x 2 fonksiyonunun türevini bulun. Toplamın ve farkın türevi

Türevi bulma işlemine farklılaşma denir.

Türevi, argümanın artışına oranının limiti olarak tanımlayarak en basit (ve çok basit olmayan) fonksiyonların türevlerini bulma problemlerinin çözülmesi sonucunda, bir türev tablosu ortaya çıktı ve tam olarak belirli kurallar farklılaşma. Türev bulma alanında ilk çalışmalar yapanlar Isaac Newton (1643-1727) ve Gottfried Wilhelm Leibniz (1646-1716) olmuştur.

Bu nedenle günümüzde herhangi bir fonksiyonun türevini bulmak için yukarıda belirtilen fonksiyonun artımının argümanın artımına oranının limitini hesaplamanıza gerek yoktur, yalnızca tabloyu kullanmanız gerekir. türevler ve türev alma kuralları. Aşağıdaki algoritma türevi bulmak için uygundur.

Türevi bulmak için, asal işaretin altında bir ifadeye ihtiyacınız var basit işlevleri bileşenlere ayırın ve hangi eylemlerin gerçekleştirileceğini belirleyin (çarpım, toplam, bölüm) bu işlevler birbiriyle ilişkilidir. Daha sonra, türev tablosunda temel fonksiyonların türevlerini ve türev kurallarında ürünün, toplamın ve bölümün türevlerinin formüllerini buluyoruz. İlk iki örnekten sonra türevler ve türev alma kurallarının bir tablosu verilmiştir.

Örnek 1. Bir fonksiyonun türevini bulun

Çözüm. Türev alma kurallarından, bir fonksiyon toplamının türevinin, fonksiyonların türevlerinin toplamı olduğunu öğreniyoruz;

Türev tablosundan “X” türevinin bire, sinüs türevinin kosinüse eşit olduğunu öğreniyoruz. Bu değerleri türevlerin toplamına koyarız ve problemin koşulunun gerektirdiği türevi buluruz:

Örnek 2. Bir fonksiyonun türevini bulun

Çözüm. İkinci terimin sabit bir faktöre sahip olduğu bir toplamın türevi olarak türev alıyoruz; bu, türevin işaretinden çıkarılabilir:

Bir şeyin nereden geldiğine dair hâlâ sorular ortaya çıkıyorsa, bunlar genellikle türev tablosuna ve türev almanın en basit kurallarına aşina olduktan sonra açıklığa kavuşturulur. Şu anda onlara doğru ilerliyoruz.

Basit fonksiyonların türevleri tablosu

1. Bir sabitin (sayı) türevi. İşlev ifadesindeki herhangi bir sayı (1, 2, 5, 200...). Her zaman sıfıra eşittir. Bunu hatırlamak çok önemlidir, çünkü çok sık ihtiyaç duyulur.
2. Bağımsız değişkenin türevi. Çoğu zaman "X". Her zaman bire eşittir. Bunu uzun süre hatırlamak da önemlidir
3. Derecenin türevi. Problem çözerken karekök olmayanları kuvvetlere dönüştürmeniz gerekir.
4. Bir değişkenin -1 kuvvetine göre türevi
5. Türev karekök
6. Sinüs türevi
7. Kosinüsün türevi
8. Teğetin türevi
9. Kotanjantın Türevi
10. Arsinüsün türevi
11. Ark kosinüsün türevi
12. Arktanjantın türevi
13. Ark kotanjantının türevi
14. Doğal logaritmanın türevi
15. Logaritmik fonksiyonun türevi
16. Üssün türevi
17. Üstel bir fonksiyonun türevi

Farklılaşma kuralları

1. Bir toplamın veya farkın türevi
2. Ürünün türevi
2a. Bir ifadenin sabit bir faktörle çarpılmasının türevi
3. Bölümün türevi
4. Karmaşık bir fonksiyonun türevi

Kural 1.Eğer işlevler

Bir noktada türevlenebilirse fonksiyonlar aynı noktada türevlenebilirdir

Ve

onlar. fonksiyonların cebirsel toplamının türevi şuna eşittir: cebirsel toplam bu fonksiyonların türevleri.

