Kaip išspręsti trigonometrines lygtis su šaknimis. Paprastų trigonometrinių lygčių sprendimas

Galite užsisakyti detalus sprendimas tavo užduotis!!!

Lygybė, kurioje po ženklu yra nežinomasis trigonometrinė funkcija(„sin x, cos x, tan x“ arba „ctg x“) vadinama trigonometrine lygtimi, todėl toliau nagrinėsime jų formules.

Paprasčiausios lygtys yra „sin x=a, cos x=a, tg x=a, ctg x=a“, kur „x“ yra kampas, kurį reikia rasti, „a“ yra bet koks skaičius. Užrašykime kiekvienos iš jų šaknies formules.

1. Lygtis „sin x=a“.

„|a|>1“ sprendimų nėra.

Kai `|a| \leq 1` turi begalinis skaičius sprendimus.

Šakninė formulė: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Lygtis „cos x=a“.

Jei `|a|>1` – kaip ir sinuso atveju, sprendiniai tarp realūs skaičiai neturi.

Kai `|a| \leq 1` turi begalinis rinkinys sprendimus.

Šakninė formulė: `x=\pm arccos a + 2\pi n, n \in Z`

Specialūs sinuso ir kosinuso atvejai diagramose.

3. Lygtis „tg x=a“.

Turi begalinį bet kokių „a“ reikšmių sprendimų skaičių.

Šakninė formulė: „x=arctg a + \pi n, n \in Z“.

4. Lygtis „ctg x=a“.

Taip pat turi begalinį bet kokių „a“ reikšmių sprendimų skaičių.

Šakninė formulė: „x=arcctg a + \pi n, n \in Z“.

Lentelėje pateiktų trigonometrinių lygčių šaknų formulės

Dėl sinuso:
Dėl kosinuso:
Tangentui ir kotangentui:
Formulės, skirtos spręsti lygtis, kuriose yra atvirkštinių trigonometrinių funkcijų:

Trigonometrinių lygčių sprendimo būdai

Bet kurios trigonometrinės lygties sprendimas susideda iš dviejų etapų:

  • paverčiant jį paprasčiausiu;
  • išspręskite paprasčiausią lygtį, gautą naudodamiesi aukščiau parašytomis šaknies formulėmis ir lentelėmis.

Pažvelkime į pagrindinius sprendimo būdus naudodami pavyzdžius.

Algebrinis metodas.

Šis metodas apima kintamojo pakeitimą ir jo pakeitimą lygybe.

Pavyzdys. Išspręskite lygtį: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0,

pakeiskite: „cos(x+\frac \pi 6)=y“, tada „2y^2-3y+1=0“,

randame šaknis: `y_1=1, y_2=1/2`, iš kurių seka du atvejai:

1. „cos(x+\frac \pi 6)=1“, „x+\frac \pi 6=2\pi n“, „x_1=-\frac \pi 6+2\pi n“.

2. `cos(x+\frac \pi 6)=1/2, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Atsakymas: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizavimas.

Pavyzdys. Išspręskite lygtį: `sin x+cos x=1`.

Sprendimas. Perkelkime visus lygybės narius į kairę: `sin x+cos x-1=0`. Naudodami , mes transformuojame ir koeficientuojame kairę pusę:

„sin x – 2sin^2 x/2=0“,

„2sin x/2 cos x/2-2sin^2 x/2=0“,

„2sin x/2 (cos x/2-sin x/2) = 0“,

  1. „sin x/2 =0“, „x/2 =\pi n“, „x_1=2\pi n“.
  2. „cos x/2-sin x/2=0“, „tg x/2=1“, „x/2=arctg 1+ \pi n“, „x/2=\pi/4+ \pi n“ , „x_2=\pi/2+ 2\pi n“.

Atsakymas: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Redukcija į homogeninę lygtį

Pirmiausia turite sumažinti šią trigonometrinę lygtį į vieną iš dviejų formų:

„a sin x+b cos x=0“ ( vienalytė lygtis pirmas laipsnis) arba `a sin^2 x + b sin x cos x +c cos^2 x=0` (homogeninė antrojo laipsnio lygtis).

Tada padalykite abi dalis iš „cos x \ne 0“ – pirmuoju atveju ir iš „cos^2 x \ne 0“ – antruoju. Gauname „tg x“ lygtis: „a tg x+b=0“ ir „a tg^2 x + b tg x +c =0“, kurias reikia išspręsti žinomais metodais.

