtë
  2. Mbledhja e thyesave me emërues të ndryshëm

Së pari, le të mësojmë mbledhjen e thyesave me emërues të ngjashëm. Gjithçka është e thjeshtë këtu. Për të shtuar thyesa me emërues të njëjtë, duhet të shtoni numëruesit e tyre dhe të lini emëruesin të pandryshuar. Për shembull, le të shtojmë thyesat dhe . Shtoni numëruesit dhe lini emëruesin të pandryshuar:

Ky shembull mund të kuptohet lehtësisht nëse kujtojmë picën, e cila është e ndarë në katër pjesë. Nëse shtoni pica në picë, ju merrni pica:

Shembulli 2. Shtoni thyesat dhe .

Përgjigja nuk ishte thyesa e duhur. Kur të vijë fundi i detyrës, është zakon të heqësh qafe fraksionet e pahijshme. Për të hequr qafe thyesë e papërshtatshme, ju duhet të zgjidhni një pjesë të tërë të saj. Në rastin tonë pjesë e tërë dallohet lehtësisht - dy të ndara me dy janë të barabarta një:

Ky shembull mund të kuptohet lehtësisht nëse kujtojmë për një picë që është e ndarë në dy pjesë. Nëse shtoni më shumë pica në picë, merrni një picë të plotë:

Shembulli 3. Shtoni thyesat dhe .

Përsëri, mbledhim numëruesit dhe e lëmë emëruesin të pandryshuar:

Ky shembull mund të kuptohet lehtësisht nëse kujtojmë picën, e cila është e ndarë në tre pjesë. Nëse shtoni më shumë pica në picë, ju merrni pica:

Shembulli 4. Gjeni vlerën e një shprehjeje

Ky shembull zgjidhet saktësisht në të njëjtën mënyrë si ato të mëparshme. Numëruesit duhet të shtohen dhe emëruesi të lihet i pandryshuar:

Le të përpiqemi të përshkruajmë zgjidhjen tonë duke përdorur një vizatim. Nëse shtoni pica në një picë dhe shtoni më shumë pica, ju merrni 1 pica të plotë dhe më shumë pica.

Siç mund ta shihni, nuk ka asgjë të komplikuar në shtimin e thyesave me emërues të njëjtë. Mjafton të kuptoni rregullat e mëposhtme:

  1. Për të shtuar thyesa me emërues të njëjtë, duhet të shtoni numëruesit e tyre dhe të lini emëruesin të pandryshuar;

Mbledhja e thyesave me emërues të ndryshëm

Tani le të mësojmë se si të mbledhim thyesa me emërues të ndryshëm. Kur mblidhen thyesat, emëruesit e thyesave duhet të jenë të njëjtë. Por ato nuk janë gjithmonë të njëjta.

Për shembull, thyesat mund të shtohen sepse kanë të njëjtët emërues.

Por thyesat nuk mund të shtohen menjëherë, pasi këto thyesa kanë emërues të ndryshëm. Në raste të tilla, thyesat duhet të reduktohen në të njëjtin emërues (të përbashkët).

Ka disa mënyra për të reduktuar thyesat në të njëjtin emërues. Sot do të shikojmë vetëm njërën prej tyre, pasi metodat e tjera mund të duken të ndërlikuara për një fillestar.

Thelbi i kësaj metode është që së pari të kërkohet LCM e emëruesve të të dy thyesave. Më pas LCM ndahet me emëruesin e fraksionit të parë për të marrë faktorin e parë shtesë. Ata bëjnë të njëjtën gjë me thyesën e dytë - LCM ndahet me emëruesin e fraksionit të dytë dhe fitohet një faktor i dytë shtesë.

Më pas numëruesit dhe emëruesit e thyesave shumëzohen me faktorët e tyre shtesë. Si rezultat i këtyre veprimeve, thyesat që kishin emërues të ndryshëm shndërrohen në thyesa që kanë emërues të njëjtë. Dhe ne tashmë dimë se si të shtojmë fraksione të tilla.

Shembulli 1. Le të mbledhim thyesat dhe

Para së gjithash, gjejmë shumëfishin më të vogël të përbashkët të emëruesve të të dy thyesave. Emëruesi i thyesës së parë është numri 3, dhe emëruesi i thyesës së dytë është numri 2. Shumëfishi më i vogël i përbashkët i këtyre numrave është 6.

LCM (2 dhe 3) = 6

Tani le të kthehemi te thyesat dhe . Së pari, ndani LCM me emëruesin e thyesës së parë dhe merrni faktorin e parë shtesë. LCM është numri 6, dhe emëruesi i thyesës së parë është numri 3. Pjestoni 6 me 3, marrim 2.

Numri 2 që rezulton është shumëzuesi i parë shtesë. E shkruajmë në thyesën e parë. Për ta bërë këtë, bëni një vijë të vogël të zhdrejtë mbi fraksion dhe shkruani faktorin shtesë që gjendet sipër saj:

Të njëjtën gjë bëjmë edhe me thyesën e dytë. Ne e ndajmë LCM me emëruesin e thyesës së dytë dhe marrim faktorin e dytë shtesë. LCM është numri 6, dhe emëruesi i thyesës së dytë është numri 2. Pjestoni 6 me 2, marrim 3.

Numri 3 që rezulton është shumëzuesi i dytë shtesë. E shkruajmë në thyesën e dytë. Përsëri, bëjmë një vijë të vogël të zhdrejtë mbi fraksionin e dytë dhe shkruajmë faktorin shtesë që gjendet sipër saj:

Tani kemi gjithçka gati për shtim. Mbetet të shumëzojmë numëruesit dhe emëruesit e thyesave me faktorët e tyre shtesë:

Shikoni me kujdes se çfarë kemi arritur. Arritëm në përfundimin se thyesat që kishin emërues të ndryshëm shndërroheshin në thyesa që kishin emërues të njëjtë. Dhe ne tashmë dimë se si të shtojmë fraksione të tilla. Le ta marrim këtë shembull deri në fund:

Kjo e plotëson shembullin. Rezulton të shtohet.

Le të përpiqemi të përshkruajmë zgjidhjen tonë duke përdorur një vizatim. Nëse shtoni pica në një picë, ju merrni një picë të plotë dhe një të gjashtën tjetër të picës:

Reduktimi i thyesave në të njëjtin emërues (të përbashkët) mund të përshkruhet gjithashtu duke përdorur një figurë. Duke reduktuar thyesat dhe në një emërues të përbashkët, kemi marrë thyesat dhe . Këto dy fraksione do të përfaqësohen nga të njëjtat copa pice. I vetmi ndryshim do të jetë se këtë herë ato do të ndahen në pjesë të barabarta (reduktohen në të njëjtin emërues).

Vizatimi i parë përfaqëson një fraksion (katër pjesë nga gjashtë), dhe vizatimi i dytë përfaqëson një fraksion (tre pjesë nga gjashtë). Duke shtuar këto pjesë marrim (shtatë nga gjashtë). Kjo thyesë është e papërshtatshme, kështu që ne theksuam të gjithë pjesën e saj. Si rezultat, ne morëm (një picë të plotë dhe një tjetër picë të gjashtë).

