İkinci dereceden bir denklemin kökleri. İkinci Dereceden Denklemleri Çözme

İkinci dereceden denklemler. Ayrımcı. Çözüm, örnekler.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

İkinci dereceden denklem türleri

İkinci dereceden denklem nedir? Nasıl görünüyor? Dönem içi ikinci dereceden denklem anahtar kelime "kare". Bu şu anlama gelir: denklemde mutlaka bir x kare olmalı. Buna ek olarak, denklem yalnızca X'i (birinci kuvvete göre) ve yalnızca bir sayıyı içerebilir (ya da içermeyebilir!) (Ücretsiz Üye). Ve iki derecesine kadar X olmamalıdır.

Konuşuyorum matematik dili ikinci dereceden bir denklem şu şekilde bir denklemdir:

Burada a, b ve c- bazı sayılar. b ve c- kesinlikle herhangi biri, ancak A– sıfırdan başka herhangi bir şey. Örneğin:

Burada A =1; B = 3; C = -4

Burada A =2; B = -0,5; C = 2,2

Burada A =-3; B = 6; C = -18

Peki, anlıyorsun...

Soldaki bu ikinci dereceden denklemlerde tam set üyeler. Katsayılı X'in karesi A, x üzeri katsayılı birinci kuvvet B Ve ücretsiz üye

Bu tür ikinci dereceden denklemlere denir tam dolu.

Ve eğer B= 0, ne elde ederiz? Sahibiz X'in birinci kuvveti kaybolacak. Bu, sıfırla çarpıldığında meydana gelir.) Örneğin şu şekilde ortaya çıkıyor:

5x2 -25 = 0,

2x2 -6x=0,

-x 2 +4x=0

Ve benzeri. Ve eğer her iki katsayı da B Ve C sıfıra eşitse, o zaman daha da basittir:

2x2 =0,

-0,3x2 =0

Bir şeyin eksik olduğu bu tür denklemlere denir tamamlanmamış ikinci dereceden denklemler. Bu oldukça mantıklı.) Lütfen x karenin tüm denklemlerde mevcut olduğunu unutmayın.

Bu arada neden A sıfıra eşit olamaz mı? Ve onun yerine sen geçiyorsun A sıfır.) X karemiz kaybolacak! Denklem doğrusal hale gelecektir. Ve çözüm tamamen farklı...

İkinci dereceden denklemlerin tüm ana türleri bunlardır. Tam ve eksik.

İkinci dereceden denklemlerin çözümü.

Tam ikinci dereceden denklemlerin çözümü.

İkinci dereceden denklemlerin çözülmesi kolaydır. Formüllere göre ve açık Basit kurallar. İlk aşamada yapmanız gerekenler verilen denklem yol açmak standart görünüm, yani forma:

Eğer denklem size zaten bu formda verilmişse, ilk aşamayı yapmanıza gerek yoktur.) Önemli olan tüm katsayıları doğru belirlemek, A, B Ve C.

Kök bulma formülü ikinci dereceden denklemöyle görünüyor:

Kök işaretinin altındaki ifadeye denir ayrımcı. Ama onun hakkında daha fazla bilgiyi aşağıda bulabilirsiniz. Gördüğünüz gibi X'i bulmak için şunu kullanıyoruz: sadece a, b ve c. Onlar. ikinci dereceden bir denklemin katsayıları. Değerleri dikkatlice değiştirin a, b ve c Bu formüle göre hesaplıyoruz. Hadi değiştirelim kendi işaretlerinle! Örneğin denklemde:

A =1; B = 3; C= -4. İşte bunu yazıyoruz:

Örnek neredeyse çözüldü:

Cevap bu.

Her şey çok basit. Peki hata yapmanın imkansız olduğunu mu düşünüyorsun? Evet, nasıl...

En yaygın hatalar işaret değerleriyle karışıklıktır a, b ve c. Daha doğrusu, işaretleriyle değil (nerede karıştırılmalı?), Kökleri hesaplama formülüne negatif değerlerin eklenmesiyle. Buraya kaydeder ayrıntılı giriş Belirli sayılara sahip formüller. Hesaplamalarda sorun varsa, yap bunu!

Aşağıdaki örneği çözmemiz gerektiğini varsayalım:

Burada A = -6; B = -5; C = -1

Diyelim ki ilk seferde nadiren yanıt alabildiğinizi biliyorsunuz.

Tembel olmayın. Fazladan bir satır yazmak ve hata sayısını yaklaşık 30 saniye sürecektir. keskin bir şekilde azalacak. Bu yüzden tüm parantez ve işaretlerle birlikte ayrıntılı olarak yazıyoruz:

Bu kadar dikkatli yazmak inanılmaz derecede zor görünüyor. Ama sadece öyle görünüyor. Bir şans ver. Peki ya da seç. Hangisi daha iyi, hızlı mı yoksa doğru mu? Üstelik seni mutlu edeceğim. Bir süre sonra her şeyi bu kadar dikkatli yazmaya gerek kalmayacak. Kendi kendine ortaya çıkacak. Özellikle aşağıda açıklanan pratik teknikleri kullanıyorsanız. Pek çok eksiği olan bu kötü örnek, kolayca ve hatasız çözülebilir!

Ancak ikinci dereceden denklemler sıklıkla biraz farklı görünür. Örneğin şöyle:

Tanıdın mı?) Evet! Bu tamamlanmamış ikinci dereceden denklemler.

Tamamlanmamış ikinci dereceden denklemlerin çözümü.

Genel bir formül kullanılarak da çözülebilirler. Sadece burada neye eşit olduklarını doğru anlamanız gerekiyor. a, b ve c.

Anladın mı? İlk örnekte bir = 1; b = -4; A C? Hiç orada değil! Evet, doğru. Matematikte bu şu anlama gelir: c = 0 ! Bu kadar. Bunun yerine formüle sıfır yazın C, ve başaracağız. İkinci örnekle aynı. Yalnız burada sıfır yok İle, A B !

Ancak tamamlanmamış ikinci dereceden denklemler çok daha basit bir şekilde çözülebilir. Herhangi bir formül olmadan. İlk tamamlanmamış denklemi ele alalım. Sol tarafta ne yapabilirsiniz? X'i parantezlerden çıkarabilirsiniz! Hadi çıkaralım.

Peki bundan ne haber? Ve çarpımın sıfıra eşit olması ancak ve ancak faktörlerden herhangi birinin sıfıra eşit olması durumunda! Bana inanmıyor musun? Tamam, o zaman çarpıldığında sıfır verecek iki sıfır olmayan sayı bulun!
Çalışmıyor? Bu kadar...
Bu nedenle güvenle yazabiliriz: x 1 = 0, x 2 = 4.

Tüm. Bunlar denklemimizin kökleri olacak. Her ikisi de uygundur. Bunlardan herhangi birini yerine koyarken orijinal denklem 0 = 0 doğru kimliğini elde ederiz. Gördüğünüz gibi çözüm genel formülü kullanmaktan çok daha basittir. Bu arada, hangi X'in birinci, hangisinin ikinci olacağını - kesinlikle kayıtsız olduğunu not edeyim. Sırayla yazmakta fayda var x 1- daha küçük olan ve x 2- hangisi daha büyükse.

İkinci denklem de basit bir şekilde çözülebilir. 9'u şuraya taşı: Sağ Taraf. Şunu elde ederiz:

Geriye kalan tek şey 9'dan kökü çıkarmak, hepsi bu. Ortaya çıkacak:

Ayrıca iki kök . x1 = -3, x 2 = 3.

Tüm tamamlanmamış ikinci dereceden denklemler bu şekilde çözülür. Ya X'i parantezlerin dışına yerleştirerek ya da basitçe sayıyı sağa taşıyıp ardından kökü çıkartarak.
Bu teknikleri karıştırmak son derece zordur. Basitçe, çünkü ilk durumda X'in kökünü çıkarmanız gerekecek ki bu bir şekilde anlaşılmaz ve ikinci durumda parantez içinde çıkarılacak hiçbir şey yok...

Ayrımcı. Diskriminant formülü.

sihirli kelime ayrımcı ! Nadiren bir lise öğrencisi bu kelimeyi duymamıştır! “Ayrımcı aracılığıyla çözüyoruz” ifadesi güven ve güvence veriyor. Çünkü ayrımcıdan hile beklemeye gerek yok! Kullanımı basit ve sorunsuzdur.) En çok hatırlatırım Genel formülçözümler için herhangi ikinci dereceden denklemler:

Kök işaretinin altındaki ifadeye diskriminant denir. Tipik olarak ayrımcı harfle gösterilir D. Diskriminant formülü:

D = b 2 - 4ac

Peki bu ifadede bu kadar dikkat çekici olan ne? Neden hak etti özel isim? Ne diskriminantın anlamı? Nihayet -B, veya 2a bu formülde ona özel olarak hiçbir şey demiyorlar... Harfler ve harfler.

İşte olay şu. Bu formülü kullanarak ikinci dereceden bir denklemi çözerken, mümkündür sadece üç vaka.

1. Diskriminant pozitiftir. Bu, kökün ondan çıkarılabileceği anlamına gelir. Kökün iyi mi yoksa kötü mü çıkarıldığı farklı bir sorudur. Önemli olan prensipte neyin çıkarıldığıdır. O halde ikinci dereceden denkleminizin iki kökü vardır. İki farklı çözüm.

2. Diskriminant sıfırdır. O zaman tek bir çözümünüz olacak. Payda sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez. Aslına bakılırsa bu tek bir kök değil, iki özdeş. Ancak basitleştirilmiş bir versiyonda, hakkında konuşmak gelenekseldir. bir çözüm.

3. Diskriminant negatiftir. Negatif bir sayının karekökü alınamaz. İyi tamam. Bu, hiçbir çözümün olmadığı anlamına gelir.