Pavyzdys. Išspręskite lygtį: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Sprendimas. Užsirašykime dešinėje pusėje kaip „1=sin^2 x+cos^2 x“:

„2 sin^2 x+sin x cos x — cos^2 x=` „sin^2 x+cos^2 x“,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

„sin^2 x+sin x cos x — 2 cos^2 x=0“.

Tai yra vienalytė antrojo laipsnio trigonometrinė lygtis, jos kairę ir dešinę puses padaliname iš `cos^2 x \ne 0`, gauname:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0

„tg^2 x+tg x – 2=0“. Įveskime pakaitalą „tg x=t“, todėl gauname „t^2 + t - 2=0“. Šios lygties šaknys yra „t_1=-2“ ir „t_2=1“. Tada:

  1. „tg x=-2“, „x_1=arctg (-2)+\pi n“, „n \in Z“
  2. „tg x=1“, „x=arctg 1+\pi n“, „x_2=\pi/4+\pi n“, „n \in Z“.

Atsakymas. „x_1=arctg (-2)+\pi n“, „n \in Z“, „x_2=\pi/4+\pi n“, „n \in Z“.

Eik į pusę kampo

Pavyzdys. Išspręskite lygtį: "11 sin x - 2 cos x = 10".

Sprendimas. Taikykime formules dvigubas kampas, gaunasi: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^ 2 x/2''

„4 tg^2 x/2 – 11 tg x/2 +6=0“.

Taikant aukščiau pateiktą algebrinis metodas, gauname:

  1. „tg x/2=2“, „x_1=2 arctg 2+2\pi n“, „n \in Z“,
  2. „tg x/2=3/4“, „x_2=arctg 3/4+2\pi n“, „n \in Z“.

Atsakymas. „x_1=2 arctg 2+2\pi n, n \in Z“, „x_2=arctg 3/4+2\pi n“, „n \in Z“.

Pagalbinio kampo įvedimas

Trigonometrinėje lygtyje „a sin x + b cos x =c“, kur a,b,c yra koeficientai, o x yra kintamasis, padalykite abi puses iš „sqrt (a^2+b^2)“:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))".

Kairėje pusėje esantys koeficientai turi sinuso ir kosinuso savybes, būtent jų kvadratų suma lygi 1, o moduliai ne didesni kaip 1. Pažymime juos taip: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, tada:

`cos \varphi sin x + sin \varphi cos x =C`.

Pažvelkime atidžiau į šį pavyzdį:

Pavyzdys. Išspręskite lygtį: `3 sin x+4 cos x=2`.

Sprendimas. Padalinkite abi lygybės puses iš `sqrt (3^2+4^2)', gausime:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))".

„3/5 sin x+4/5 cos x=2/5“.

Pažymime `3/5 = cos \varphi` , `4/5=sin \varphi`. Kadangi `sin \varphi>0`, `cos \varphi>0`, imame `\varphi=arcsin 4/5` kaip pagalbinį kampą. Tada rašome savo lygybę tokia forma:

„cos \varphi sin x+sin \varphi cos x=2/5“.

Taikydami sinuso kampų sumos formulę, rašome savo lygybę tokia forma:

„sin (x+\varphi)=2/5“,

„x+\varphi=(-1)^n arcsin 2/5+ \pi n“, „n \in Z“,

„x=(-1)^n arcsin 2/5-` „arcsin 4/5+ \pi n“, „n \in Z“.

Atsakymas. „x=(-1)^n arcsin 2/5-` „arcsin 4/5+ \pi n“, „n \in Z“.

Trupmeninės racionalios trigonometrinės lygtys

Tai lygybės su trupmenomis, kurių skaitikliuose ir vardikliuose yra trigonometrinių funkcijų.

Pavyzdys. Išspręskite lygtį. „\frac (sin x)(1+cos x)=1-cos x“.

Sprendimas. Padauginkite ir padalinkite dešinę lygybės pusę iš „(1+cos x)“. Rezultate gauname:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0

„\frac (sin x-sin^2 x)(1+cos x)=0“.

Atsižvelgiant į tai, kad vardiklis negali būti lygus nuliui, gauname `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z.

Prilyginkime trupmenos skaitiklį nuliui: „sin x-sin^2 x=0“, „sin x(1-sin x)=0“. Tada „sin x=0“ arba „1-sin x=0“.