Ju lutemi vini re se ne kemi përshkruar ky shembull tepër i detajuar. NË institucionet arsimore Nuk është zakon të shkruash në detaje të tilla. Ju duhet të jeni në gjendje të gjeni shpejt LCM-në e të dy emëruesve dhe faktorëve shtesë ndaj tyre, si dhe të shumëzoni shpejt faktorët shtesë të gjetur me numëruesit dhe emëruesit tuaj. Ndërsa jemi në shkollë, do të na duhej ta shkruajmë këtë shembull si më poshtë:

Por ka edhe një anë tjetër të medaljes. Nëse nuk bëni matematikë në fazat e para të të mësuarit shënime të detajuara, atëherë fillojnë të shfaqen pyetje të këtij lloji "Nga vjen ai numër?", "Pse thyesat kthehen papritur në thyesa krejtësisht të ndryshme? «.

Për ta bërë më të lehtë shtimin e thyesave me emërues të ndryshëm, mund të përdorni udhëzimet e mëposhtme hap pas hapi:

  1. Gjeni LCM-në e emëruesve të thyesave;
  2. Ndani LCM me emëruesin e secilës thyesë dhe merrni një faktor shtesë për secilën thyesë;
  3. Të shumëzojë numëruesit dhe emëruesit e thyesave me faktorët e tyre shtesë;
  4. Shtoni thyesat që kanë emërues të njëjtë;
  5. Nëse përgjigja rezulton të jetë një fraksion i gabuar, atëherë theksoni të gjithë pjesën e saj;

Shembulli 2. Gjeni vlerën e një shprehjeje .

Le të përdorim udhëzimet e dhëna më sipër.

Hapi 1. Gjeni LCM-në e emëruesve të thyesave

Gjeni LCM-në e emëruesve të të dy thyesave. Emëruesit e thyesave janë numrat 2, 3 dhe 4

Hapi 2. Ndani LCM me emëruesin e çdo thyese dhe merrni një faktor shtesë për secilën thyesë

Pjestojeni LCM me emëruesin e thyesës së parë. LCM është numri 12, dhe emëruesi i thyesës së parë është numri 2. Pjestoni 12 me 2, marrim 6. Morëm faktorin e parë shtesë 6. E shkruajmë sipër thyesës së parë:

Tani e ndajmë LCM me emëruesin e thyesës së dytë. LCM është numri 12, dhe emëruesi i thyesës së dytë është numri 3. Pjestoni 12 me 3, marrim 4. Marrim faktorin e dytë shtesë 4. E shkruajmë sipër thyesës së dytë:

Tani e ndajmë LCM me emëruesin e thyesës së tretë. LCM është numri 12, dhe emëruesi i thyesës së tretë është numri 4. Pjestoni 12 me 4, marrim 3. Marrim faktorin e tretë shtesë 3. E shkruajmë mbi thyesën e tretë:

Hapi 3. Shumëzoni numëruesit dhe emëruesit e thyesave me faktorët e tyre shtesë

Ne i shumëzojmë numëruesit dhe emëruesit me faktorët e tyre shtesë:

Hapi 4. Shtoni thyesa me emërues të njëjtë

Arritëm në përfundimin se thyesat që kishin emërues të ndryshëm shndërroheshin në thyesa që kishin emërues të njëjtë (të përbashkët). Mbetet vetëm të shtohen këto thyesa. Shtoni atë:

Shtesa nuk përshtatej në një rresht, kështu që ne e zhvendosëm shprehjen e mbetur në rreshtin tjetër. Kjo lejohet në matematikë. Kur një shprehje nuk përshtatet në një rresht, ajo zhvendoset në rreshtin tjetër dhe është e nevojshme të vendoset një shenjë e barabartë (=) në fund të rreshtit të parë dhe në fillim të rreshtit të ri. Shenja e barabartë në rreshtin e dytë tregon se kjo është një vazhdim i shprehjes që ishte në rreshtin e parë.

Hapi 5. Nëse përgjigja rezulton të jetë një thyesë e gabuar, atëherë zgjidhni të gjithë pjesën e saj

Përgjigja jonë doli të ishte një fraksion i gabuar. Duhet të veçojmë një pjesë të tërë të saj. Ne theksojmë:

Morëm një përgjigje

Zbritja e thyesave me emërues të ngjashëm

Ekzistojnë dy lloje të zbritjes së thyesave:

  1. Zbritja e thyesave me emërues të ngjashëm
  2. Zbritja e thyesave me emërues të ndryshëm

Së pari, le të mësojmë se si të zbresim thyesat me emërues të ngjashëm. Gjithçka është e thjeshtë këtu. Për të zbritur një tjetër nga një thyesë, duhet të zbritni numëruesin e thyesës së dytë nga numëruesi i thyesës së parë, por të lini emëruesin të njëjtë.

Për shembull, le të gjejmë vlerën e shprehjes . Për të zgjidhur këtë shembull, duhet të zbrisni numëruesin e thyesës së dytë nga numëruesi i thyesës së parë dhe të lini emëruesin të pandryshuar. Le të bëjmë këtë:

Ky shembull mund të kuptohet lehtësisht nëse kujtojmë picën, e cila është e ndarë në katër pjesë. Nëse prisni picat nga një pica, ju merrni pica:

Shembulli 2. Gjeni vlerën e shprehjes.

Përsëri, nga numëruesi i thyesës së parë, zbritni numëruesin e thyesës së dytë dhe lini emëruesin të pandryshuar:

Ky shembull mund të kuptohet lehtësisht nëse kujtojmë picën, e cila është e ndarë në tre pjesë. Nëse prisni picat nga një pica, ju merrni pica:

Shembulli 3. Gjeni vlerën e një shprehjeje

Ky shembull zgjidhet saktësisht në të njëjtën mënyrë si ato të mëparshme. Nga numëruesi i thyesës së parë ju duhet të zbritni numëruesit e thyesave të mbetura:

Siç mund ta shihni, nuk ka asgjë të komplikuar në zbritjen e thyesave me emërues të njëjtë. Mjafton të kuptoni rregullat e mëposhtme:

  1. Për të zbritur një tjetër nga një thyesë, duhet të zbrisni numëruesin e fraksionit të dytë nga numëruesi i thyesës së parë dhe të lini emëruesin të pandryshuar;
  2. Nëse përgjigja rezulton të jetë një fraksion i gabuar, atëherë duhet të theksoni të gjithë pjesën e saj.

Zbritja e thyesave me emërues të ndryshëm

Për shembull, ju mund të zbrisni një thyesë nga një thyesë sepse thyesat kanë emërues të njëjtë. Por nuk mund të zbresësh një thyesë nga një thyesë, pasi këto thyesa kanë emërues të ndryshëm. Në raste të tilla, thyesat duhet të reduktohen në të njëjtin emërues (të përbashkët).

Emëruesi i përbashkët gjendet duke përdorur të njëjtin parim që kemi përdorur kur mbledhim thyesa me emërues të ndryshëm. Para së gjithash, gjeni LCM-në e emëruesve të të dy thyesave. Pastaj LCM pjesëtohet me emëruesin e thyesës së parë dhe fitohet faktori i parë shtesë, i cili shkruhet mbi thyesën e parë. Në mënyrë të ngjashme, LCM ndahet me emëruesin e thyesës së dytë dhe fitohet një faktor i dytë shtesë, i cili shkruhet mbi thyesën e dytë.

Më pas thyesat shumëzohen me faktorët e tyre shtesë. Si rezultat i këtyre veprimeve, thyesat që kishin emërues të ndryshëm shndërrohen në thyesa që kanë emërues të njëjtë. Dhe ne tashmë dimë se si të zbresim thyesa të tilla.