Sonuçlar. İki türevlenebilir fonksiyonun farkı sabit bir terim ise türevleri eşittir, yani

Kural 2.Eğer işlevler

Bir noktada türevlenebilirse çarpımları da aynı noktada türevlenebilirdir

Ve

onlar. İki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımları ile diğerinin türevinin toplamına eşittir.

Sonuç 1. Sabit faktör türevin işaretinden çıkarılabilir:

Sonuç 2. Çeşitli türevlenebilir fonksiyonların çarpımının türevi, her faktörün ve diğerlerinin türevinin çarpımlarının toplamına eşittir.

Örneğin üç çarpan için:

Kural 3.Eğer işlevler

bir noktada farklılaşabilir Ve , o zaman bu noktada onların bölümü de türevlenebiliru/v ve

onlar. iki fonksiyonun bölümünün türevi, pay, paydanın çarpımları ile payın türevi ile pay ve paydanın türevi arasındaki fark olan bir kesire eşittir ve payda, karesidir. eski pay.

Diğer sayfalardaki şeyleri nerede arayabiliriz?

Bir çarpımın türevini ve bölümünü bulurken gerçek sorunlar Aynı anda birden fazla farklılaşma kuralının uygulanması her zaman gereklidir, bu nedenle daha fazla örnek bu türevler için - makalede"Çarpının türevi ve fonksiyonların bölümü".

Yorum. Bir sabiti (yani bir sayıyı) toplamdaki bir terim ve sabit bir faktör olarak karıştırmamalısınız! Bir terim durumunda türevi sıfıra eşittir ve bu durumda sabit faktör türev işaretinden çıkarılır. Bu tipik hata, üzerinde meydana gelen başlangıç ​​aşaması Türevleri inceliyorlar, ancak birkaç bir ve iki parçalı örnekleri çözdükçe, ortalama bir öğrenci artık bu hatayı yapmıyor.

Ve eğer bir ürünü veya bölümü farklılaştırırken bir teriminiz varsa sen"v, hangisinde sen- bir sayı, örneğin 2 veya 5, yani bir sabit, o zaman bu sayının türevi sıfıra eşit olacaktır ve dolayısıyla tüm terim sıfıra eşit olacaktır (bu durum örnek 10'da tartışılmıştır).

Diğer yaygın hata - mekanik çözüm basit bir fonksiyonun türevi olarak karmaşık bir fonksiyonun türevi. Bu yüzden karmaşık bir fonksiyonun türevi ayrı bir makale ayrılmıştır. Ama önce türevleri bulmayı öğreneceğiz basit işlevler.

Yol boyunca ifadeleri dönüştürmeden yapamazsınız. Bunu yapmak için kılavuzu yeni pencerelerde açmanız gerekebilir. Güçleri ve kökleri olan eylemler Ve Kesirlerle işlemler .

Kesirlerin kuvvetleri ve kökleri olan türevlerine çözüm arıyorsanız, yani fonksiyon şöyle göründüğünde , ardından “Küsleri ve kökleri olan kesirlerin toplamlarının türevi” dersini takip edin.

gibi bir göreviniz varsa , daha sonra “Basit trigonometrik fonksiyonların türevleri” dersini alacaksınız.

Adım adım örnekler - türev nasıl bulunur

Örnek 3. Bir fonksiyonun türevini bulun

Çözüm. Fonksiyon ifadesinin bölümlerini tanımlarız: ifadenin tamamı bir çarpımı temsil eder ve faktörleri toplamlardır; ikincisinde terimlerden biri sabit bir faktör içerir. Çarpım farklılaşma kuralını uyguluyoruz: iki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımlarının diğerinin türevine göre toplamına eşittir:

Daha sonra, toplamın türev alma kuralını uyguluyoruz: Cebirsel fonksiyonlar toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir. Bizim durumumuzda her toplamda ikinci terimin bir eksi işareti vardır. Her toplamda hem türevi bire eşit olan bağımsız bir değişken hem de türevi sıfıra eşit olan bir sabit (sayı) görüyoruz. Yani “X” bire, eksi 5 ise sıfıra dönüşüyor. İkinci ifadede "x" 2 ile çarpıldığından ikiyi "x"in türeviyle aynı birim ile çarpıyoruz. Aldık aşağıdaki değerler türevler:

Bulunan türevleri çarpımların toplamına koyarız ve problemin koşulunun gerektirdiği tüm fonksiyonun türevini elde ederiz:

Örnek 4. Bir fonksiyonun türevini bulun

Çözüm. Bölümün türevini bulmamız gerekiyor. Bölümün türevini almak için formülü uyguluyoruz: iki fonksiyonun bölümünün türevi, payı paydanın çarpımları ile payın türevi ve pay ile payın türevi arasındaki fark olan bir kesire eşittir. payda ve payda önceki payın karesidir. Şunu elde ederiz:

Örnek 2'de paydaki faktörlerin türevini zaten bulmuştuk. Mevcut örnekte payda ikinci faktör olan çarpımın eksi işaretiyle alındığını da unutmayalım:

Bir fonksiyonun türevini bulmanız gereken, sürekli bir kök ve kuvvet yığınının bulunduğu sorunlara çözüm arıyorsanız, örneğin, , o zaman sınıfa hoş geldiniz "Kuvvetleri ve kökleri olan kesirlerin toplamlarının türevi" .

Sinüs, kosinüs, teğet ve diğerlerinin türevleri hakkında daha fazla bilgi edinmek istiyorsanız trigonometrik fonksiyonlar, yani fonksiyon şöyle göründüğünde o zaman sana bir ders "Basit trigonometrik fonksiyonların türevleri" .

Örnek 5. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, türev tablosunda türevine aşina olduğumuz, faktörlerinden biri bağımsız değişkenin karekökü olan bir çarpım görüyoruz. Ürünün farklılaştırılması kuralına göre ve tablo değeri karekökün türevini elde ederiz:

Örnek 6. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, payı bağımsız değişkenin karekökü olan bir bölüm görüyoruz. Örnek 4'te tekrarladığımız ve uyguladığımız bölümlerin türevini alma kuralını ve karekök türevinin tablo değerini kullanarak elde ederiz.

Tanım.\(y = f(x)\) fonksiyonunun, içinde \(x_0\) noktasını içeren belirli bir aralıkta tanımlandığını varsayalım. Argümana bu aralığı terk etmeyecek şekilde \(\Delta x \) bir artış verelim. \(\Delta y \) fonksiyonunun karşılık gelen artışını bulalım (\(x_0 \) noktasından \(x_0 + \Delta x \) noktasına giderken) ve \(\frac(\Delta) ilişkisini oluşturalım y)(\Delta x) \). Bu oranın \(\Delta x \rightarrow 0\'da) bir sınırı varsa, belirtilen sınıra denir. bir fonksiyonun türevi\(y=f(x) \) \(x_0 \) noktasındadır ve \(f"(x_0) \)'yi gösterir.

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Y sembolü genellikle türevi belirtmek için kullanılır. y" = f(x)'in yeni bir fonksiyon olduğunu, ancak doğal olarak yukarıdaki limitin mevcut olduğu tüm x noktalarında tanımlanan y = f(x) fonksiyonuyla ilişkili olduğunu unutmayın. Bu fonksiyon şu şekilde çağrılır: y = f(x) fonksiyonunun türevi.

Türevin geometrik anlamı aşağıdaki gibidir. y = f(x) fonksiyonunun grafiğine apsis x=a olan ve y eksenine paralel olmayan bir noktada bir teğet çizmek mümkünse f(a) teğetin eğimini ifade eder :
\(k = f"(a)\)

\(k = tg(a) \) olduğundan, \(f"(a) = tan(a) \) eşitliği doğrudur.