  1. „sin x=0“, „x=\pi n“, „n \in Z“.
  2. „1-sin x=0“, „sin x=-1“, „x=\pi /2+2\pi n, n \in Z“.

Atsižvelgiant į tai, kad ` x \ne \pi+2\pi n, n \in Z, sprendiniai yra `x=2\pi n, n \in Z` ir `x=\pi /2+2\pi n` , „n \in Z“.

Atsakymas. „x=2\pi n“, „n \in Z“, „x=\pi /2+2\pi n“, „n \in Z“.

Trigonometrija, o ypač trigonometrinės lygtys, naudojamos beveik visose geometrijos, fizikos ir inžinerijos srityse. Mokymasis prasideda 10 klasėje, vieningam valstybiniam egzaminui visada yra užduočių, todėl pasistenkite atsiminti visas trigonometrinių lygčių formules – jos jums tikrai pravers!

Tačiau net nereikia jų įsiminti, svarbiausia suprasti esmę ir mokėti ją išvesti. Tai nėra taip sunku, kaip atrodo. Įsitikinkite patys žiūrėdami vaizdo įrašą.

Mums svarbu išlaikyti jūsų privatumą. Dėl šios priežasties sukūrėme Privatumo politiką, kurioje aprašoma, kaip naudojame ir saugome jūsų informaciją. Peržiūrėkite mūsų privatumo praktiką ir praneškite mums, jei turite klausimų.

Asmeninės informacijos rinkimas ir naudojimas

Asmeninė informacija reiškia duomenis, kurie gali būti naudojami konkretaus asmens tapatybei nustatyti arba susisiekti su juo.

Jūsų gali būti paprašyta pateikti savo asmeninę informaciją bet kuriuo metu, kai susisiekiate su mumis.

Toliau pateikiami keli pavyzdžiai, kokios rūšies asmeninės informacijos galime rinkti ir kaip galime tokią informaciją naudoti.

Kokią asmeninę informaciją renkame:

  • Kai svetainėje pateikiate užklausą, galime surinkti įvairios informacijos, įskaitant jūsų vardą, telefono numerį, adresą paštu ir tt

Kaip naudojame jūsų asmeninę informaciją:

  • Mūsų surinkta asmeninė informacija leidžia susisiekti su jumis ir informuoti apie unikalius pasiūlymus, akcijas ir kitus renginius bei artėjančius renginius.
  • Retkarčiais galime naudoti jūsų asmeninę informaciją svarbiems pranešimams ir pranešimams siųsti.
  • Mes taip pat galime naudoti asmeninę informaciją vidiniais tikslais, tokiais kaip auditas, duomenų analizė ir įvairūs tyrimai siekdami pagerinti mūsų teikiamas paslaugas ir teikti rekomendacijas dėl mūsų paslaugų.
  • Jei dalyvaujate prizų traukime, konkurse ar panašioje akcijoje, mes galime naudoti jūsų pateiktą informaciją tokioms programoms administruoti.

Informacijos atskleidimas trečiosioms šalims

Mes neatskleidžiame iš jūsų gautos informacijos trečiosioms šalims.

Išimtys:

  • Esant poreikiui – įstatymų nustatyta tvarka, teismine tvarka, teismine tvarka ir (arba) remiantis viešais prašymais ar prašymais iš valdžios organai Rusijos Federacijos teritorijoje – atskleiskite savo asmeninę informaciją. Taip pat galime atskleisti informaciją apie jus, jei nuspręsime, kad toks atskleidimas yra būtinas arba tinkamas saugumo, teisėsaugos ar kitais visuomenei svarbiais tikslais.
  • Reorganizavimo, susijungimo ar pardavimo atveju surinktą asmeninę informaciją galime perduoti atitinkamai trečiajai šaliai.

Asmeninės informacijos apsauga

Mes imamės atsargumo priemonių, įskaitant administracines, technines ir fizines, siekdami apsaugoti jūsų asmeninę informaciją nuo praradimo, vagystės ir netinkamo naudojimo, taip pat nuo neteisėtos prieigos, atskleidimo, pakeitimo ir sunaikinimo.

Jūsų privatumo gerbimas įmonės lygiu

Siekdami užtikrinti, kad jūsų asmeninė informacija būtų saugi, savo darbuotojams pranešame apie privatumo ir saugumo standartus ir griežtai vykdome privatumo praktiką.