Shembulli 1. Gjeni kuptimin e shprehjes:

Këto thyesa kanë emërues të ndryshëm, kështu që ju duhet t'i reduktoni në të njëjtin emërues (të përbashkët).

Së pari gjejmë LCM-në e emëruesve të të dy thyesave. Emëruesi i thyesës së parë është numri 3, dhe emëruesi i thyesës së dytë është numri 4. Shumëfishi më i vogël i përbashkët i këtyre numrave është 12

LCM (3 dhe 4) = 12

Tani le të kthehemi te thyesat dhe

Le të gjejmë një faktor shtesë për thyesën e parë. Për ta bërë këtë, ndani LCM me emëruesin e fraksionit të parë. LCM është numri 12, dhe emëruesi i thyesës së parë është numri 3. Pjestoni 12 me 3, marrim 4. Shkruani një katër mbi thyesën e parë:

Të njëjtën gjë bëjmë edhe me thyesën e dytë. Ndani LCM me emëruesin e thyesës së dytë. LCM është numri 12, dhe emëruesi i thyesës së dytë është numri 4. Pjestoni 12 me 4, marrim 3. Shkruani një tre mbi thyesën e dytë:

Tani jemi gati për zbritje. Mbetet të shumëzojmë fraksionet me faktorët e tyre shtesë:

Arritëm në përfundimin se thyesat që kishin emërues të ndryshëm shndërroheshin në thyesa që kishin emërues të njëjtë. Dhe ne tashmë dimë se si të zbresim thyesa të tilla. Le ta marrim këtë shembull deri në fund:

Morëm një përgjigje

Le të përpiqemi të përshkruajmë zgjidhjen tonë duke përdorur një vizatim. Nëse e ndani picën nga një pica, ju merrni pica

Kjo version i detajuar zgjidhjet. Nëse do të ishim në shkollë, do të duhej ta zgjidhnim këtë shembull më shkurt. Një zgjidhje e tillë do të duket si kjo:

Reduktimi i thyesave në një emërues të përbashkët mund të përshkruhet gjithashtu duke përdorur një figurë. Duke i reduktuar këto thyesa në një emërues të përbashkët, kemi marrë thyesat dhe . Këto fraksione do të përfaqësohen nga të njëjtat feta pice, por këtë herë ato do të ndahen në pjesë të barabarta (reduktohen në të njëjtin emërues):

Fotografia e parë tregon një fraksion (tetë pjesë nga dymbëdhjetë), dhe fotografia e dytë tregon një fraksion (tre pjesë nga dymbëdhjetë). Duke prerë tre pjesë nga tetë pjesë, marrim pesë pjesë nga dymbëdhjetë. Fraksioni përshkruan këto pesë pjesë.

Shembulli 2. Gjeni vlerën e një shprehjeje

Këto thyesa kanë emërues të ndryshëm, kështu që së pari duhet t'i reduktoni në të njëjtin emërues (të përbashkët).

Le të gjejmë LCM-në e emëruesve të këtyre thyesave.

Emëruesit e thyesave janë numrat 10, 3 dhe 5. Shumëfishi më i vogël i përbashkët i këtyre numrave është 30.

LCM(10, 3, 5) = 30

Tani gjejmë faktorë shtesë për secilën fraksion. Për ta bërë këtë, ndani LCM me emëruesin e secilës fraksion.

Le të gjejmë një faktor shtesë për thyesën e parë. LCM është numri 30, dhe emëruesi i thyesës së parë është numri 10. Pjestoni 30 me 10, marrim faktorin e parë shtesë 3. E shkruajmë sipër thyesës së parë:

Tani gjejmë një faktor shtesë për thyesën e dytë. Ndani LCM me emëruesin e thyesës së dytë. LCM është numri 30, dhe emëruesi i thyesës së dytë është numri 3. Pjestoni 30 me 3, marrim faktorin e dytë shtesë 10. E shkruajmë sipër thyesës së dytë:

Tani gjejmë një faktor shtesë për thyesën e tretë. Pjestojeni LCM me emëruesin e thyesës së tretë. LCM është numri 30, dhe emëruesi i thyesës së tretë është numri 5. Pjestoni 30 me 5, marrim faktorin e tretë shtesë 6. E shkruajmë sipër thyesës së tretë:

Tani gjithçka është gati për zbritje. Mbetet të shumëzojmë fraksionet me faktorët e tyre shtesë:

Arritëm në përfundimin se thyesat që kishin emërues të ndryshëm shndërroheshin në thyesa që kishin emërues të njëjtë (të përbashkët). Dhe ne tashmë dimë se si të zbresim thyesa të tilla. Le ta përfundojmë këtë shembull.

Vazhdimi i shembullit nuk do të përshtatet në një rresht, kështu që e zhvendosim vazhdimin në rreshtin tjetër. Mos harroni për shenjën e barabartë (=) në rreshtin e ri:

Përgjigja doli të ishte një fraksion i rregullt, dhe gjithçka duket se na përshtatet, por është shumë e rëndë dhe e shëmtuar. Duhet ta bëjmë më të thjeshtë. Çfarë mund të bëhet? Ju mund ta shkurtoni këtë fraksion.

Për të zvogëluar një thyesë, duhet të ndani numëruesin dhe emëruesin e tij me (GCD) të numrave 20 dhe 30.

Pra, gjejmë gcd-në e numrave 20 dhe 30:

Tani kthehemi te shembulli ynë dhe pjesëtojmë numëruesin dhe emëruesin e thyesës me gcd-në e gjetur, domethënë me 10

Morëm një përgjigje

Shumëzimi i një thyese me një numër

Për të shumëzuar një thyesë me një numër, duhet të shumëzoni numëruesin e thyesës me atë numër dhe të lini emëruesin të njëjtë.

Shembulli 1. Shumëzo një thyesë me numrin 1.

Shumëzoni numëruesin e thyesës me numrin 1

Regjistrimi mund të kuptohet se merr gjysmë 1 herë. Për shembull, nëse merrni pica një herë, ju merrni pica

Nga ligjet e shumëzimit ne e dimë se nëse shumëzuesi dhe faktori këmbehen, prodhimi nuk do të ndryshojë. Nëse shprehja shkruhet si , atëherë produkti do të jetë akoma i barabartë me . Përsëri, rregulli për shumëzimin e një numri të plotë dhe një thyese funksionon:

Ky shënim mund të kuptohet si marrja e gjysmës së një. Për shembull, nëse ka 1 picë të plotë dhe marrim gjysmën e saj, atëherë do të kemi pica:

Shembulli 2. Gjeni vlerën e një shprehjeje

Shumëzoni numëruesin e thyesës me 4

Përgjigja ishte një fraksion i papërshtatshëm. Le të theksojmë të gjithë pjesën e tij:

Shprehja mund të kuptohet si të marrë dy të katërtat 4 herë. Për shembull, nëse merrni 4 pica, do të merrni dy pica të plota

Dhe nëse shkëmbejmë shumëzuesin dhe shumëzuesin, marrim shprehjen . Do të jetë gjithashtu e barabartë me 2. Kjo shprehje mund të kuptohet si marrja e dy picave nga katër pica të plota:

Shumëzimi i thyesave

Për të shumëzuar thyesat, duhet të shumëzoni numëruesit dhe emëruesit e tyre. Nëse përgjigja rezulton të jetë një fraksion i gabuar, duhet të theksoni të gjithë pjesën e saj.