Şimdi türevin tanımını yaklaşık eşitlikler açısından yorumlayalım. \(y = f(x)\) fonksiyonunun türevi olsun belirli nokta\(X\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Bu, x noktası yakınında yaklaşık eşitliğin \(\frac(\Delta y)(\Delta x) \approx f"(x)\), yani \(\Delta y \approx f"(x) \cdot\ olduğu anlamına gelir. Delta x\). Ortaya çıkan yaklaşık eşitliğin anlamlı anlamı şu şekildedir: Fonksiyonun artışı argümanın artışıyla “hemen hemen orantılıdır” ve orantı katsayısı da türevin değeridir. verilen nokta X. Örneğin, \(y = x^2\) fonksiyonu için yaklaşık eşitlik \(\Delta y \approx 2x \cdot \Delta x \) geçerlidir. Bir türevin tanımını dikkatlice analiz edersek, onu bulmak için bir algoritma içerdiğini görürüz.

Formüle edelim.

y = f(x) fonksiyonunun türevi nasıl bulunur?

1. \(x\) değerini sabitleyin, \(f(x)\)'i bulun
2. \(x\) argümanına bir artış \(\Delta x\) verin, şuraya gidin: yeni nokta\(x+ \Delta x \), bul \(f(x+ \Delta x) \)
3. Fonksiyonun artışını bulun: \(\Delta y = f(x + \Delta x) - f(x) \)
4. \(\frac(\Delta y)(\Delta x) \) ilişkisini oluşturun
5. $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$'ı hesaplayın
Bu limit fonksiyonun x noktasındaki türevidir.

Bir y = f(x) fonksiyonunun x noktasında türevi varsa, bu fonksiyona x noktasında türevlenebilir denir. y = f(x) fonksiyonunun türevini bulma prosedürüne denir farklılaşma fonksiyonlar y = f(x).

Şu soruyu tartışalım: Bir fonksiyonun bir noktadaki sürekliliği ve türevlenebilirliği birbiriyle nasıl ilişkilidir?

y = f(x) fonksiyonunun x noktasında türevi olsun. Daha sonra fonksiyonun grafiğine M(x; f(x)) noktasında bir teğet çizilebilir ve hatırlayın, teğetin açısal katsayısı f "(x)'e eşittir. Böyle bir grafik "kırılamaz" M noktasında, yani fonksiyon x noktasında sürekli olmalıdır.

Bunlar “uygulamalı” argümanlardı. Daha kesin bir gerekçe sunalım. Eğer y = f(x) fonksiyonu x noktasında türevlenebilirse, o zaman yaklaşık eşitlik \(\Delta y \approx f"(x) \cdot \Delta x\) sağlanır. Bu eşitlikte ise \(\Delta x \) sıfıra yönelirse \(\Delta y \) sıfıra yönelecektir ve bu, fonksiyonun bir noktadaki sürekliliğinin koşuludur.

Bu yüzden, Bir fonksiyon x noktasında türevlenebilirse o noktada süreklidir.

Tersi ifade doğru değildir. Örneğin: fonksiyon y = |x| her yerde süreklidir, özellikle x = 0 noktasında, ancak fonksiyonun grafiğine “birleşim noktasında” (0; 0) teğet mevcut değildir. Bir fonksiyonun grafiğine bir noktada teğet çizilemiyorsa o noktada türev mevcut değildir.

Başka bir örnek. \(y=\sqrt(x)\) fonksiyonu, x = 0 noktası da dahil olmak üzere tüm sayı doğrusu üzerinde süreklidir. Ve fonksiyonun grafiğine teğet, x = 0 noktası da dahil olmak üzere herhangi bir noktada mevcuttur. Ancak bu noktada teğet y eksenine denk gelir, yani apsis eksenine diktir, denklemi x = 0 şeklindedir. Eğim katsayısı böyle bir çizgi yok, bu da \(f"(0) \)'nin de mevcut olmadığı anlamına geliyor

Böylece bir fonksiyonun yeni bir özelliği olan türevlenebilirlik ile tanıştık. Bir fonksiyonun grafiğinden onun türevlenebilir olduğu sonucuna nasıl varılabilir?