Dürüst olmak gerekirse, ne zaman basit çözümİkinci dereceden denklemlerde diskriminant kavramı özellikle gerekli değildir. Katsayıların değerlerini formülde yerine koyarız ve sayarız. Orada her şey kendi kendine oluyor, iki kök, bir ve yok. Ancak daha fazlasını çözerken zor görevler, bilgisi olmadan diskriminantın anlamı ve formülü yeterli değil. Özellikle parametreli denklemlerde. Bu tür denklemler Devlet Sınavı ve Birleşik Devlet Sınavı için akrobasi niteliğindedir!)

Bu yüzden, ikinci dereceden denklemler nasıl çözülür hatırladığın ayrımcı aracılığıyla. Veya öğrendiniz ki bu da fena değil.) Nasıl doğru bir şekilde belirleyeceğinizi biliyorsunuz a, b ve c. Nasıl olduğunu biliyor musun? dikkatle bunları kök formülde değiştirin ve dikkatle sonucu sayın. Bunu anladın mı anahtar kelime Burada - dikkatle mi?

Şimdi hata sayısını önemli ölçüde azaltan pratik teknikleri not edin. Dikkatsizlikten kaynaklananların aynısı... Daha sonra acı verici ve rencide edici hale gelenler...

İlk randevu . İkinci dereceden bir denklemi çözmeden ve onu standart forma getirmeden önce tembel olmayın. Bu ne anlama gelir?
Diyelim ki tüm dönüşümlerden sonra aşağıdaki denklemi elde ettiniz:

Kök formülünü yazmak için acele etmeyin! Neredeyse kesinlikle oranları karıştıracaksınız a, b ve c.Örneği doğru şekilde oluşturun. Önce X'in karesi, sonra karesiz, sonra da serbest terim. Bunun gibi:

Ve yine acele etmeyin! X karenin önüne gelen bir eksi sizi gerçekten üzebilir. Unutmak kolaydır... Eksilerden kurtulun. Nasıl? Evet, önceki konuda öğretildiği gibi! Denklemin tamamını -1 ile çarpmamız gerekiyor. Şunu elde ederiz:

Ancak artık köklerin formülünü güvenle yazabilir, diskriminantı hesaplayabilir ve örneği çözmeyi tamamlayabilirsiniz. Kendin için karar ver.

Artık 2 ve -1 köklerine sahip olmalısınız. Resepsiyon ikinci. Kökleri kontrol edin! Vieta teoremine göre. Korkma, her şeyi açıklayacağım! Kontrol etme son şey denklem. Onlar. kök formülü yazarken kullandığımız formül. Eğer (bu örnekte olduğu gibi) katsayı bir = 1 , kökleri kontrol etmek kolaydır. Bunları çoğaltmak yeterlidir. Sonuç ücretsiz bir üye olmalıdır, yani. bizim durumumuzda -2. Lütfen dikkat, 2 değil, -2! Ücretsiz Üye senin burcunla

. Eğer işe yaramazsa, bu zaten bir yerlerde hata yaptığınız anlamına gelir. Hatayı arayın. Bİşe yararsa kökleri eklemeniz gerekir. Son ve son kontrol. Katsayı şu şekilde olmalıdır: İle zıt B aşina. Bizim durumumuzda -1+2 = +1. bir katsayı
X'ten önce gelen -1'e eşittir. Yani her şey doğru! Bunun yalnızca x karenin saf olduğu ve katsayılı olduğu örnekler için bu kadar basit olması üzücü bir = 1.

Ama en azından bu tür denklemleri kontrol edin! Gittikçe daha az hata olacak. Üçüncü resepsiyon . Denkleminizin kesirli katsayıları varsa kesirlerden kurtulun! Denklemi şununla çarpın: ortak payda

, "Denklemler nasıl çözülür? Özdeş dönüşümler" dersinde açıklandığı gibi. Kesirlerle çalışırken bazı nedenlerden dolayı hatalar ortaya çıkmaya devam ediyor...

Bu arada, kötü örneği bir sürü eksiyle basitleştireceğime söz verdim. Lütfen! İşte burada.

Bu kadar! Çözmek bir zevktir!

O halde konuyu özetleyelim.

Pratik tavsiye:

1. Çözmeden önce ikinci dereceden denklemi standart forma getirip oluşturuyoruz Sağ.

2. X karenin önünde negatif bir katsayı varsa denklemin tamamını -1 ile çarparak onu ortadan kaldırırız.

3. Katsayılar kesirli ise denklemin tamamını karşılık gelen faktörle çarparak kesirleri ortadan kaldırırız.

4. Eğer x kare saf ise katsayısı bire eşitçözüm Vieta teoremi kullanılarak kolayca doğrulanabilir. Yap!

Artık karar verebiliriz.)

Denklemleri çözün:

8x2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Cevaplar (karışıklık içinde):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x2 = -0,5

x - herhangi bir sayı

x1 = -3
x 2 = 3

çözüm yok

x 1 = 0,25
x2 = 0,5

Her şey uyuyor mu? Harika! İkinci dereceden denklemler sana göre değil baş ağrısı. İlk üçü işe yaradı ama geri kalanı işe yaramadı mı? O zaman sorun ikinci dereceden denklemlerde değil. Sorun denklemlerin özdeş dönüşümlerindedir. Linke bir göz atın, işinize yarar.

Pek işe yaramıyor mu? Yoksa hiç işe yaramıyor mu? O zaman Bölüm 555 size yardımcı olacaktır. Tüm bu örnekler burada ayrıntılı olarak açıklanmıştır. Gösterilen anaÇözümdeki hatalar. Tabii ki, aynı zamanda kullanımdan da bahsediyor kimlik dönüşümleri kararda farklı denklemler. Çok yardımcı oluyor!

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

İÇİNDE modern toplum kare değişkeni içeren denklemlerle işlem yapabilme yeteneği birçok faaliyet alanında faydalı olabilir ve bilimsel ve teknik gelişmelerde pratikte yaygın olarak kullanılır. Bunun kanıtı denizcilik tasarımında bulunabilir ve nehir tekneleri, uçaklar ve füzeler. Bu tür hesaplamaları kullanarak, en büyük hareket yörüngeleri farklı bedenler, içermek uzay nesneleri. İkinci dereceden denklemlerin çözümüne ilişkin örnekler yalnızca ekonomik tahmin Binaların tasarımı ve inşasında olduğu gibi aynı zamanda en sıradan günlük koşullarda da kullanılır. Yürüyüş gezilerinde, spor etkinliklerinde, mağazalarda alışveriş yaparken ve diğer çok yaygın durumlarda bunlara ihtiyaç duyulabilir.

İfadeyi bileşen faktörlerine ayıralım

Denklemin derecesi belirlenir maksimum değer Bu ifadenin içerdiği değişkenin derecesi. 2'ye eşitse, böyle bir denklem ikinci dereceden olarak adlandırılır.

Formül diliyle ifade edilirse, o zaman belirtilen ifadeler, nasıl görünürlerse görünsünler, ifadenin sol tarafı aşağıdakilerden oluştuğunda her zaman forma indirgenebilirler. üç terim. Bunlar arasında: ax 2 (yani, katsayısı ile karesi olan bir değişken), bx (katsayısı ile karesi olmayan bir bilinmeyen) ve c (serbest bir bileşen, yani normal numara). Sağ taraftaki tüm bunlar 0'a eşittir. Böyle bir polinomun, ax 2 hariç kendisini oluşturan terimlerden birinin eksik olması durumunda, buna tamamlanmamış ikinci dereceden denklem denir. Bu tür problemlerin çözümüne yönelik örneklerde öncelikle bulunması kolay olan değişkenlerin değerleri dikkate alınmalıdır.

İfadenin sağ tarafında iki terim var gibi görünüyorsa, daha doğrusu ax 2 ve bx, x'i bulmanın en kolay yolu değişkeni parantezlerin dışına çıkarmaktır. Şimdi denklemimiz şöyle görünecek: x(ax+b). Daha sonra, ya x=0 olduğu ya da problemin şu ifadeden bir değişken bulmakta olduğu açıkça ortaya çıkıyor: ax+b=0. Bu, çarpmanın özelliklerinden biri tarafından belirlenir. Kural, iki faktörün çarpımının yalnızca biri sıfır olduğunda 0 ile sonuçlanacağını belirtir.

Örnek

x=0 veya 8x - 3 = 0

Sonuç olarak denklemin iki kökünü elde ederiz: 0 ve 0,375.

Bu tür denklemler, koordinatların orijini olarak alınan belirli bir noktadan itibaren hareket etmeye başlayan yerçekiminin etkisi altındaki cisimlerin hareketini tanımlayabilir. Burada matematiksel gösterim kabul eder aşağıdaki form: y = v 0 t + gt 2/2. Değiştirme gerekli değerler Sağ tarafı 0'a eşitleyip olası bilinmeyenleri bularak cismin yükseldiği andan düştüğü ana kadar geçen süreyi ve daha birçok niceliği bulabilirsiniz. Ama bunu daha sonra konuşacağız.

Bir İfadeyi Faktoringe Alma

Yukarıda açıklanan kural, bu sorunları daha fazla çözmeyi mümkün kılar. zor vakalar. Bu tür ikinci dereceden denklemleri çözme örneklerine bakalım.

X 2 - 33x + 200 = 0

Bu ikinci dereceden üç terimli tamamlandı. Öncelikle ifadeyi dönüştürüp çarpanlarına ayıralım. Bunlardan iki tane var: (x-8) ve (x-25) = 0. Sonuç olarak elimizde 8 ve 25 olmak üzere iki kök var.

9. sınıfta ikinci dereceden denklemlerin çözümüne ilişkin örnekler, bu yöntemin yalnızca ikinci dereceden değil, üçüncü ve dördüncü dereceden ifadelerde de bir değişken bulmasına olanak tanır.

Örneğin: 2x 3 + 2x 2 - 18x - 18 = 0. Sağ tarafı değişkenli çarpanlara ayırdığımızda bunlardan üç tane vardır, yani (x+1), (x-3) ve (x+ 3).