Shembulli 1. Gjeni vlerën e shprehjes.

Morëm një përgjigje. Këshillohet që të reduktohet thyesë e dhënë. Thyesa mund të zvogëlohet me 2. Pastaj vendim përfundimtar do të marrë formën e mëposhtme:

Shprehja mund të kuptohet si marrja e një pice nga një gjysmë pica. Le të themi se kemi gjysmë pice:

Si të merrni dy të tretat nga kjo gjysmë? Së pari ju duhet ta ndani këtë gjysmë në tre pjesë të barabarta:

Dhe merrni dy nga këto tre pjesë:

Ne do të bëjmë pica. Mos harroni se si duket pica kur ndahet në tre pjesë:

Një pjesë e kësaj pice dhe dy pjesët që morëm do të kenë të njëjtat dimensione:

Me fjalë të tjera, ne po flasim për pica afërsisht me të njëjtën madhësi. Prandaj vlera e shprehjes është

Shembulli 2. Gjeni vlerën e një shprehjeje

Shumëzojmë numëruesin e thyesës së parë me numëruesin e thyesës së dytë dhe emëruesin e thyesës së parë me emëruesin e thyesës së dytë:

Përgjigja ishte një fraksion i papërshtatshëm. Le të theksojmë të gjithë pjesën e tij:

Shembulli 3. Gjeni vlerën e një shprehjeje

Shumëzojmë numëruesin e thyesës së parë me numëruesin e thyesës së dytë dhe emëruesin e thyesës së parë me emëruesin e thyesës së dytë:

Përgjigja doli të ishte një thyesë e rregullt, por do të ishte mirë që të shkurtohej. Për të zvogëluar këtë thyesë, duhet të ndani numëruesin dhe emëruesin e kësaj thyese me më të madhin pjesëtues i përbashkët(GCD) numrat 105 dhe 450.

Pra, le të gjejmë gcd-në e numrave 105 dhe 450:

Tani e ndajmë numëruesin dhe emëruesin e përgjigjes sonë me gcd që kemi gjetur tani, domethënë me 15

Paraqitja e një numri të plotë si thyesë

Çdo numër i plotë mund të paraqitet si thyesë. Për shembull, numri 5 mund të përfaqësohet si . Kjo nuk do të ndryshojë kuptimin e pesë, pasi shprehja do të thotë "numri pesë i ndarë me një", dhe kjo, siç e dimë, është e barabartë me pesë:

Numrat reciprokë

Tani do të njihemi me shumë temë interesante në matematikë. Quhet "numra të kundërt".

Përkufizimi. Kthehet në numëra është një numër që, kur shumëzohet mea jep një.

Le të zëvendësojmë në këtë përkufizim në vend të ndryshores a numri 5 dhe përpiquni të lexoni përkufizimin:

Kthehet në numër 5 është një numër që, kur shumëzohet me 5 jep një.

A është e mundur të gjendet një numër që, kur shumëzohet me 5, jep një? Rezulton se është e mundur. Le të imagjinojmë pesë si thyesë:

Pastaj shumëzojeni këtë thyesë me vetveten, thjesht ndërroni numëruesin dhe emëruesin. Me fjalë të tjera, le të shumëzojmë thyesën në vetvete, vetëm me kokë poshtë:

Çfarë do të ndodhë si rezultat i kësaj? Nëse vazhdojmë ta zgjidhim këtë shembull, marrim një:

Kjo do të thotë se anasjellta e numrit 5 është numri, pasi kur shumëzoni 5 me 5, merrni një.

Reciproku i një numri mund të gjendet edhe për çdo numër tjetër të plotë.

Ju gjithashtu mund të gjeni reciproke të çdo thyese tjetër. Për ta bërë këtë, thjesht kthejeni atë.

Pjesëtimi i një thyese me një numër

Le të themi se kemi gjysmë pice:

Le ta ndajmë atë në mënyrë të barabartë në dy. Sa pica do të marrë secili person?

Shihet se pas ndarjes së gjysmës së picës janë marrë dy pjesë të barabarta, secila prej të cilave përbën një picë. Kështu që të gjithë marrin një pica.

Ndarja e thyesave bëhet duke përdorur reciproke. Numrat reciprokë ju lejon të zëvendësoni pjesëtimin me shumëzim.

Për të pjesëtuar një thyesë me një numër, duhet të shumëzoni thyesën me inversin e pjesëtuesit.

Duke përdorur këtë rregull, ne do të shkruajmë ndarjen e gjysmës së picës në dy pjesë.

Pra, duhet ta ndani thyesën me numrin 2. Këtu dividenti është thyesa dhe pjesëtuesi është numri 2.

Për të pjesëtuar një thyesë me numrin 2, duhet ta shumëzoni këtë thyesë me reciprokun e pjesëtuesit 2. Reciproku i pjesëtuesit 2 është thyesa. Kështu që ju duhet të shumëzoni me

Shumëzimi i një numri të plotë me një thyesë nuk është një detyrë e vështirë. Por ka hollësi që me siguri i keni kuptuar në shkollë, por që atëherë i keni harruar.

Si të shumëzoni një numër të plotë me një thyesë - disa terma

Nëse ju kujtohet se çfarë janë një numërues dhe emërues dhe se si një thyesë e duhur ndryshon nga një thyesë e papërshtatshme, kaloni këtë paragraf. Është për ata që e kanë harruar plotësisht teorinë.

Numëruesi është pjesa e sipërme thyesat janë ato që ne ndajmë. Emëruesi është më i ulët. Kjo është ajo me të cilën ne ndajmë.
Një thyesë e duhur është ajo që numëruesi i saj është më pak se emëruesi. Një thyesë e papërshtatshme është ajo, numëruesi i së cilës është më i madh se ose e barabartë me emëruesin.

Si të shumëzojmë një numër të plotë me një thyesë

Rregulli për shumëzimin e një numri të plotë me një thyesë është shumë i thjeshtë - ne shumëzojmë numëruesin me numrin e plotë, por nuk e prekim emëruesin. Për shembull: dy shumëzuar me një të pestën - marrim dy të pestat. Katër shumëzuar me tre të gjashtëmbëdhjetët është e barabartë me dymbëdhjetë të gjashtëmbëdhjetët.


Reduktimi

Në shembullin e dytë, fraksioni që rezulton mund të reduktohet.
Çfarë do të thotë? Ju lutemi vini re se si numëruesi ashtu edhe emëruesi i kësaj thyese janë të pjesëtueshëm me katër. Pjesëtimi i të dy numrave me një pjesëtues të përbashkët quhet zvogëlim i thyesës. Ne marrim tre të katërtat.


Thyesat e gabuara

Por supozojmë se shumëzojmë katër me dy të pestat. Doli të ishte tetë e pestat. Ky është një fraksion i papërshtatshëm.
Ajo patjetër duhet të sillet lloji i duhur. Për ta bërë këtë, duhet të zgjidhni një pjesë të tërë prej saj.
Këtu ju duhet të përdorni ndarjen me një mbetje. Ne marrim një dhe tre si mbetje.
Një e tërë dhe tre të pestat është thyesa jonë e duhur.

T'i sjellësh tridhjetë e pesë tetat në formën e duhur është pak më e vështirë. Kur ndahemi marrim katër. Zbrisni tridhjetë e dy nga tridhjetë e pesë dhe marrim tre. Rezultati: katër të plota dhe tre të tetat.