Bunun cevabı aslında yukarıda verilmiştir. Bir noktada apsis eksenine dik olmayan bir fonksiyonun grafiğine teğet çizmek mümkünse, o zaman bu noktada fonksiyon türevlenebilirdir. Bir fonksiyonun grafiğinin bir noktada teğeti yoksa veya apsis eksenine dikse, bu noktada fonksiyon türevlenebilir değildir.

Farklılaşma kuralları

Türev bulma işlemine denir farklılaşma. Bu işlemi gerçekleştirirken çoğu zaman bölümler, toplamlar, fonksiyonların çarpımları ve ayrıca "fonksiyonların fonksiyonları" yani karmaşık fonksiyonlarla çalışmak zorunda kalırsınız. Türevin tanımından yola çıkarak bu işi kolaylaştıracak türev kurallarını türetebiliriz. Eğer C - sabit sayı ve f=f(x), g=g(x) bazı türevlenebilir fonksiyonlarsa, aşağıdakiler doğrudur farklılaşma kuralları:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Karmaşık bir fonksiyonun türevi:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Bazı fonksiyonların türevleri tablosu

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Tanımı takip ederseniz, bir fonksiyonun bir noktadaki türevi, Δ fonksiyonunun artış oranının limitidir. sen argüman artışına Δ X:

Her şey açık görünüyor. Ancak fonksiyonun türevini hesaplamak için bu formülü kullanmayı deneyin. F(X) = X 2 + (2X+ 3) · e X günah X. Her şeyi tanımı gereği yaparsanız, birkaç sayfalık hesaplamalardan sonra uykuya dalacaksınız. Bu nedenle daha basit ve etkili yollar var.

Başlangıç ​​olarak, tüm fonksiyon çeşitliliğinden, temel fonksiyonlar olarak adlandırılanları ayırt edebildiğimizi not ediyoruz. Bu göreceli basit ifadeler türevleri uzun süredir hesaplanan ve tabloda listelenen. Bu tür fonksiyonların türevleriyle birlikte hatırlanması oldukça kolaydır.

Temel fonksiyonların türevleri

Temel işlevler aşağıda listelenenlerin tamamıdır. Bu fonksiyonların türevlerinin ezbere bilinmesi gerekir. Üstelik bunları ezberlemek hiç de zor değil; bu yüzden temel düzeydedirler.

Yani, temel fonksiyonların türevleri:

İsim İşlev Türev
Devamlı F(X) = C, CR 0 (evet, sıfır!)
Rasyonel üslü kuvvet F(X) = X N N · X N − 1
Sinüs F(X) = günah X çünkü X
Kosinüs F(X) = çünkü X −günah X(eksi sinüs)
Teğet F(X) = tg X 1/çünkü 2 X
Kotanjant F(X) = ctg X − 1/günah 2 X
Doğal logaritma F(X) = günlük X 1/X
Keyfi logaritma F(X) = günlük A X 1/(X içinde A)
Üstel fonksiyon F(X) = e X e X(hiçbir şey değişmedi)

Bir temel fonksiyon keyfi bir sabitle çarpılırsa, yeni fonksiyonun türevi de kolaylıkla hesaplanır:

(C · F)’ = C · F ’.

Genel olarak sabitler türevin işaretinden çıkarılabilir. Örneğin:

(2X 3)’ = 2 · ( X 3)’ = 2 3 X 2 = 6X 2 .

Açıkçası, temel işlevler birbirine eklenebilir, çarpılabilir, bölünebilir ve çok daha fazlası yapılabilir. Artık özellikle temel olmayan, aynı zamanda belirli kurallara göre farklılaştırılmış yeni işlevler bu şekilde ortaya çıkacak. Bu kurallar aşağıda tartışılmaktadır.