Sonuç olarak bu denklemin üç kökü olduğu ortaya çıkıyor: -3; -1; 3.

Kare kök

Başka bir vaka tamamlanmamış denklem ikinci sıra ise harf dilinde sağ tarafı ax 2 ve c bileşenlerinden oluşturulacak şekilde temsil edilen bir ifadedir. Burada değişkenin değerini elde etmek için serbest terim aktarılır. Sağ Taraf ve bundan sonra eşitliğin her iki tarafından da çıkarıyoruz Kare kök. Şunu belirtmek gerekir ki bu durumda Genellikle denklemin iki kökü vardır. Tek istisna, değişkenin sıfıra eşit olduğu, hiç terim içermeyen eşitlikler ve sağ tarafın negatif olduğu ifadelerin çeşitleri olabilir. İÇİNDE ikinci durum Yukarıdaki eylemler köklerle gerçekleştirilemediğinden hiçbir çözüm yoktur. Bu tür ikinci dereceden denklemlerin çözüm örnekleri dikkate alınmalıdır.

Bu durumda denklemin kökleri -4 ve 4 sayıları olacaktır.

Arazi alanının hesaplanması

Bu tür hesaplamalara duyulan ihtiyaç eski zamanlarda ortaya çıktı, çünkü matematiğin gelişimi büyük ölçüde bu çağlardaydı. uzak zamanlar arsaların alanlarını ve çevrelerini en yüksek doğrulukla belirleme ihtiyacından kaynaklanıyordu.

Bu tür problemlere dayanarak ikinci dereceden denklemleri çözme örneklerini de düşünmeliyiz.

Diyelim ki uzunluğu genişliğinden 16 metre daha fazla olan dikdörtgen bir arsa var. Alanının 612 m2 olduğunu biliyorsanız sitenin uzunluğunu, genişliğini ve çevresini bulmalısınız.

Başlamak için önce gerekli denklemi oluşturalım. Alanın genişliğini x ile gösterelim, uzunluğu (x+16) olur. Yazılanlardan, alanın x(x+16) ifadesiyle belirlendiği anlaşılmaktadır ki bu, problemimizin koşullarına göre 612'dir. Bu, x(x+16) = 612 demektir.

İkinci dereceden denklemlerin tam çözümü, ki bu ifade tam da budur, aynı şekilde yapılamaz. Neden? Sol tarafta hala iki faktör bulunsa da çarpımları hiç 0'a eşit olmadığından burada farklı yöntemler kullanılıyor.

diskriminant

Öncelikle gerekli dönüşümleri yapalım, ardından dış görünüş verilen ifadeşu şekilde görünecektir: x 2 + 16x - 612 = 0. Bu, daha önce belirtilen standarda karşılık gelen formda bir ifade aldığımız anlamına gelir; burada a=1, b=16, c=-612.

Bu, ikinci dereceden denklemleri bir diskriminant kullanarak çözmenin bir örneği olabilir. Burada gerekli hesaplamalarşemaya göre üretilir: D = b 2 - 4ac. Bu yardımcı miktar sadece ikinci dereceden bir denklemde gerekli miktarları bulmayı mümkün kılmakla kalmaz, aynı zamanda miktarı da belirler. olası seçenekler. D>0 ise iki tane vardır; D=0 için bir kök vardır. D durumunda<0, никаких шансов для решения у уравнения вообще не имеется.

Kökler ve formülleri hakkında

Bizim durumumuzda diskriminant şuna eşittir: 256 - 4(-612) = 2704. Bu, problemimizin bir cevabı olduğunu gösteriyor. Eğer k'yı biliyorsanız ikinci dereceden denklemlerin çözümüne aşağıdaki formül kullanılarak devam edilmelidir. Kökleri hesaplamanızı sağlar.

Bu, sunulan durumda şu anlama gelir: x 1 =18, x 2 =-34. Bu ikilemde ikinci seçenek çözüm olamaz çünkü arsanın boyutları negatif büyüklüklerle ölçülemez, yani x (yani arsanın genişliği) 18 m olur. Buradan uzunluğu hesaplıyoruz: 18. +16=34 ve çevre 2(34+ 18)=104(m2).

Örnekler ve görevler

İkinci dereceden denklemler çalışmamıza devam ediyoruz. Bunlardan birkaçının örnekleri ve ayrıntılı çözümleri aşağıda verilecektir.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Her şeyi şuraya taşıyalım: Sol Taraf eşitlikte bir dönüşüm yapacağız yani denklemin genellikle standart denilen formunu elde edip sıfıra eşitleyeceğiz.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Benzerlerini toplayarak diskriminantı belirliyoruz: D = 49 - 48 = 1. Bu, denklemimizin iki kökü olacağı anlamına gelir. Bunları yukarıdaki formüle göre hesaplayalım, yani birincisi 4/3'e, ikincisi ise 1'e eşit olacaktır.

2) Şimdi farklı türden gizemleri çözelim.

Burada herhangi bir kök olup olmadığını bulalım x 2 - 4x + 5 = 1? Kapsamlı bir cevap elde etmek için polinomu karşılık gelen olağan forma indirgeyelim ve diskriminantı hesaplayalım. Yukarıdaki örnekte ikinci dereceden denklemi çözmeye gerek yoktur çünkü sorunun özü bu değildir. Bu durumda D = 16 - 20 = -4, yani gerçekte köklerin olmadığı anlamına gelir.

Vieta teoremi

İkinci dereceden denklemleri yukarıdaki formülleri ve diskriminantı kullanarak, ikincisinin değerinden karekök alındığında çözmek uygundur. Ancak bu her zaman gerçekleşmez. Ancak bu durumda değişkenlerin değerlerini elde etmenin birçok yolu vardır. Örnek: Vieta teoremini kullanarak ikinci dereceden denklemleri çözme. Adını 16. yüzyılda Fransa'da yaşayan ve matematik yeteneği ve saraydaki bağlantıları sayesinde parlak bir kariyere sahip olan bir kişiden almıştır. Portresi makalede görülebilir.

Ünlü Fransız'ın fark ettiği desen şu şekildeydi. Denklemin köklerinin sayısal olarak toplamının -p=b/a olduğunu ve çarpımlarının q=c/a'ya karşılık geldiğini kanıtladı.

Şimdi belirli görevlere bakalım.

3x2 + 21x - 54 = 0

Basit olması açısından ifadeyi dönüştürelim:

x 2 + 7x - 18 = 0

Vieta teoremini kullanalım, bu bize şunu verecektir: Köklerin toplamı -7 ve çarpımı -18'dir. Buradan denklemin köklerinin -9 ve 2 sayıları olduğunu anlıyoruz. Kontrol ettikten sonra bu değişken değerlerinin gerçekten ifadeye uyduğundan emin olacağız.

Parabol grafiği ve denklemi

İkinci dereceden fonksiyon ve ikinci dereceden denklem kavramları yakından ilişkilidir. Bunun örnekleri daha önce verilmişti. Şimdi bazı matematik bilmecelerine biraz daha detaylı bakalım. Tanımlanan türdeki herhangi bir denklem görsel olarak temsil edilebilir. Grafik olarak çizilen böyle bir ilişkiye parabol denir. Çeşitli türleri aşağıdaki şekilde gösterilmektedir.

Her parabolün bir tepe noktası, yani dallarının çıktığı bir nokta vardır. Eğer a>0 ise, sonsuza kadar yükselirler ve<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Fonksiyonların görsel temsilleri, ikinci dereceden denklemler de dahil olmak üzere tüm denklemlerin çözülmesine yardımcı olur. Bu yönteme grafik denir. X değişkeninin değeri ise grafik çizgisinin 0x ile kesiştiği noktalardaki apsis koordinatıdır. Tepe noktasının koordinatları az önce verilen x 0 = -b/2a formülü kullanılarak bulunabilir. Ve ortaya çıkan değeri fonksiyonun orijinal denkleminde değiştirerek, y 0'ı, yani ordinat eksenine ait olan parabolün tepe noktasının ikinci koordinatını bulabilirsiniz.

Bir parabolün dallarının apsis ekseni ile kesişimi

İkinci dereceden denklemleri çözmenin birçok örneği vardır, ancak aynı zamanda genel modeller de vardır. Şimdi onlara bakalım. a>0 için grafiğin 0x ekseniyle kesişmesinin ancak y 0 alınması durumunda mümkün olduğu açıktır. negatif değerler. Ve bir için<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Aksi takdirde D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Parabolün grafiğinden kökleri de belirleyebilirsiniz. Bunun tersi de doğrudur. Yani görsel bir görüntü elde ederseniz ikinci dereceden fonksiyon Kolay değil, ifadenin sağ tarafını 0'a eşitleyip ortaya çıkan denklemi çözebilirsiniz. Ve 0x ekseniyle kesişme noktalarını bilerek bir grafik oluşturmak daha kolaydır.

Tarihten

Eskiden kare değişkeni içeren denklemleri kullanarak sadece matematiksel hesaplamalar yapmakla kalmıyor, geometrik şekillerin alanlarını da belirliyorlardı. Kadim insanlar, fizik ve astronomi alanlarındaki büyük keşiflerin yanı sıra astrolojik tahminler yapmak için de bu tür hesaplamalara ihtiyaç duyuyorlardı.

Modern bilim adamlarının önerdiği gibi, Babil sakinleri ikinci dereceden denklemleri ilk çözenler arasındaydı. Bu, çağımızdan dört yüzyıl önce oldu. Elbette onların hesaplamaları şu anda kabul edilenlerden kökten farklıydı ve çok daha ilkel olduğu ortaya çıktı. Örneğin Mezopotamyalı matematikçilerin negatif sayıların varlığından haberleri yoktu. Ayrıca herhangi bir modern okul çocuğunun bildiği diğer inceliklere de aşina değillerdi.