Barazia e numëruesit dhe emëruesit. Dhe këtu gjithçka është shumë e thjeshtë dhe e bukur. Nëse numëruesi dhe emëruesi janë të barabartë, rezultati është thjesht një.

Numrat e zakonshëm thyesorë takojnë fillimisht nxënësit e shkollës në klasën e 5-të dhe i shoqërojnë gjatë gjithë jetës së tyre, pasi në jetën e përditshme shpesh është e nevojshme të merret parasysh ose të përdoret një objekt jo si një e tërë, por në pjesë të veçanta. Filloni të studioni këtë temë - ndan. Aksionet janë pjesë të barabarta, në të cilën ndahet ky apo ai objekt. Në fund të fundit, nuk është gjithmonë e mundur të shprehet, për shembull, gjatësia ose çmimi i një produkti si një numër i plotë duhet të merren parasysh. E formuar nga folja "për të ndarë" - për të ndarë në pjesë, dhe me rrënjë arabe, vetë fjala "fraksion" u ngrit në gjuhën ruse në shekullin e 8-të.

Shprehjet thyesore janë konsideruar prej kohësh si dega më e vështirë e matematikës. Në shekullin e 17-të, kur u shfaqën tekstet e para të matematikës, ato u quajtën "numra të thyer", gjë që ishte shumë e vështirë për t'u kuptuar nga njerëzit.

Pamje moderne mbetjet e thjeshta thyesore, pjesët e të cilave ndahen nga një vijë horizontale, u promovuan për herë të parë nga Fibonacci - Leonardo i Pizës. Veprat e tij datohen në vitin 1202. Por qëllimi i këtij artikulli është t'i shpjegojë lexuesit thjesht dhe qartë se si shumëzohen thyesat e përziera me emërues të ndryshëm.

Shumëzimi i thyesave me emërues të ndryshëm

Fillimisht ia vlen të përcaktohet llojet e thyesave:

  • i saktë;
  • e pasaktë;
  • të përziera.

Më pas, duhet të mbani mend se si shumëzohen numrat thyesorë me emërues të njëjtë. Vetë rregulli i këtij procesi është i lehtë për t'u formuluar në mënyrë të pavarur: rezultati i shumëzimit thyesat e thjeshta me emërues të njëjtë është një shprehje thyesore, numëruesi i së cilës është prodhimi i numëruesve dhe emëruesi është prodhimi i emëruesve të këtyre thyesave. Kjo është, në fakt, emëruesi i ri është katrori i një prej atyre ekzistues.

Kur shumëzohet thyesa të thjeshta me emërues të ndryshëm për dy ose më shumë faktorë rregulli nuk ndryshon:

a/b * c/d = a*c / b*d.

I vetmi ndryshim është se numri i formuar nën vijën thyesore do të jetë prodhimi i numrave të ndryshëm dhe, natyrisht, katrori i njërit shprehje numerikeështë e pamundur të emërtohet.

Vlen të merret parasysh shumëzimi i thyesave me emërues të ndryshëm duke përdorur shembuj:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

Shembujt përdorin metoda për reduktimin e shprehjeve thyesore. Ju mund të zvogëloni numrat numërues vetëm me numra emërues pranë njëri-tjetrit shumëzues me vlerë Ju nuk mund të shkurtoni mbi ose nën vijën thyesore.

Së bashku me të thjeshtat numrat thyesorë, ekziston një koncept i thyesave të përziera. Një numër i përzier përbëhet nga një numër i plotë dhe një pjesë thyesore, domethënë është shuma e këtyre numrave:

1 4/ 11 =1 + 4/ 11.

Si funksionon shumëzimi?

Janë dhënë disa shembuj për t'u shqyrtuar.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

Shembulli përdor shumëzimin e një numri me e zakonshme pjesë thyesore , rregulli për këtë veprim mund të shkruhet si:

a* b/c = a*b /c.

Në fakt, një produkt i tillë është shuma e mbetjeve identike thyesore, dhe numri i termave tregon këtë numri natyror. Rast special:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Ekziston një zgjidhje tjetër për shumëzimin e një numri me një mbetje thyesore. Thjesht duhet të ndani emëruesin me këtë numër:

d* e/f = e/f: d.

Kjo teknikë është e dobishme për t'u përdorur kur emëruesi pjesëtohet me një numër natyror pa mbetje ose, siç thonë ata, me një numër të plotë.

Shndërroni numrat e përzier në thyesa të pahijshme dhe merrni produktin në mënyrën e përshkruar më parë:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

Ky shembull përfshin metodën e prezantimit fraksion i përzier gabimisht mund të paraqitet edhe në formë formulë e përgjithshme:

a bc = a*b+ c / c, ku emëruesi i thyesës së re formohet duke shumëzuar të gjithë pjesën me emëruesin dhe duke e shtuar atë me numëruesin e mbetjes thyesore origjinale, dhe emëruesi mbetet i njëjtë.

Ky proces funksionon gjithashtu në ana e kundërt. Për të ndarë të gjithë pjesën dhe pjesën e mbetur thyesore, duhet të ndani numëruesin e një fraksioni të gabuar me emëruesin e tij duke përdorur një "qoshe".

Shumëzimi i thyesave jo të duhura prodhuar në një mënyrë të pranuar përgjithësisht. Kur shkruani nën një rresht të vetëm thyese, duhet të zvogëloni thyesat sipas nevojës në mënyrë që të zvogëloni numrat duke përdorur këtë metodë dhe ta bëni më të lehtë llogaritjen e rezultatit.

Ka shumë ndihmës në internet për të zgjidhur edhe probleme komplekse. problemet e matematikës në variacione të ndryshme programi. Sasi e mjaftueshme shërbime të tilla ofrojnë ndihmën e tyre në numërimin e shumëzimit të thyesave me numra të ndryshëm në emërues - të ashtuquajturat kalkulatorë online për llogaritjen e thyesave. Ata janë në gjendje jo vetëm të shumëzojnë, por edhe të kryejnë të gjitha veprimet e tjera të thjeshta aritmetike me thyesa të zakonshme dhe numra të përzier. Është e lehtë për të punuar me të, ju plotësoni fushat e duhura në faqen e internetit, zgjidhni shenjën e operacionit matematikor dhe klikoni "llogarit". Programi llogarit automatikisht.

Subjekti veprimet aritmetike me numra thyesorë është relevant gjatë gjithë shkollimit të nxënësve të shkollave të mesme dhe të mesme. Në shkollë të mesme, ata nuk konsiderojnë më speciet më të thjeshta, por e tërë shprehjet thyesore , por njohja e rregullave për transformimin dhe llogaritjet e marra më herët zbatohet në formën e saj origjinale. i mësuar mirë njohuritë bazë jepni besim të plotë në vendimin e suksesshëm të shumicës detyra komplekse.

Si përfundim, ka kuptim të citohen fjalët e Lev Nikolaevich Tolstoy, i cili shkroi: "Njeriu është një fraksion. Nuk është në fuqinë e njeriut të rrisë numëruesin e tij - meritat e tij - por çdokush mund të zvogëlojë emëruesin e tij - mendimin e tij për veten e tij dhe me këtë ulje t'i afrohet përsosmërisë së tij.

Shumëzimi thyesat e zakonshme

Le të shohim një shembull.