Toplam ve farkın türevi

Fonksiyonlar verilsin F(X) Ve G(X), türevleri tarafımızca bilinmektedir. Örneğin yukarıda tartışılan temel işlevleri alabilirsiniz. Daha sonra bu fonksiyonların toplamının ve farkının türevini bulabilirsiniz:

  1. (F + G)’ = F ’ + G
  2. (FG)’ = F ’ − G

Yani iki fonksiyonun toplamının (farkının) türevi, türevlerin toplamına (farkına) eşittir. Daha fazla şart olabilir. Örneğin, ( F + G + H)’ = F ’ + G ’ + H ’.

Açıkça söylemek gerekirse cebirde “çıkarma” kavramı yoktur. “Negatif unsur” diye bir kavram var. Bu nedenle fark FG toplam olarak yeniden yazılabilir F+ (−1) G ve sonra yalnızca bir formül kalır - toplamın türevi.

F(X) = X 2 + günah x; G(X) = X 4 + 2X 2 − 3.

İşlev F(X) iki temel fonksiyonun toplamıdır, dolayısıyla:

F ’(X) = (X 2 + günah X)’ = (X 2)’ + (günah X)’ = 2X+ çünkü x;

İşlev için de benzer şekilde mantık yürütüyoruz G(X). Sadece zaten üç terim var (cebir açısından):

G ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Cevap:
F ’(X) = 2X+ çünkü x;
G ’(X) = 4X · ( X 2 + 1).

Ürünün türevi

Matematik mantıksal bir bilimdir, pek çok kişi bir toplamın türevinin türevlerin toplamına eşit olması durumunda çarpımın türevinin alınacağına inanır. çarpmak">türevlerin çarpımına eşittir. Ama canınız cehenneme! Bir çarpımın türevi tamamen farklı bir formül kullanılarak hesaplanır. Yani:

(F · G) ’ = F ’ · G + F · G

Formül basit ama sıklıkla unutuluyor. Ve sadece okul çocukları değil, öğrenciler de. Sonuç yanlış çözülmüş problemlerdir.

Görev. Fonksiyonların türevlerini bulun: F(X) = X 3 çünkü x; G(X) = (X 2 + 7X− 7) · e X .

İşlev F(X) iki temel fonksiyonun ürünüdür, dolayısıyla her şey basittir:

F ’(X) = (X 3 çünkü X)’ = (X 3) çünkü X + X 3 (çünkü X)’ = 3X 2 çünkü X + X 3 (−sin X) = X 2 (3cos XX günah X)

İşlev G(X) ilk faktör biraz daha karmaşıktır, ancak genel şema bu değişmez. Açıkçası, fonksiyonun ilk faktörü G(X) bir polinomdur ve türevi toplamın türevidir. Sahibiz:

G ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X· (2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Cevap:
F ’(X) = X 2 (3cos XX günah X);
G ’(X) = X(X+ 9) · e X .

Lütfen son adımda türevin çarpanlara ayrıldığını unutmayın. Resmi olarak bunun yapılmasına gerek yoktur, ancak çoğu türev kendi başına hesaplanmaz, fonksiyonu incelemek için hesaplanır. Bu, türevin ayrıca sıfıra eşitleneceği, işaretlerinin belirleneceği vb. anlamına gelir. Böyle bir durumda, bir ifadenin çarpanlara ayrılması daha iyidir.

İki fonksiyon varsa F(X) Ve G(X), Ve G(X) ≠ 0 ilgilendiğimiz kümede tanımlayabiliriz yeni özellik H(X) = F(X)/G(X). Böyle bir fonksiyonun türevini de bulabilirsiniz:

Zayıf değil, değil mi? Eksi nereden geldi? Neden G 2? Ve bu yüzden! Bu en çok biri karmaşık formüller- Şişe olmadan çözemezsin. Bu nedenle, üzerinde çalışmak daha iyidir spesifik örnekler.

Görev. Fonksiyonların türevlerini bulun:

Her kesrin payı ve paydası temel fonksiyonlar içerir, bu nedenle ihtiyacımız olan tek şey bölümün türevinin formülüdür:


Geleneğe göre, payı çarpanlara ayıralım - bu, cevabı büyük ölçüde basitleştirecektir:

Karmaşık bir fonksiyonun mutlaka yarım kilometre uzunluğunda bir formül olması gerekmez. Örneğin fonksiyonu almanız yeterli F(X) = günah X ve değişkeni değiştirin X diyelim ki X 2 + ln X. İşe yarayacak F(X) = günah ( X 2 + ln X) - işte bu karmaşık fonksiyon. Onun da bir türevi var ama yukarıda tartışılan kuralları kullanarak onu bulmak mümkün olmayacak.