Belki de Babil'deki bilim adamlarından bile önce, Hintli bilge Baudhayama ikinci dereceden denklemleri çözmeye başladı. Bu, İsa'nın döneminden yaklaşık sekiz yüzyıl önce gerçekleşti. Doğru, ikinci dereceden denklemler, verdiği çözme yöntemleri en basitleriydi. Onun yanı sıra Çinli matematikçiler de eski günlerde benzer sorularla ilgileniyorlardı. Avrupa'da ikinci dereceden denklemler ancak 13. yüzyılın başında çözülmeye başlandı, ancak daha sonra Newton, Descartes ve diğerleri gibi büyük bilim adamları tarafından çalışmalarında kullanıldılar.

İkinci dereceden denklem ax 2 + bx + c = 0 verilsin.
y = ax 2 + bx + c fonksiyonunun grafiğinin bir parabol olduğu teoremini kanıtlarken § 13'te uyguladığımız dönüşümlerin aynısını ikinci dereceden trinomial ax 2 + bx + c'ye uygulayalım.
Sahibiz

Genellikle b 2 - 4ac ifadesi D harfiyle gösterilir ve ikinci dereceden ax 2 + bx + c = 0 denkleminin diskriminantı (veya ikinci dereceden trinomial ax + bx + c'nin diskriminantı) olarak adlandırılır.

Böylece

Bu, ikinci dereceden ax 2 + onlar + c = O denkleminin şu şekilde yeniden yazılabileceği anlamına gelir:


İkinci dereceden herhangi bir denklem, ikinci dereceden bir denklemin kök sayısını belirlemek ve bu kökleri bulmak için, şimdi göreceğimiz gibi uygun olan (1) formuna dönüştürülebilir.


Kanıt. Eğer D< 0, то правая часть уравнения (1) — отрицательное число; в то же время левая часть уравнения (1) при любых значениях х принимает неотрицательные значения. Значит, нет ни одного значения х, которое удовлетворяло бы уравнению (1), а потому уравнение (1) не имеет корней.

Örnek 1. 2x 2 + 4x + 7 = 0 denklemini çözün.
Çözüm. Burada a = 2, b = 4, c = 7,
D = b 2 -4ac = 4 2 . 4. 2. 7 = 16-56 = -40.
D'den beri< 0, то по теореме 1 данное квадратное уравнение не имеет корней.


Kanıt. D = 0 ise denklem (1) şu formu alır:

denklemin tek köküdür.

Not 1. X = -'nin, y = ax 2 + onlar + c fonksiyonunun grafiği olarak görev yapan parabolün tepe noktasının apsisi olduğunu hatırlıyor musunuz? Neden bu
değerinin ikinci dereceden denklem ax 2 + onlar + c - 0'ın tek kökü olduğu ortaya çıktı. “Tabut” basitçe açılır: Eğer D 0 ise, o zaman, daha önce belirlediğimiz gibi,

Aynı fonksiyonun grafiği bir noktada tepe noktasına sahip bir paraboldür (bkz. örneğin Şekil 98). Bu, parabolün tepe noktasının apsisi ile ikinci dereceden denklemin D = 0 için tek kökünün aynı sayı olduğu anlamına gelir.

Örnek 2. 4x 2 - 20x + 25 = 0 denklemini çözün.
Çözüm. Burada a = 4, b = -20, c = 25, D = b 2 - 4ac = (-20) 2 - 4. 4. 25 = 400 - 400 = 0.

D = 0 olduğundan, Teorem 2'ye göre bu ikinci dereceden denklemin bir kökü vardır. Bu kök formülle bulunur

Cevap: 2.5.

Not 2. 4x 2 - 20x +25'in tam kare olduğuna dikkat edin: 4x 2 - 20x + 25 = (2x - 5) 2.
Bunu hemen fark etmiş olsaydık denklemi şu şekilde çözerdik: (2x - 5) 2 = 0 yani 2x - 5 = 0, buradan x = 2,5 sonucunu elde ederiz. Genel olarak, eğer D = 0 ise, o zaman

ax 2 + bx + c = - bunu daha önce Açıklama 1'de belirtmiştik.
D > 0 ise ikinci dereceden ax 2 + bx + c = 0 denkleminin iki kökü vardır ve bunlar aşağıdaki formüllerle bulunur


Kanıt. İkinci dereceden denklem ax 2 + b x + c = 0'ı (1) formunda yeniden yazalım.

Hadi koyalım
Koşula göre D > 0, yani denklemin sağ tarafı pozitif sayı. Daha sonra denklem (2)'den şunu elde ederiz:


Dolayısıyla verilen ikinci dereceden denklemin iki kökü vardır:

Not 3. Matematikte, tanıtılan terimin mecazi anlamda gündelik bir arka plana sahip olmaması nadiren olur. Yeni bir şey alalım
kavram - ayırt edici. “Ayrımcılık” sözcüğünü unutmayın. Bu ne anlama geliyor? Bu, bazılarının aşağılanması ve bazılarının yükseltilmesi anlamına gelir, yani. farklı tutum
çeşitli kişilere. Her iki kelime de (ayrımcı ve ayrımcılık) Latince diskriminans - "ayrımcı" kelimesinden gelmektedir. Diskriminant ikinci dereceden denklemleri kök sayısına göre ayırır.

Örnek 3. 3x 2 + 8x - 11 = 0 denklemini çözün.
Çözüm. Burada a = 3, b = 8, c = - 11,
D = b 2 - 4ac = 8 2 - 4. 3. (-11) = 64 + 132 = 196.
D > 0 olduğundan, Teorem 3'e göre bu ikinci dereceden denklemin iki kökü vardır. Bu kökler formül (3)'e göre bulunur.


Aslında aşağıdaki kuralı geliştirdik:

Denklemi çözme kuralı
balta 2 + bx + c = 0

Bu kural evrenseldir; hem tam hem de eksik ikinci dereceden denklemler için geçerlidir. Ancak tamamlanmamış ikinci dereceden denklemler genellikle bu kural kullanılarak çözülmez; bunları önceki paragrafta yaptığımız gibi çözmek daha uygundur.

Örnek 4. Denklemleri çözün:

a) x 2 + 3x - 5 = 0; b) - 9x2 + 6x - 1 = 0; c) 2x 2 -x + 3,5 = 0.

Çözüm a) Burada a = 1, b = 3, c = - 5,
D = b 2 - 4ac = Z 2 - 4. 1. (- 5) = 9 + 20 = 29.

D > 0 olduğundan bu ikinci dereceden denklemin iki kökü vardır. Bu kökleri formülleri kullanarak buluyoruz (3)

B) Deneyimlerin gösterdiği gibi, baş katsayının pozitif olduğu ikinci dereceden denklemlerle uğraşmak daha uygundur. Bu nedenle önce denklemin her iki tarafını da -1 ile çarparsak, şunu elde ederiz:

9x2 - 6x + 1 = 0.
Burada a = 9, b = -6, c = 1, D = b 2 - 4ac = 36 - 36 = 0.
D = 0 olduğundan bu ikinci dereceden denklemin tek kökü vardır. Bu kök x = - formülüyle bulunur. Araç,

Bu denklem farklı şekilde çözülebilir: çünkü
9x 2 - 6x + 1 = (Зх - IJ, o zaman (Зх - I) 2 = 0 denklemini elde ederiz, buradan Зх - 1 = 0'ı buluruz, yani x = .

c) Burada a = 2, b = - 1, c = 3,5, D = b 2 - 4ac = 1 - 4. 2. 3,5= 1 - 28 = - 27. D'den beri< 0, то данное квадратное уравнение не имеет корней.

Matematikçiler pratik ve ekonomik insanlardır. İkinci dereceden bir denklemi çözmek için neden bu kadar uzun bir kural kullandıklarını söylüyorlar, hemen genel bir formül yazmak daha iyidir:

Diskriminant D = b 2 - 4ac'nin negatif bir sayı olduğu ortaya çıkarsa, yazılı formül mantıklı değildir (karekök işaretinin altında negatif bir sayı vardır), bu da köklerin olmadığı anlamına gelir. Diskriminantın sıfıra eşit olduğu ortaya çıkarsa, o zaman şunu elde ederiz:

Yani, bir kök (bu durumda ikinci dereceden denklemin iki olduğunu da söylüyorlar) özdeş kökler:

Son olarak, b 2 - 4ac > 0 olduğu ortaya çıkarsa, yukarıda belirtilen aynı formüller (3) kullanılarak hesaplanan iki kök x 1 ve x 2 elde ederiz.

Bu durumda sayının kendisi pozitiftir (pozitif bir sayının herhangi bir karekökü gibi) ve önündeki çift işaret, bir durumda (x 1'i bulurken) bu pozitif sayının - b sayısına eklendiği anlamına gelir ve başka bir durumda (x 2'yi bulurken) bu pozitif bir sayıdır
numaradan okuyun - b.

Seçme özgürlüğünüz var. Yukarıda formüle edilen kuralı kullanarak ikinci dereceden denklemi ayrıntılı olarak çözmek ister misiniz? İsterseniz hemen formül (4)'ü yazın ve ondan gerekli sonuçları çıkarmak için kullanın.

Örnek 5. Denklemleri çözün:

Çözüm, a) Elbette bu durumda (4) veya (3) numaralı formülleri kullanabilirsiniz. Peki tam sayılarla uğraşmak daha kolay ve en önemlisi daha zevkliyken neden kesirli işler yapılıyor? Paydalardan kurtulalım. Bunu yapmak için denklemin her iki tarafını da 12 ile, yani denklemin katsayıları görevi gören kesirlerin en küçük ortak paydasıyla çarpmanız gerekir. Aldık


dolayısıyla 8x 2 + 10x - 7 = 0.

Şimdi formül (4)’ü kullanalım


B) Yine bir denklemimiz var kesirli oranlar: a = 3, b = - 0,2, c = 2,77. Denklemin her iki tarafını da 100 ile çarpalım, sonra tamsayı katsayılı bir denklem elde edelim:
300x2 - 20x + 277 = 0.
Daha sonra formül (4)'ü kullanıyoruz:

Basit bir hesaplama, diskriminantın (radikal ifade) negatif bir sayı olduğunu gösterir. Bu, denklemin köklerinin olmadığı anlamına gelir.