Le të jetë $\frac(1)(3)$ pjesë e një molle në një pjatë. Duhet të gjejmë pjesën $\frac(1)(2)$ të saj. Pjesa e kërkuar është rezultat i shumëzimit të thyesave $\frac(1)(3)$ dhe $\frac(1)(2)$. Rezultati i shumëzimit të dy thyesave të zakonshme është një thyesë e zakonshme.

Shumëzimi i dy thyesave të zakonshme

Rregulla për shumëzimin e thyesave të zakonshme:

Rezultati i shumëzimit të një thyese me një thyesë është një thyesë numëruesi i së cilës është e barabartë me produktin numëruesit e thyesave që shumëzohen, dhe emëruesi është i barabartë me produktin e emëruesve:

Shembulli 1

Kryeni shumëzimin e thyesave të zakonshme $\frac(3)(7)$ dhe $\frac(5)(11)$.

Zgjidhje.

Le të përdorim rregullin për shumëzimin e thyesave të zakonshme:

\[\frac(3)(7)\cdot \frac(5)(11)=\frac(3\cdot 5)(7\cdot 11)=\frac(15)(77)\]

Përgjigje:$\frac(15)(77)$

Nëse shumëzimi i thyesave rezulton në një thyesë të reduktueshme ose të papërshtatshme, duhet ta thjeshtoni atë.

Shembulli 2

Shumëzoni thyesat $\frac(3)(8)$ dhe $\frac(1)(9)$.

Zgjidhje.

Ne përdorim rregullin për shumëzimin e thyesave të zakonshme:

\[\frac(3)(8)\cdot \frac(1)(9)=\frac(3\cdot 1)(8\cdot 9)=\frac(3)(72)\]

Si rezultat, ne morëm një thyesë të reduktueshme (bazuar në pjesëtimin me $3$. Pjestoni numëruesin dhe emëruesin e thyesës me $3$, marrim:

\[\frac(3)(72)=\frac(3:3)(72:3)=\frac(1)(24)\]

Zgjidhje e shkurtër:

\[\frac(3)(8)\cdot \frac(1)(9)=\frac(3\cdot 1)(8\cdot 9)=\frac(3)(72)=\frac(1) (24)\]

Përgjigje:$\frac(1)(24).$

Kur shumëzoni thyesat, mund të zvogëloni numëruesit dhe emëruesit derisa të gjeni produktin e tyre. Në këtë rast, numëruesi dhe emëruesi i thyesës zbërthehen në faktorët kryesorë, pas së cilës reduktohen faktorët përsëritës dhe gjendet rezultati.

Shembulli 3

Llogaritni prodhimin e thyesave $\frac(6)(75)$ dhe $\frac(15)(24)$.

Zgjidhje.

Le të përdorim formulën për shumëzimin e thyesave të zakonshme:

\[\frac(6)(75)\cdot \frac(15)(24)=\frac(6\cdot 15)(75\cdot 24)\]

Natyrisht, numëruesi dhe emëruesi përmbajnë numra që mund të reduktohen në çifte në numrat $2$, $3$ dhe $5$. Le të faktorizojmë numëruesin dhe emëruesin në faktorë të thjeshtë dhe të bëjmë një reduktim:

\[\frac(6\cdot 15)(75\cdot 24)=\frac(2\cdot 3\cdot 3\cdot 5)(3\cdot 5\cdot 5\cdot 2\cdot 2\cdot 2\cdot 3)=\frac(1)(5\cdot 2\cdot 2)=\frac(1)(20)\]

Përgjigje:$\frac(1)(20).$

Kur shumëzoni thyesat, mund të zbatoni ligjin komutativ:

Shumëzimi i një thyese të përbashkët me një numër natyror

Rregulli për shumëzimin e një thyese të përbashkët me një numër natyror:

Rezultati i shumëzimit të një thyese me një numër natyror është një thyesë në të cilën numëruesi është i barabartë me produktin e numëruesit të thyesës së shumëzuar me numrin natyror, dhe emëruesi është i barabartë me emëruesin e thyesës së shumëzuar:

ku $\frac(a)(b)$ është një thyesë e zakonshme, $n$ është një numër natyror.

Shembulli 4

Shumëzoni thyesën $\frac(3)(17)$ me $4$.

Zgjidhje.

Le të përdorim rregullin për shumëzimin e një thyese të zakonshme me një numër natyror:

\[\frac(3)(17)\cdot 4=\frac(3\cdot 4)(17)=\frac(12)(17)\]

Përgjigje:$\frac(12)(17).$

Mos harroni të kontrolloni rezultatin e shumëzimit nga reduktueshmëria e fraksionit ose nga një fraksion i gabuar.

Shembulli 5

Shumëzoni thyesën $\frac(7)(15)$ me numrin $3$.

Zgjidhje.

Le të përdorim formulën për shumëzimin e një thyese me një numër natyror:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(21)(15)\]

Duke pjesëtuar me numrin $3$) mund të përcaktojmë se thyesa që rezulton mund të reduktohet:

\[\frac(21)(15)=\frac(21:3)(15:3)=\frac(7)(5)\]

Si rezultat, ne morëm një fraksion të papërshtatshëm. Le të zgjedhim të gjithë pjesën:

\[\frac(7)(5)=1\frac(2)(5)\]

Zgjidhje e shkurtër:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(21)(15)=\frac(7)(5)=1\frac(2) (5)\]

Thyesat gjithashtu mund të zvogëlohen duke zëvendësuar numrat në numërues dhe emërues me faktorizimin e tyre në faktorë të thjeshtë. Në këtë rast, zgjidhja mund të shkruhet si më poshtë:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(7\cdot 3)(3\cdot 5)=\frac(7)(5)= 1\frac(2)(5)\]

Përgjigje:$1\frac(2)(5).$

Kur shumëzoni një thyesë me një numër natyror, mund të përdorni ligjin komutativ:

Pjesëtimi i thyesave

Operacioni i pjesëtimit është inversi i shumëzimit dhe rezultati i tij është një fraksion me të cilin duhet të shumëzoni thyesën e njohur për të marrë vepër e famshme dy thyesa.

Pjesëtimi i dy thyesave të zakonshme

Rregulla për ndarjen e thyesave të zakonshme: Natyrisht, numëruesi dhe emëruesi i fraksionit që rezulton mund të faktorizohen dhe zvogëlohen:

\[\frac(8\cdot 35)(15\cdot 12)=\frac(2\cdot 2\cdot 2\cdot 5\cdot 7)(3\cdot 5\cdot 2\cdot 2\cdot 3)= \frac(2\cdot 7)(3\cdot 3)=\frac(14)(9)\]

Si rezultat, marrim një fraksion të pahijshëm, nga i cili zgjedhim të gjithë pjesën:

\[\frac(14)(9)=1\frac(5)(9)\]

Përgjigje:$1\frac(5)(9).$

Në shekullin e pestë para Krishtit, filozofi i lashtë grek Zeno nga Elea formuloi aporiat e tij të famshme, më e famshmja prej të cilave është aporia "Akili dhe Breshka". Ja si tingëllon:

Le të themi se Akili vrapon dhjetë herë më shpejt se breshka dhe është një mijë hapa pas saj. Gjatë kohës që i duhet Akilit për të vrapuar këtë distancë, breshka do të zvarritet njëqind hapa në të njëjtin drejtim. Kur Akili vrapon njëqind hapa, breshka zvarritet edhe dhjetë hapa të tjerë, e kështu me radhë. Procesi do të vazhdojë deri në pafundësi, Akili nuk do ta arrijë kurrë breshkën.