Ne yapmalıyım? Bu gibi durumlarda, karmaşık bir fonksiyonun türevi için bir değişkeni ve formülü değiştirmek yardımcı olur:

F ’(X) = F ’(T) · T', Eğer Xşununla değiştirilir: T(X).

Kural olarak, bu formülün anlaşılmasındaki durum, bölümün türevinden daha da üzücüdür. Bu nedenle spesifik örneklerle açıklamak daha doğru olacaktır. detaylı açıklama her adımda.

Görev. Fonksiyonların türevlerini bulun: F(X) = e 2X + 3 ; G(X) = günah ( X 2 + ln X)

Fonksiyonda ise şunu unutmayın F(X) ifade 2 yerine X+3 kolay olacak X, o zaman işe yarayacak temel fonksiyon F(X) = e X. Bu nedenle bir değişiklik yapıyoruz: 2 olsun X + 3 = T, F(X) = F(T) = e T. Aşağıdaki formülü kullanarak karmaşık bir fonksiyonun türevini ararız:

F ’(X) = F ’(T) · T ’ = (e T)’ · T ’ = e T · T

Ve şimdi - dikkat! Ters değiştirme işlemini gerçekleştiriyoruz: T = 2X+ 3. Şunu elde ederiz:

F ’(X) = e T · T ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Şimdi fonksiyona bakalım G(X). Açıkçası değiştirilmesi gerekiyor X 2 + ln X = T. Sahibiz:

G ’(X) = G ’(T) · T' = (günah T)’ · T' = çünkü T · T

Ters değiştirme: T = X 2 + ln X. Daha sonra:

G ’(X) = çünkü ( X 2 + ln X) · ( X 2 + ln X)’ = çünkü ( X 2 + ln X) · (2 X + 1/X).

İşte bu! Son ifadeden de anlaşılacağı üzere bütün sorun türev toplamının hesaplanmasına indirgenmiştir.

Cevap:
F ’(X) = 2 · e 2X + 3 ;
G ’(X) = (2X + 1/X) çünkü ( X 2 + ln X).

Derslerimde sıklıkla "türev" terimi yerine "asal" kelimesini kullanıyorum. Örneğin, miktardan bir asal sayı toplamına eşit vuruşlar. Bu daha açık mı? Bu iyi.

Dolayısıyla türevi hesaplamak, yukarıda tartışılan kurallara göre aynı vuruşlardan kurtulmak anlamına gelir. Gibi son örnek Rasyonel bir üsle türev gücüne dönelim:

(X N)’ = N · X N − 1

Çok az kişi bunu rolde biliyor N iyi performans gösterebilir kesirli sayı. Örneğin, kök X 0,5. Ya kökün altında süslü bir şey varsa? Sonuç yine karmaşık bir işlev olacaktır; bu tür yapıları testler ve sınavlar.

Görev. Fonksiyonun türevini bulun:

Öncelikle kökü rasyonel üssü olan bir kuvvet olarak yeniden yazalım:

F(X) = (X 2 + 8X − 7) 0,5 .

Şimdi bir değişiklik yapıyoruz: izin ver X 2 + 8X − 7 = T. Türevi aşağıdaki formülü kullanarak buluruz:

F ’(X) = F ’(T) · T ’ = (T 0,5)' · T' = 0,5 · T−0,5 · T ’.

Ters değiştirme işlemini yapalım: T = X 2 + 8X− 7. Elimizde:

F ’(X) = 0,5 · ( X 2 + 8X− 7) −0,5 · ( X 2 + 8X− 7)’ = 0,5 (2) X+ 8) ( X 2 + 8X − 7) −0,5 .

Son olarak köklere dönelim:



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!