Örnek 6. Denklemi çözün
Çözüm. Burada önceki örnekten farklı olarak kısaltılmış formül (4) yerine kurala göre hareket edilmesi tercih edilmektedir.

a = 5, b = -, c = 1, D = b 2 - 4ac = (-) 2 - 4'ümüz var. 5. 1 = 60 - 20 = 40. D > 0 olduğundan, ikinci dereceden denklemin iki kökü vardır ve bunu (3) formülünü kullanarak arayacağız.

Örnek 7. Denklemi çözün
x 2 - (2p + 1)x + (p 2 +p-2) = 0

Çözüm. Bu ikinci dereceden denklem, katsayıların belirli sayılar olmayıp, şu ana kadar ele alınan tüm ikinci dereceden denklemlerden farklıdır. gerçek ifadeler. Bu tür denklemlere harf katsayılı denklemler veya parametreli denklemler denir. Bu durumda p parametresi (harf) denklemin ikinci katsayısına ve serbest terimine dahil edilir.
Diskriminantı bulalım:


Örnek 8. px 2 + (1 - p) x - 1 = 0 denklemini çözün.
Çözüm. Bu aynı zamanda p parametreli bir denklemdir, ancak önceki örnekten farklı olarak (4) veya (3) formülleri kullanılarak hemen çözülemez. Gerçek şu ki, bu formüller ikinci dereceden denklemlere uygulanabilir, ancak yaklaşık olarak verilen denklem Bunu henüz söyleyemeyiz. Gerçekten de p = 0 ise ne olur? Daha sonra
denklem 0 formunu alacaktır. x 2 + (1-0)x- 1 = 0, yani x - 1 = 0, bundan x = 1 elde ederiz. Şimdi, eğer bundan eminseniz, ikinci dereceden denklemin kökleri için formülleri uygulayabilirsiniz. denklem:



Önemli notlar!
1. Formüller yerine gobbledygook'u görürseniz önbelleğinizi temizleyin. Tarayıcınızda bunu nasıl yapacağınız burada yazılmıştır:
2. Makaleyi okumaya başlamadan önce en çok gezginimize dikkat edin. faydalı kaynakİçin

"İkinci dereceden denklem" terimindeki anahtar kelime "ikinci dereceden"dir. Bu, denklemin zorunlu olarak bir değişkenin (aynı x) karesini içermesi gerektiği ve x'lerin üçüncü (veya daha büyük) kuvvetinin olmaması gerektiği anlamına gelir.

Birçok denklemin çözümü ikinci dereceden denklemlerin çözülmesine bağlıdır.

Bunun başka bir denklem değil ikinci dereceden bir denklem olduğunu belirlemeyi öğrenelim.

Örnek 1.

Paydadan kurtulalım ve denklemin her terimini şununla çarpalım:

Her şeyi sol tarafa taşıyalım ve terimleri X'in kuvvetlerine göre azalan şekilde sıralayalım.

Artık bu denklemin ikinci dereceden olduğunu güvenle söyleyebiliriz!

Örnek 2.

Sol ve sağ tarafları şu şekilde çarpın:

Bu denklem, başlangıçta içinde olmasına rağmen ikinci dereceden değildir!

Örnek 3.

Her şeyi şununla çarpalım:

Korkutucu? Dördüncü ve ikinci dereceler... Ancak yerine koyarsak basit ikinci dereceden bir denklemimiz olduğunu görürüz:

Örnek 4.

Orada gibi görünüyor, ama daha yakından bakalım. Her şeyi sol tarafa taşıyalım:

Bakın, bu azaltılmış - ve artık basit bir doğrusal denklem!

Şimdi hangilerinin olduğunu kendiniz belirlemeye çalışın sonraki denklemler kare olan ve olmayanlar:

Örnekler:

Yanıtlar:

  1. kare;
  2. kare;
  3. kare değil;
  4. kare değil;
  5. kare değil;
  6. kare;
  7. kare değil;
  8. kare.

Matematikçiler geleneksel olarak tüm ikinci dereceden denklemleri aşağıdaki türlere ayırırlar:

  • İkinci dereceden denklemleri tamamlayın- katsayıların ve serbest terim c'nin sıfıra eşit olmadığı denklemler (örnekte olduğu gibi). Ek olarak, tam ikinci dereceden denklemler arasında verildi- bunlar katsayının olduğu denklemlerdir (birinci örnekteki denklem sadece tamamlanmış değil, aynı zamanda azaltılmış!)
  • Tamamlanmamış ikinci dereceden denklemler- katsayı ve/veya serbest terim c'nin sıfıra eşit olduğu denklemler:

    Eksikler çünkü bazı unsurlar eksik. Ancak denklem her zaman x kareyi içermelidir!!! Aksi takdirde, artık ikinci dereceden bir denklem değil, başka bir denklem olacaktır.

Neden böyle bir ayrım yaptılar? Görünüşe göre bir X kare var ve tamam. Bu bölüm çözüm yöntemlerine göre belirlenir. Her birine daha ayrıntılı olarak bakalım.

Tamamlanmamış ikinci dereceden denklemleri çözme

Öncelikle tamamlanmamış ikinci dereceden denklemleri çözmeye odaklanalım; bunlar çok daha basit!

Tamamlanmamış ikinci dereceden denklem türleri vardır:

  1. , bu denklemde katsayı eşittir.
  2. , bu denklemde serbest terim eşittir.
  3. , bu denklemde katsayı ve serbest terim eşittir.

1. i. Karekök almayı bildiğimize göre bu denklemden ifade edelim.

İfade negatif veya pozitif olabilir. Kareli bir sayı negatif olamaz, çünkü iki negatif veya iki pozitif sayı çarpıldığında sonuç her zaman pozitif bir sayı olacaktır, yani: eğer öyleyse, o zaman denklemin çözümü yoktur.

Ve eğer öyleyse, o zaman iki kök elde ederiz. Bu formüllerin ezberlenmesine gerek yoktur. Önemli olan, daha az olamayacağını bilmeniz ve her zaman hatırlamanızdır.

Bazı örnekleri çözmeye çalışalım.

Örnek 5:

Denklemi çözün

Artık geriye kalan tek şey kökü sol ve sağ taraftan çıkarmaktır. Sonuçta köklerin nasıl çıkarılacağını hatırlıyor musunuz?

Cevap:

Negatif işaretli kökleri asla unutmayın!!!

Örnek 6:

Denklemi çözün

Cevap:

Örnek 7:

Denklemi çözün

Ah! Bir sayının karesi negatif olamaz, yani denklem

kök yok!

Kökleri olmayan bu tür denklemler için matematikçiler özel bir simge (boş küme) geliştirdiler. Ve cevap şu şekilde yazılabilir:

Cevap:

Dolayısıyla bu ikinci dereceden denklemin iki kökü vardır. Kökünü çıkarmadığımız için burada herhangi bir kısıtlama yoktur.
Örnek 8:

Denklemi çözün

Parantezlerin ortak çarpanını çıkaralım:

Böylece,

Bu denklemin iki kökü vardır.

Cevap:

Tamamlanmamış ikinci dereceden denklemlerin en basit türü (her ne kadar hepsi basit olsa da, değil mi?). Açıkçası, bu denklemin her zaman tek bir kökü vardır:

Burada örnekler olmadan yapacağız.

Tam ikinci dereceden denklemleri çözme

Tam bir ikinci dereceden denklemin, form denkleminin bir denklemi olduğunu hatırlatırız;

İkinci dereceden denklemlerin tamamını çözmek bunlardan biraz daha zordur (sadece biraz).

Hatırlamak, Herhangi bir ikinci dereceden denklem bir diskriminant kullanılarak çözülebilir! Hatta eksik.

Diğer yöntemler bunu daha hızlı yapmanıza yardımcı olacaktır, ancak ikinci dereceden denklemlerle ilgili sorunlarınız varsa, önce diskriminant kullanarak çözümde ustalaşın.

1. İkinci dereceden denklemleri diskriminant kullanarak çözme.

Bu yöntemi kullanarak ikinci dereceden denklemleri çözmek çok basittir; asıl önemli olan, eylemlerin sırasını ve birkaç formülü hatırlamaktır.

Eğer öyleyse denklemin bir kökü vardır. Özel dikkat adım at. Diskriminant () bize denklemin kök sayısını söyler.

  • Eğer öyleyse, adımdaki formül şuna indirgenecektir. Böylece denklemin yalnızca bir kökü olacaktır.
  • Eğer öyleyse, bu adımda diskriminantın kökünü çıkaramayacağız. Bu da denklemin köklerinin olmadığını gösterir.

Denklemlerimize geri dönelim ve bazı örneklere bakalım.

Örnek 9:

Denklemi çözün

Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, denklemin iki kökü olduğu anlamına gelir.

Aşama 3.

Cevap:

Örnek 10:

Denklemi çözün

Denklem standart biçimde sunulmuştur, bu nedenle Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, denklemin tek kökü olduğu anlamına gelir.

Cevap:

Örnek 11:

Denklemi çözün

Denklem standart biçimde sunulmuştur, bu nedenle Aşama 1 atlıyoruz.

Adım 2.

Diskriminantı buluyoruz:

Bu, diskriminantın kökünü çıkaramayacağımız anlamına gelir. Denklemin kökleri yoktur.

Artık bu tür cevapları nasıl doğru yazacağımızı biliyoruz.

Cevap: kök yok

2. İkinci dereceden denklemlerin Vieta teoremini kullanarak çözülmesi.

Hatırlarsanız, indirgenmiş olarak adlandırılan bir denklem türü vardır (a katsayısı şuna eşit olduğunda):

Bu tür denklemleri Vieta teoremini kullanarak çözmek çok kolaydır:

Köklerin toplamı verildiİkinci dereceden denklem eşittir ve köklerin çarpımı eşittir.