Ky arsyetim u bë një tronditje logjike për të gjithë brezat pasardhës. Aristoteli, Diogjeni, Kanti, Hegeli, Hilberti... Të gjithë e konsideronin aporinë e Zenonit në një mënyrë apo në një tjetër. Goditja ishte aq e fortë sa " ...diskutimet vazhdojnë edhe sot e kësaj dite komuniteti shkencor nuk ka mundur ende të arrijë në një mendim të përbashkët mbi thelbin e paradokseve...u përfshi në studimin e çështjes; analiza matematikore, teoria e grupeve, e reja fizike dhe qasjet filozofike; asnjëri prej tyre nuk u bë një zgjidhje e pranuar përgjithësisht e problemit..."[Wikipedia, "Aporia e Zenos". Të gjithë e kuptojnë se po mashtrohen, por askush nuk e kupton se në çfarë konsiston mashtrimi.

Nga pikëpamja matematikore, Zeno në aporinë e tij tregoi qartë kalimin nga sasia në . Ky kalim nënkupton aplikim në vend të atyre të përhershëm. Me sa kuptoj unë, aparati matematikor për përdorimin e njësive të ndryshueshme të matjes ose nuk është zhvilluar ende, ose nuk është aplikuar në aporinë e Zenoit. Zbatimi i logjikës sonë të zakonshme na çon në një kurth. Ne, për shkak të inercisë së të menduarit, aplikojmë njësi konstante të kohës në vlerën reciproke. ME pikë fizike Nga një këndvështrim, duket sikur koha po ngadalësohet derisa të ndalojë plotësisht në momentin kur Akili kap breshkën. Nëse koha ndalon, Akili nuk mund ta kalojë më breshkën.

Nëse e kthejmë logjikën tonë të zakonshme, gjithçka bie në vend. Akili vrapon me shpejtësi konstante. Çdo segment pasues i rrugës së tij është dhjetë herë më i shkurtër se ai i mëparshmi. Prandaj, koha e shpenzuar për tejkalimin e saj është dhjetë herë më pak se ajo e mëparshme. Nëse zbatojmë konceptin e "pafundësisë" në këtë situatë, atëherë do të ishte e saktë të thuhet "Akili do ta arrijë breshkën pafundësisht shpejt".

Si ta shmangni këtë kurth logjik? Qëndroni brenda njësi konstante matjet e kohës dhe mos shkoni në reciproke. Në gjuhën e Zenonit duket kështu:

Në kohën që i duhen Akilit për të bërë një mijë hapa, breshka do të zvarritet njëqind hapa në të njëjtin drejtim. Gjatë intervalit tjetër kohor të barabartë me të parin, Akili do të vrapojë një mijë hapa të tjerë, dhe breshka do të zvarritet njëqind hapa. Tani Akili është tetëqind hapa përpara breshkës.

Kjo qasje përshkruan në mënyrë adekuate realitetin pa asnjë paradoks logjik. Por nuk është zgjidhje e plotë problemet. Deklarata e Ajnshtajnit për papërmbajtshmërinë e shpejtësisë së dritës është shumë e ngjashme me aporinë e Zenonit "Akili dhe Breshka". Ne ende duhet të studiojmë, rimendojmë dhe zgjidhim këtë problem. Dhe zgjidhja duhet kërkuar jo në numër pafundësisht të madh, por në njësi matëse.

Një tjetër aporia interesante e Zenos tregon për një shigjetë fluturuese:

Një shigjetë fluturuese është e palëvizshme, pasi në çdo moment të kohës është në prehje, dhe duke qenë se është në pushim në çdo moment të kohës, ajo është gjithmonë në pushim.

Në këtë apori paradoks logjik mund të kapërcehet shumë thjesht - mjafton të sqarohet se në çdo moment të kohës një shigjetë fluturuese është në pushim në pika të ndryshme të hapësirës, ​​që në fakt është lëvizje. Këtu duhet theksuar edhe një pikë tjetër. Nga një fotografi e një makine në rrugë është e pamundur të përcaktohet as fakti i lëvizjes së saj, as distanca deri në të. Për të përcaktuar nëse një makinë po lëviz, ju nevojiten dy fotografi të bëra nga e njëjta pikë në pika të ndryshme kohore, por nuk mund të përcaktoni distancën prej tyre. Për të përcaktuar distancën nga makina, ju nevojiten dy fotografi të marra nga pika të ndryshme hapësirë ​​në një moment në kohë, por është e pamundur të përcaktohet fakti i lëvizjes prej tyre (natyrisht, të dhëna shtesë nevojiten ende për llogaritjet, trigonometria do t'ju ndihmojë). Ajo që dua të theksoj vëmendje të veçantë, është se dy pika në kohë dhe dy pika në hapësirë ​​janë gjëra të ndryshme që nuk duhen ngatërruar, sepse ofrojnë mundësi të ndryshme për kërkime.

E mërkurë, 4 korrik 2018

Dallimet midis setit dhe multisetit përshkruhen shumë mirë në Wikipedia. Le të shohim.

Siç mund ta shihni, "nuk mund të ketë dy elementë identikë në një grup", por nëse ka elementë identikë në një grup, një grup i tillë quhet "shumë grup". Një logjikë kaq absurde qenie të ndjeshme kurre kurre. Ky është niveli i papagajve që flasin dhe majmunëve të stërvitur, të cilët nuk kanë inteligjencë nga fjala "plotësisht". Matematikanët veprojnë si trajnerë të zakonshëm, duke na predikuar idetë e tyre absurde.

Njëherë e një kohë, inxhinierët që ndërtuan urën ishin në një varkë nën urë ndërsa testonin urën. Nëse ura u shemb, inxhinieri mediokër vdiq nën rrënojat e krijimit të tij. Nëse ura mund të përballonte ngarkesën, inxhinieri i talentuar ndërtoi ura të tjera.

Pavarësisht se si fshihen matematikanët pas shprehjes "më vidhni, unë jam në shtëpi", ose më mirë "studime matematike konceptet abstrakte", është një kordon kërthizor që i lidh pazgjidhshmërisht me realitetin. Ky kordon kërthizor është para. Apliko teoria matematikore vendos për vetë matematikanët.

Ne kemi studiuar shumë mirë matematikën dhe tani jemi ulur në arkë, duke dhënë rroga. Pra, një matematikan vjen tek ne për paratë e tij. I numërojmë të gjithë shumën dhe e shtrojmë në tryezën tonë në pirgje të ndryshme, në të cilat vendosim fatura të së njëjtës emërtim. Pastaj marrim një faturë nga çdo grumbull dhe i japim matematikanit "pagën e tij matematikore". Ne i shpjegojmë matematikanit se ai do të marrë faturat e mbetura vetëm kur të provojë se një grup pa elementë identikë nuk është i barabartë me një grup me elemente identike. Këtu fillon argëtimi.

Para së gjithash, logjika e deputetëve do të funksionojë: "Kjo mund të zbatohet për të tjerët, por jo për mua!" Më pas ata do të fillojnë të na sigurojnë se faturat e të njëjtit emërtim kanë numra të ndryshëm faturash, që do të thotë se ato nuk mund të konsiderohen të njëjtat elementë. Mirë, le t'i numërojmë pagat në monedha - nuk ka numra në monedha. Këtu matematikani do të fillojë të kujtojë furishëm fizikën: ka monedha të ndryshme sasi të ndryshme baltë, struktura kristalore dhe renditja e atomeve në secilën monedhë është unike...

Dhe tani kam më shumë pyetje interesante: ku është vija përtej së cilës elementet e një shumëbashkësie kthehen në elemente të një bashkësie dhe anasjelltas? Një linjë e tillë nuk ekziston - gjithçka vendoset nga shamanët, shkenca nuk është as afër të gënjejë këtu.

Shiko këtu. Ne zgjedhim stadiume futbolli me të njëjtën zonë. Zonat e fushave janë të njëjta - që do të thotë se kemi një shumë grup. Por po të shikojmë emrat e po këtyre stadiumeve, marrim shumë, sepse emrat janë të ndryshëm. Siç mund ta shihni, i njëjti grup elementësh është një grup dhe një grup shumëfish. Cila është e saktë? Dhe këtu matematikani-shaman-sharpist nxjerr nga mëngët një ace atuesh dhe fillon të na tregojë ose për një grup ose një multiset. Në çdo rast, ai do të na bindë se ka të drejtë.

Për të kuptuar se si shamanët modernë veprojnë me teorinë e grupeve, duke e lidhur atë me realitetin, mjafton t'i përgjigjemi një pyetjeje: si ndryshojnë elementët e një grupi nga elementët e një grupi tjetër? Unë do t'ju tregoj, pa asnjë "të konceptueshme si jo një tërësi e vetme" ose "jo e konceptueshme si një tërësi e vetme".

e diel, 18 mars 2018

Shuma e shifrave të një numri është një valle e shamanëve me një dajre, e cila nuk ka të bëjë fare me matematikën. Po, në mësimet e matematikës ne jemi mësuar të gjejmë shumën e shifrave të një numri dhe ta përdorim atë, por kjo është arsyeja pse ata janë shamanë, për t'u mësuar pasardhësve të tyre aftësitë dhe mençurinë e tyre, përndryshe shamanët thjesht do të vdesin.

Keni nevojë për prova? Hapni Wikipedia dhe provoni të gjeni faqen "Shuma e shifrave të një numri". Ajo nuk ekziston. Nuk ka asnjë formulë në matematikë që mund të përdoret për të gjetur shumën e shifrave të çdo numri. Në fund të fundit, numrat janë simbole grafike me të cilat ne shkruajmë numra, dhe në gjuhën e matematikës detyra tingëllon kështu: "Gjeni shumën e simboleve grafike që përfaqësojnë çdo numër". Matematikanët nuk mund ta zgjidhin këtë problem, por shamanët mund ta bëjnë atë lehtësisht.

Le të kuptojmë se çfarë dhe si bëjmë për të gjetur shumën e numrave numri i dhënë. Dhe kështu, le të kemi numrin 12345. Çfarë duhet bërë për të gjetur shumën e shifrave të këtij numri? Le të shqyrtojmë të gjitha hapat në rend.

1. Shkruani numrin në një copë letër. Çfarë kemi bërë? Ne e kemi kthyer numrin në një simbol grafik numerik. Ky nuk është një operacion matematikor.

2. Ne e premë një fotografi që rezulton në disa fotografi që përmbajnë numra individualë. Prerja e një fotografie nuk është një operacion matematikor.

3. Shndërroni simbolet individuale grafike në numra. Ky nuk është një operacion matematikor.

4. Shtoni numrat që rezultojnë. Tani kjo është matematika.

Shuma e shifrave të numrit 12345 është 15. Këto janë "kurset e prerjes dhe qepjes" nga shamanët që përdorin matematikanët. Por kjo nuk është e gjitha.

Nga pikëpamja matematikore, nuk ka rëndësi se në cilin sistem numrash shkruajmë një numër. Pra, në sisteme të ndryshme Në llogaritje, shuma e shifrave të të njëjtit numër do të jetë e ndryshme. Në matematikë, sistemi i numrave tregohet si nënshkrim në të djathtë të numrit. ME një numër i madh 12345 Nuk dua të mashtroj kokën, le të shohim numrin 26 nga artikulli rreth . Le ta shkruajmë këtë numër në sistemet e numrave binar, oktal, dhjetor dhe heksadecimal. Ne nuk do të shikojmë çdo hap nën një mikroskop, ne e kemi bërë tashmë këtë. Le të shohim rezultatin.

Siç mund ta shihni, në sisteme të ndryshme numrash shuma e shifrave të të njëjtit numër është e ndryshme. Ky rezultat nuk ka të bëjë fare me matematikën. Është njësoj sikur të përcaktonit sipërfaqen e një drejtkëndëshi në metra dhe centimetra, do të merrnit rezultate krejtësisht të ndryshme.

Zero duket e njëjtë në të gjitha sistemet e numrave dhe nuk ka shumë shifrash. Ky është një argument tjetër në favor të faktit se. Pyetje për matematikanët: si përcaktohet diçka që nuk është numër në matematikë? Çfarë, për matematikanët nuk ekziston asgjë përveç numrave? Unë mund ta lejoj këtë për shamanët, por jo për shkencëtarët. Realiteti nuk ka të bëjë vetëm me numrat.

Rezultati i marrë duhet të konsiderohet si provë se sistemet e numrave janë njësi matëse për numrat. Në fund të fundit, ne nuk mund të krahasojmë numrat me njësi të ndryshme matëse. Nëse të njëjtat veprime me njësi të ndryshme matëse të së njëjtës sasi çojnë në rezultate të ndryshme pas krahasimit të tyre, atëherë kjo nuk ka të bëjë fare me matematikën.

Çfarë është matematika e vërtetë? Kjo ndodh kur rezultati i një operacioni matematikor nuk varet nga madhësia e numrit, njësia matëse e përdorur dhe nga kush e kryen këtë veprim.

Nënshkrimi në derë Ai hap derën dhe thotë:

Oh! A nuk është ky banja e grave?
- Grua e re! Ky është një laborator për studimin e shenjtërisë indefilike të shpirtrave gjatë ngjitjes së tyre në qiell! Halo në krye dhe shigjeta lart. Çfarë tualeti tjetër?

Femër... Halo sipër dhe shigjeta poshtë janë mashkull.

Nëse një vepër e tillë e artit të dizajnit shkëlqen para syve tuaj disa herë në ditë,

Atëherë nuk është për t'u habitur që papritmas gjeni një ikonë të çuditshme në makinën tuaj:

Personalisht, unë përpiqem të shoh minus katër gradë në një person që po derdhet (një foto) (një përbërje prej disa fotografish: shenja minus, numri katër, përcaktimi i shkallës). Dhe nuk mendoj se kjo vajzë është budallaqe, jo njohuri në fizikë. Ajo thjesht ka një stereotip perceptimi imazhe grafike. Dhe matematikanët na mësojnë këtë gjatë gjithë kohës. Ja një shembull.

1A nuk është "minus katër gradë" ose "një a". Ky është "njeriu i kulluar" ose numri "njëzet e gjashtë" në shënimin heksadecimal. Ata njerëz që vazhdimisht punojnë në këtë sistem numrash e perceptojnë automatikisht një numër dhe një shkronjë si një simbol grafik.



Ju pëlqeu artikulli? Ndani me miqtë tuaj!