Örnek 12:

Denklemi çözün

Bu denklem Vieta teoremi kullanılarak çözülebilir çünkü .

Denklemin köklerinin toplamı eşittir, yani. ilk denklemi elde ederiz:

Ve ürün şuna eşittir:

Sistemi oluşturup çözelim:

  • Ve. Tutar şuna eşittir;
  • Ve. Tutar şuna eşittir;
  • Ve. Miktar eşittir.

ve sistemin çözümü:

Cevap: ; .

Örnek 13:

Denklemi çözün

Cevap:

Örnek 14:

Denklemi çözün

Denklem verilmiştir, bunun anlamı şudur:

Cevap:

İKİNCİ DERECEDEN DENKLEMLER. ORTALAMA SEVİYE

İkinci dereceden denklem nedir?

Başka bir deyişle, ikinci dereceden bir denklem, bilinmeyenlerin, bazı sayıların ve olduğu formun bir denklemidir.

Sayıya en yüksek veya denir birinci katsayı ikinci dereceden denklem, - ikinci katsayı, A - Ücretsiz Üye.

Neden? Çünkü denklem hemen doğrusal hale gelirse, çünkü Kaybolacak.

Bu durumda ve sıfıra eşit olabilir. Bu sandalyede denkleme eksik denir. Eğer tüm terimler yerli yerindeyse denklem tamamlanmış demektir.

Çeşitli ikinci dereceden denklem türlerinin çözümleri

Tamamlanmamış ikinci dereceden denklemleri çözme yöntemleri:

Öncelikle, tamamlanmamış ikinci dereceden denklemleri çözme yöntemlerine bakalım - bunlar daha basittir.

Aşağıdaki denklem türlerini ayırt edebiliriz:

I., bu denklemde katsayı ve serbest terim eşittir.

II. , bu denklemde katsayı eşittir.

III. , bu denklemde serbest terim eşittir.

Şimdi bu alt türlerin her birinin çözümüne bakalım.

Açıkçası, bu denklemin her zaman tek bir kökü vardır:

Kareli bir sayı negatif olamaz çünkü iki negatif veya iki pozitif sayı çarpıldığında sonuç her zaman pozitif bir sayı olacaktır. Bu yüzden:

eğer öyleyse denklemin çözümü yoktur;

eğer iki kökümüz varsa

Bu formüllerin ezberlenmesine gerek yoktur. Hatırlanması gereken en önemli şey, daha az olamayacağıdır.

Örnekler:

Çözümler:

Cevap:

Negatif işaretli kökleri asla unutmayın!

Bir sayının karesi negatif olamaz, yani denklem

kök yok.

Bir problemin çözümü olmadığını kısaca yazmak için boş küme simgesini kullanırız.

Cevap:

Yani bu denklemin iki kökü var: ve.

Cevap:

Onu çıkaracağız ortak çarpan parantezlerin dışında:

Faktörlerden en az birinin sıfıra eşit olması durumunda ürün sıfıra eşittir. Bu, aşağıdaki durumlarda denklemin bir çözümü olduğu anlamına gelir:

Yani bu ikinci dereceden denklemin iki kökü vardır: ve.

Örnek:

Denklemi çözün.

Çözüm:

Denklemin sol tarafını çarpanlarına ayıralım ve kökleri bulalım:

Cevap:

Tam ikinci dereceden denklemleri çözme yöntemleri:

1. Ayrımcı

İkinci dereceden denklemleri bu şekilde çözmek kolaydır, asıl önemli olan eylem sırasını ve birkaç formülü hatırlamaktır. Unutmayın, ikinci dereceden herhangi bir denklem diskriminant kullanılarak çözülebilir! Hatta eksik.

Kök formülündeki ayırıcının köküne dikkat ettiniz mi? Ancak diskriminant negatif olabilir. Ne yapalım? 2. adıma özellikle dikkat etmemiz gerekiyor. Diskriminant bize denklemin kök sayısını söyler.

  • Eğer öyleyse, denklemin kökleri vardır:
  • Eğer öyleyse, denklem aynı köklere ve aslında bir köke sahipse:

    Bu tür köklere çift kök denir.

  • Eğer öyleyse, diskriminantın kökü çıkarılmaz. Bu da denklemin köklerinin olmadığını gösterir.

Neden mümkün? farklı miktarlar kökler? Hadi dönelim geometrik anlamda ikinci dereceden denklem. Fonksiyonun grafiği bir paraboldür:

İkinci dereceden bir denklem olan özel bir durumda, . Bu, ikinci dereceden bir denklemin köklerinin apsis ekseni (eksen) ile kesişme noktaları olduğu anlamına gelir. Bir parabol ekseni hiç kesmeyebilir veya onu bir noktada (parabolün tepe noktası eksen üzerinde olduğunda) veya iki noktada kesebilir.

Ayrıca katsayı parabolün dallarının yönünden de sorumludur. Eğer öyleyse, parabolün dalları yukarıya, eğer ise aşağıya doğru yönlendirilir.

Örnekler:

Çözümler:

Cevap:

Cevap: .

Cevap:

Bu, hiçbir çözümün olmadığı anlamına gelir.

Cevap: .

2. Vieta teoremi

Vieta teoremini kullanmak çok kolaydır: sadece çarpımı denklemin serbest terimine eşit olan ve toplamı ters işaretle alınan ikinci katsayıya eşit olan bir çift sayı seçmeniz yeterlidir.

Vieta teoreminin yalnızca indirgenmiş ikinci dereceden denklemler ().

Birkaç örneğe bakalım:

Örnek 1:

Denklemi çözün.

Çözüm:

Bu denklem Vieta teoremi kullanılarak çözülebilir çünkü . Diğer katsayılar: ; .

Denklemin köklerinin toplamı:

Ve ürün şuna eşittir:

Çarpımları eşit olan sayı çiftlerini seçelim ve toplamlarının eşit olup olmadığını kontrol edelim:

  • Ve. Tutar şuna eşittir;
  • Ve. Tutar şuna eşittir;
  • Ve. Miktar eşittir.

ve sistemin çözümü:

Dolayısıyla ve denklemimizin kökleridir.

Cevap: ; .

Örnek #2:

Çözüm:

Çarpımı veren sayı çiftlerini seçelim ve sonra toplamlarının eşit olup olmadığını kontrol edelim:

ve: toplamda veriyorlar.

ve: toplamda veriyorlar. Elde etmek için, sözde köklerin ve sonuçta ürünün işaretlerini değiştirmek yeterlidir.

Cevap:

Örnek #3:

Çözüm:

Denklemin serbest terimi negatif olduğundan köklerin çarpımı negatif bir sayıdır. Bu ancak köklerden birinin negatif, diğerinin pozitif olması durumunda mümkündür. Bu nedenle köklerin toplamı eşittir modüllerinin farklılıkları.

Çarpımı veren ve farkı şuna eşit olan sayı çiftlerini seçelim:

ve: farkları eşit - uymuyor;

ve: - uygun değil;

ve: - uygun değil;

ve: - uygun. Geriye kalan tek şey köklerden birinin negatif olduğunu hatırlamak. Toplamlarının eşit olması gerektiğinden, modülü daha küçük olan kökün negatif olması gerekir: . Kontrol ediyoruz:

Cevap:

Örnek #4:

Denklemi çözün.

Çözüm:

Denklem verilmiştir, bunun anlamı şudur:

Serbest terim negatif olduğundan köklerin çarpımı negatiftir. Bu da ancak denklemin bir kökünün negatif, diğerinin pozitif olması durumunda mümkündür.

Çarpımları eşit olan sayı çiftlerini seçelim ve ardından hangi köklerin negatif işarete sahip olması gerektiğini belirleyelim:

Açıkçası, yalnızca kökler ve ilk koşul için uygundur:

Cevap:

Örnek #5:

Denklemi çözün.

Çözüm:

Denklem verilmiştir, bunun anlamı şudur:

Köklerin toplamı negatiftir, yani köklerden en az biri negatiftir. Ancak çarpımları pozitif olduğundan her iki kökün de eksi işareti olduğu anlamına gelir.

Çarpımı şuna eşit olan sayı çiftlerini seçelim:

Açıkçası, kökler sayılardır ve.

Cevap:

Katılıyorum, bu kötü ayrımcıyı saymak yerine sözlü olarak kökleri bulmak çok uygun. Vieta teoremini mümkün olduğunca sık kullanmaya çalışın.

Ancak kökleri bulmayı kolaylaştırmak ve hızlandırmak için Vieta teoremine ihtiyaç vardır. Kullanımından faydalanabilmeniz için eylemleri otomatikleştirmeniz gerekmektedir. Bunun için beş örnek daha çözün. Ama hile yapmayın: diskriminant kullanamazsınız! Yalnızca Vieta teoremi:

Bağımsız çalışma için görev çözümleri:

Görev 1. ((x)^(2))-8x+12=0

Vieta teoremine göre:

Her zamanki gibi seçime şu parçayla başlıyoruz:

Uygun değil çünkü miktar;

: miktar tam ihtiyacınız olan şeydir.

Cevap: ; .

Görev 2.

Ve yine en sevdiğimiz Vieta teoremi: toplam eşit olmalı ve çarpım da eşit olmalıdır.

Ama olmaması gerektiği için, köklerin işaretlerini değiştiriyoruz: ve (toplamda).

Cevap: ; .

Görev 3.

Hımm... Nerede o?

Tüm terimleri tek bir bölüme taşımanız gerekir:

Köklerin toplamı çarpıma eşittir.

Tamam, dur! Denklem verilmemiştir. Ancak Vieta teoremi yalnızca verilen denklemlere uygulanabilir. Bu yüzden önce bir denklem vermeniz gerekiyor. Eğer liderlik edemiyorsanız, bu fikirden vazgeçin ve başka bir yolla (örneğin, diskriminant kullanarak) çözün. İkinci dereceden bir denklem vermenin baş katsayıyı eşitlemek anlamına geldiğini hatırlatmama izin verin:

Harika. O zaman köklerin toplamı eşittir ve çarpım.

Burada seçim yapmak çok kolay: sonuçta bu bir asal sayı (totoloji için özür dilerim).

Cevap: ; .

Görev 4.

Ücretsiz üye negatiftir. Bunun nesi özel? Ve gerçek şu ki, köklerin farklı işaretleri olacak. Ve şimdi seçim sırasında köklerin toplamını değil, modüllerindeki farkı kontrol ediyoruz: bu fark eşittir, ancak bir üründür.

Yani kökler ve'ye eşittir, ancak bunlardan biri eksidir. Vieta teoremi bize köklerin toplamının zıt işaretli ikinci katsayıya eşit olduğunu söyler. Bu, daha küçük kökün bir eksiye sahip olacağı anlamına gelir: ve, çünkü.

Cevap: ; .

Görev 5.

İlk önce ne yapmalısın? Bu doğru, denklemi verin:

Tekrar: Sayının faktörlerini seçiyoruz ve aralarındaki fark şuna eşit olmalıdır:

Kökler ve'ye eşittir, ancak bunlardan biri eksidir. Hangi? Toplamları eşit olmalıdır, yani eksi daha büyük bir köke sahip olacaktır.

Cevap: ; .

Özetleyeyim:
  1. Vieta teoremi yalnızca verilen ikinci dereceden denklemlerde kullanılır.
  2. Vieta teoremini kullanarak kökleri seçim yoluyla sözlü olarak bulabilirsiniz.
  3. Denklem verilmezse veya serbest terimin uygun faktör çifti bulunmazsa, o zaman tam kök yoktur ve bunu başka bir şekilde (örneğin, bir diskriminant aracılığıyla) çözmeniz gerekir.

3. Tam kareyi seçme yöntemi

Bilinmeyeni içeren tüm terimler, kısaltılmış çarpma formüllerinden (toplamın veya farkın karesi) terimler biçiminde temsil edilirse, değişkenleri değiştirdikten sonra denklem, türün tamamlanmamış ikinci dereceden denklemi biçiminde sunulabilir.

Örneğin:

Örnek 1:

Denklemi çözün: .

Çözüm:

Cevap:

Örnek 2:

Denklemi çözün: .

Çözüm:

Cevap:

İÇİNDE Genel görünüm dönüşüm şöyle görünecek:

Bu şu anlama gelir: .

Sana hiçbir şey hatırlatmıyor mu? Bu ayrımcılıktır! Diskriminant formülünü tam olarak bu şekilde elde ettik.

İKİNCİ DERECEDEN DENKLEMLER. ANA ŞEYLER HAKKINDA KISACA

İkinci dereceden denklem- bu, - bilinmeyenin, - ikinci dereceden denklemin katsayılarının, - serbest terimin olduğu formun bir denklemidir.

Tam ikinci dereceden denklem- katsayıların sıfıra eşit olmadığı bir denklem.

Azaltılmış ikinci dereceden denklem- katsayının olduğu bir denklem: .

Tamamlanmamış ikinci dereceden denklem- katsayı ve/veya serbest terim c'nin sıfıra eşit olduğu bir denklem:

  • katsayı ise denklem şuna benzer: ,
  • serbest bir terim varsa denklem şu şekildedir: ,
  • eğer ve ise denklem şuna benzer: .

1. Tamamlanmamış ikinci dereceden denklemleri çözmek için algoritma

1.1. Formun tamamlanmamış ikinci dereceden denklemi, burada:

1) Bilinmeyeni ifade edelim: ,

2) İfadenin işaretini kontrol edin:

  • eğer öyleyse denklemin çözümü yok,
  • eğer öyleyse denklemin iki kökü vardır.

1.2. Formun tamamlanmamış ikinci dereceden denklemi, burada:

1) Parantez içindeki ortak çarpanı çıkaralım: ,

2) Faktörlerden en az birinin sıfıra eşit olması durumunda çarpım sıfıra eşittir. Bu nedenle denklemin iki kökü vardır:

1.3. Formun tamamlanmamış ikinci dereceden denklemi, burada:

Bu denklemin her zaman tek bir kökü vardır: .

2. Formun ikinci dereceden tam denklemlerini çözmek için algoritma

2.1. Diskriminant kullanarak çözüm

1) Denklemi standart forma getirelim: ,

2) Denklemin kök sayısını gösteren formülü kullanarak diskriminantı hesaplayalım:

3) Denklemin köklerini bulun:

  • eğer öyleyse, denklemin aşağıdaki formülle bulunan kökleri vardır:
  • eğer öyleyse, denklemin aşağıdaki formülle bulunan bir kökü vardır:
  • eğer öyleyse denklemin kökleri yoktur.

2.2. Vieta teoremini kullanarak çözüm

İndirgenmiş ikinci dereceden denklemin köklerinin toplamı (formun denklemi) eşittir ve köklerin çarpımı eşittir, yani. , A.

2.3. Tam kare seçme yöntemiyle çözüm

Formun ikinci dereceden bir denkleminin kökleri varsa, şu şekilde yazılabilir: .

Neyse konu bitti. Eğer bu satırları okuyorsanız çok havalısınız demektir.

Çünkü insanların yalnızca %5'i bir konuda kendi başına ustalaşabiliyor. Ve eğer sonuna kadar okursanız, o zaman siz de bu %5'in içindesiniz!

Şimdi en önemli şey.

Bu konudaki teoriyi anladınız. Ve tekrar ediyorum, bu... bu gerçekten süper! Zaten akranlarınızın büyük çoğunluğundan daha iyisiniz.

Sorun şu ki bu yeterli olmayabilir...

Ne için?

İçin başarılı tamamlama Birleşik Devlet Sınavı, üniversiteye kısıtlı bir bütçeyle ve EN ÖNEMLİSİ de ömür boyu kabul için.

Seni hiçbir şeye ikna etmeyeceğim, sadece tek bir şey söyleyeceğim...

Alınan insanlar iyi bir eğitim, almayanlardan çok daha fazlasını kazanın. Bu istatistik.

Ancak asıl mesele bu değil.

Önemli olan DAHA MUTLU olmalarıdır (böyle çalışmalar var). Belki de önlerinde çok daha açık yollar olduğu için daha fazla olasılık ve hayat daha mı parlaklaşıyor? Bilmiyorum...

Ama kendin düşün...

Birleşik Devlet Sınavında diğerlerinden daha iyi olmak ve sonuçta... daha mutlu olmak için ne gerekir?

BU KONUDAKİ SORUNLARI ÇÖZEREK ELİNİZİ KAZANIN.

Sınav sırasında sizden teori sorulmayacak.

İhtiyacın olacak zamana karşı problemleri çözmek.

Ve eğer bunları çözmediyseniz (ÇOK!), kesinlikle bir yerlerde aptalca bir hata yapacaksınız veya zamanınız olmayacak.

Sporda olduğu gibi - kesin olarak kazanmak için bunu birçok kez tekrarlamanız gerekir.

Koleksiyonu dilediğiniz yerde bulun, mutlaka çözümlerle, detaylı analiz ve karar ver, karar ver, karar ver!

Görevlerimizi kullanabilirsiniz (isteğe bağlı) ve elbette bunları öneririz.

Görevlerimizi daha iyi kullanmak için şu anda okuduğunuz YouClever ders kitabının ömrünün uzatılmasına yardımcı olmanız gerekir.

Nasıl? İki seçenek var:

  1. Bu makaledeki tüm gizli görevlerin kilidini açın -
  2. Ders kitabının 99 makalesinin tamamındaki tüm gizli görevlere erişimin kilidini açın - Bir ders kitabı satın alın - 499 RUR

Evet, ders kitabımızda bu tür 99 makalemiz var ve tüm görevlere ve bunların içindeki tüm gizli metinlere erişim anında açılabilir.

Sitenin TÜM ömrü boyunca tüm gizli görevlere erişim sağlanır.

Sonuç olarak...

Görevlerimizi beğenmiyorsanız başkalarını bulun. Sadece teoride durmayın.

“Anlamak” ve “çözebilirim” tamamen farklı becerilerdir. İkisine de ihtiyacın var.

Sorunları bulun ve çözün!

İkinci dereceden denklem - çözülmesi kolay! *Bundan sonra “KU” olarak anılacaktır. Arkadaşlar öyle görünüyor ki matematikte böyle bir denklemi çözmekten daha basit bir şey olamaz. Ama içimden bir ses birçok insanın onunla sorunları olduğunu söyledi. Yandex'in ayda kaç tane isteğe bağlı gösterim verdiğini görmeye karar verdim. İşte ne oldu, bakın:


Bu ne anlama geliyor? Bu, ayda yaklaşık 70.000 kişinin aradığı anlamına geliyor bu bilgi, bu yazın bununla ne ilgisi var ve aralarında neler olacak? okul yılı— iki kat daha fazla talep olacak. Bu şaşırtıcı değil, çünkü okuldan uzun zaman önce mezun olan ve Birleşik Devlet Sınavına hazırlanan kız ve erkekler bu bilgiyi arıyorlar ve okul çocukları da hafızalarını tazelemeye çalışıyorlar.

Bu denklemin nasıl çözüleceğini anlatan birçok site olmasına rağmen ben de katkıda bulunup materyali yayınlamaya karar verdim. Öncelikle bu isteğe istinaden ziyaretçilerin siteme gelmesini istiyorum; ikinci olarak diğer yazılarımda “KU” konusu açıldığında bu yazının linkini vereceğim; üçüncü olarak, size çözümü hakkında diğer sitelerde genellikle belirtilenden biraz daha fazlasını anlatacağım. Başlayalım! Makalenin içeriği:

İkinci dereceden bir denklem şu şekilde bir denklemdir:

burada katsayılar a,BVe birlikte keyfi sayılar, burada a≠0.

İÇİNDE okul kursu materyal aşağıdaki biçimde verilmiştir - denklemler geleneksel olarak üç sınıfa ayrılır:

1. İki kökleri vardır.

2. *Tek bir kökü vardır.

3. Kökleri yoktur. Burada gerçek köklerinin olmadığını özellikle belirtmekte fayda var.

Kökler nasıl hesaplanır? Sadece!

Diskriminant değerini hesaplıyoruz. Bu “korkunç” kelimenin altında çok basit bir formül yatıyor:

Kök formülleri aşağıdaki gibidir:

*Bu formülleri ezbere bilmeniz gerekiyor.

Hemen yazıp çözebilirsiniz:

Örnek:


1. Eğer D > 0 ise denklemin iki kökü vardır.

2. Eğer D = 0 ise denklemin bir kökü vardır.

3. Eğer D< 0, то уравнение не имеет действительных корней.

Denkleme bakalım:


Bu bakımdan diskriminant sıfıra eşit olduğunda okul dersi bir kökün elde edildiğini söylüyor, burada dokuza eşit oluyor. Her şey doğru, öyle ama...

Bu fikir biraz yanlıştır. Aslında iki kök var. Evet evet şaşırmayın iki çıkıyor eşit kökler ve matematiksel olarak kesin olması için yanıtın iki kök içermesi gerekir:

x 1 = 3 x 2 = 3

Ama bu böyle - küçük bir ara söz. Okulda bunu yazıp tek bir kök olduğunu söyleyebilirsin.

Şimdi bir sonraki örnek:


Bildiğimiz gibi negatif bir sayının kökü alınamadığı için bu durumda da bir çözüm bulunmuyor.

Bütün karar süreci bu.

İkinci dereceden fonksiyon.

Bu, çözümün geometrik olarak neye benzediğini gösterir. Bunu anlamak son derece önemlidir (gelecekte makalelerden birinde ikinci dereceden eşitsizliğin çözümünü ayrıntılı olarak analiz edeceğiz).

Bu formun bir fonksiyonudur:

burada x ve y değişkenlerdir

a, b, c – verilen sayılar, burada a ≠ 0

Grafik bir paraboldür:

Yani, "y" noktasında ikinci dereceden bir denklemin çözülmesi gerektiği ortaya çıktı. sıfıra eşit parabolün x ekseniyle kesişme noktalarını buluyoruz. Bu noktalardan ikisi (ayırıcı pozitiftir), biri (ayırıcı sıfırdır) ve hiçbiri (ayırıcı negatiftir) olabilir. İkinci dereceden fonksiyonla ilgili ayrıntılar Görüntüleyebilirsiniz Inna Feldman'ın makalesi.

Örneklere bakalım:

Örnek 1: Çöz 2 kere 2 +8 X–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Cevap: x 1 = 8 x 2 = –12

*Denklemin sol ve sağ taraflarını hemen 2'ye bölmek, yani basitleştirmek mümkündü. Hesaplamalar daha kolay olacaktır.

Örnek 2: Karar vermek x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

x 1 = 11 ve x 2 = 11 olduğunu bulduk

Cevapta x=11 yazmak caizdir.

Cevap: x = 11

Örnek 3: Karar vermek x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant negatiftir, reel sayılarda çözüm yoktur.

Cevap: çözüm yok

Diskriminant negatiftir. Bir çözüm var!

Burada ortaya çıktığında denklemin çözümü hakkında konuşacağız. negatif diskriminant. hakkında bir şey biliyor musun? Karışık sayılar? Burada bunların neden, nerede ortaya çıktıkları ve ne oldukları konusunda ayrıntılara girmeyeceğim. özel rol ve matematiğe duyulan ihtiyaç, bu ayrı bir makalenin konusu.

Karmaşık sayı kavramı.

Küçük bir teori.

Karmaşık sayı z, formdaki bir sayıdır

z = a + bi

a ve b nerede gerçek sayılar i sözde sanal birimdir.

a+bi – bu TEK BİR NUMARAdır, toplama değil.

Sanal birim eksi birin köküne eşittir:

Şimdi denklemi düşünün:


İki eşlenik kök elde ediyoruz.

Tamamlanmamış ikinci dereceden denklem.

Özel durumları ele alalım; bu, “b” veya “c” katsayısının sıfıra eşit olduğu (veya her ikisinin de sıfıra eşit olduğu) durumdur. Hiçbir ayrımcı sorun olmadan kolayca çözülebilirler.

Durum 1. Katsayı b = 0.

Denklem şöyle olur:

Haydi dönüştürelim:

Örnek:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Durum 2. Katsayı c = 0.

Denklem şöyle olur:

Dönüştürüp çarpanlara ayıralım:

*Faktörlerden en az biri sıfıra eşit olduğunda ürün sıfıra eşittir.

Örnek:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 veya x–5 =0

x 1 = 0 x 2 = 5

Durum 3. Katsayılar b = 0 ve c = 0.

Burada denklemin çözümünün her zaman x = 0 olacağı açıktır.

Faydalı özellikler ve katsayı kalıpları.

Büyük katsayılı denklemleri çözmenizi sağlayan özellikler vardır.

AX 2 + bx+ C=0 eşitlik geçerlidir

A + B+ c = 0, O

- denklemin katsayıları için ise AX 2 + bx+ C=0 eşitlik geçerlidir

A+ s =B, O

Bu özellikler karar vermenize yardımcı olur belirli bir tür denklemler

Örnek 1: 5001 X 2 –4995 X – 6=0

Oranların toplamı 5001+( 4995)+( 6) = 0, bunun anlamı

Örnek 2: 2501 X 2 +2507 X+6=0

Eşitlik geçerlidir A+ s =B, Araç

Katsayıların düzenlilikleri.

1. Eğer ax 2 + bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse, kökleri eşittir

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Örnek. 6x 2 + 37x + 6 = 0 denklemini düşünün.

x 1 = –6 x 2 = –1/6.

2. Eğer ax 2 – bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse kökleri eşittir

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Örnek. 15x 2 –226x +15 = 0 denklemini düşünün.

x 1 = 15 x 2 = 1/15.

3. Denklemde ise. ax 2 + bx – c = 0 katsayısı “b” eşittir (a 2 – 1) ve katsayısı “c” sayısal olarak “a” katsayısına eşittir, o zaman kökleri eşittir

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Örnek. 17x 2 +288x – 17 = 0 denklemini düşünün.

x 1 = – 17 x 2 = 1/17.

4. Eğer ax 2 – bx – c = 0 denkleminde “b” katsayısı (a 2 – 1)'e eşitse ve c katsayısı sayısal olarak “a” katsayısına eşitse kökleri eşittir

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Örnek. 10x 2 – 99x –10 = 0 denklemini düşünün.

x 1 = 10 x 2 = – 1/10

Vieta'nın teoremi.

Vieta teoremi adını ünlülerden almıştır. Fransız matematikçi François Vieta. Vieta teoremini kullanarak, rastgele bir KU'nun köklerinin toplamını ve çarpımını katsayıları cinsinden ifade edebiliriz.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Toplamda 14 sayısı sadece 5 ve 9'u verir. Bunlar köklerdir. Belirli bir beceriyle, sunulan teoremi kullanarak birçok ikinci dereceden denklemi sözlü olarak anında çözebilirsiniz.

Ayrıca Vieta teoremi. İkinci dereceden bir denklemi olağan şekilde (bir diskriminant aracılığıyla) çözdükten sonra ortaya çıkan köklerin kontrol edilebilmesi uygundur. Bunu her zaman yapmanızı öneririm.

ULAŞIM ŞEKLİ

Bu yöntemle “a” katsayısı serbest terimle sanki kendisine “atılmış” gibi çarpılır, bu yüzden buna denir. "aktarma" yöntemi. Bu yöntem, Vieta teoremini kullanarak denklemin köklerini kolayca bulabileceğiniz ve en önemlisi diskriminantın tam kare olduğu durumlarda kullanılır.

Eğer A± b+c≠ 0 ise transfer tekniği kullanılır, örneğin:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Denklem (2)'deki Vieta teoremini kullanarak x 1 = 10 x 2 = 1 olduğunu belirlemek kolaydır.

Denklemin ortaya çıkan kökleri 2'ye bölünmelidir (çünkü ikisi x 2'den "atılmıştır"), şunu elde ederiz:

x 1 = 5 x 2 = 0,5.

Gerekçesi nedir? Bakın neler oluyor.

Denklem (1) ve (2)'nin ayırıcıları eşittir:

Denklemlerin köklerine bakarsanız, yalnızca şunu elde edersiniz: farklı paydalar ve sonuç tam olarak x 2 katsayısına bağlıdır:


İkincisi (değiştirilmiş) 2 kat daha büyük köklere sahiptir.

Bu nedenle sonucu 2'ye bölüyoruz.

*Üç atarsak sonucu 3'e vb. böleriz.

Cevap: x 1 = 5 x 2 = 0,5

meydan ur-ie ve Birleşik Devlet Sınavı.

Önemini kısaca anlatacağım - Çabuk ve düşünmeden KARAR VERMELİSİNİZ, köklerin ve ayırıcıların formüllerini ezbere bilmeniz gerekiyor. Birleşik Devlet Sınavı görevlerinde yer alan problemlerin çoğu, ikinci dereceden bir denklemin (geometrik olanlar dahil) çözülmesine indirgenir.

Dikkate değer bir şey!

1. Bir denklemin yazım şekli “örtük” olabilir. Örneğin aşağıdaki giriş mümkündür:

15+ 9x 2 - 45x = 0 veya 15x+42+9x 2 - 45x=0 veya 15 -5x+10x 2 = 0.

Bunu standart bir forma getirmeniz gerekiyor (çözerken kafanızın karışmaması için).

2. X'in bilinmeyen bir miktar olduğunu ve herhangi bir harfle (t, q, p, h ve diğerleri) gösterilebileceğini unutmayın.



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!