Paprasčiausios trigonometrinės lygtys paprastai išsprendžiamos naudojant formules. Leiskite jums priminti, kad paprasčiausios trigonometrinės lygtys yra šios:

sinx = a

cosx = a

tgx = a

ctgx = a

x yra kampas, kurį reikia rasti,
a yra bet koks skaičius.

O štai formulės, kuriomis iš karto galite užrašyti šių paprasčiausių lygčių sprendinius.

Dėl sinuso:


Dėl kosinuso:

x = ± arccos a + 2π n, n ∈ Z


Dėl liestinės:

x = arctan a + π n, n ∈ Z


Dėl kotangento:

x = arcctg a + π n, n ∈ Z

Tiesą sakant, štai kas yra teorinė dalis sprendžiant paprastas trigonometrines lygtis. Be to, viskas!) Visai nieko. Tačiau klaidų skaičius šioje temoje tiesiog nepastebimas. Ypač jei pavyzdys šiek tiek skiriasi nuo šablono. Kodėl?

Taip, nes daug žmonių rašo šias raides, visai nesuprasdami jų prasmės! Jis rašo atsargiai, kad kas nors neatsitiktų...) Tai reikia sutvarkyti. Trigonometrija žmonėms arba žmonės trigonometrijai!?)

Išsiaiškinkime?

Vienas kampas bus lygus arccos a, antra: -arccos a.

Ir visada taip pavyks. Dėl bet kokių A.

Jei netikite manimi, užveskite pelės žymeklį ant nuotraukos arba palieskite paveikslėlį planšetiniame kompiuteryje.) Pakeičiau numerį. A į kažką neigiamo. Šiaip ar taip, gavome vieną kampą arccos a, antra: -arccos a.

Todėl atsakymą visada galima parašyti kaip dvi šaknų serijas:

x 1 = arccos a + 2π n, n ∈ Z

x 2 = - arccos a + 2π n, n ∈ Z

Sujungkime šias dvi serijas į vieną:

x= ± arccos a + 2π n, n ∈ Z

Ir viskas. Gavome bendrą formulę, kaip išspręsti paprasčiausią trigonometrinę lygtį su kosinusu.

Jei supranti, kad tai ne kažkokia supermokslinė išmintis, bet tik sutrumpinta dviejų atsakymų serijų versija, Taip pat galėsite atlikti užduotis „C“. Su nelygybėmis, su šaknų parinkimu iš duoto intervalo... Ten atsakymas su pliusu/minusu neveikia. Bet jei atsakymą traktuosite dalykiškai ir suskirstysite jį į du atskirus atsakymus, viskas bus išspręsta.) Tiesą sakant, todėl mes tai ir nagrinėjame. Kas, kaip ir kur.

Paprasčiausioje trigonometrinėje lygtyje

sinx = a

taip pat gauname dvi šaknų serijas. Visada. Ir šias dvi serijas taip pat galima įrašyti vienoje eilutėje. Tik ši eilutė bus sudėtingesnė:

x = (-1) n arcsin a + π n, n ∈ Z

Tačiau esmė išlieka ta pati. Matematikai paprasčiausiai sukūrė formulę, kad šaknų serijoms būtų įvestas vienas, o ne du. Tai viskas!

Patikrinkime matematikus? Ir niekada nežinai...)

Ankstesnėje pamokoje buvo išsamiai aptartas trigonometrinės lygties su sinusu sprendimas (be formulių):

Atsakymas lėmė dvi šaknų serijas:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

Jei tą pačią lygtį išspręsime naudodami formulę, gausime atsakymą:

x = (-1) n arcsin 0,5 + π n, n ∈ Z

Tiesą sakant, tai nebaigtas atsakymas.) Mokinys turi tai žinoti arcsin 0,5 = π /6. Pilnas atsakymas būtų toks:

x = (-1) n π /6+ π n, n ∈ Z

Čia tai atsiranda įdomus klausimas. Atsakyti per x 1; x 2 (tai teisingas atsakymas!) ir per vienišius X (ir tai yra teisingas atsakymas!) – ar tai tas pats dalykas, ar ne? Dabar išsiaiškinsime.)

Atsakyme pakeičiame su x 1 vertybes n =0; 1; 2; ir tt, suskaičiuojame, gauname šaknų seriją:

x 1 = π/6; 13π/6; 25π/6 ir taip toliau.

Su tuo pačiu pakeitimu atsakant su x 2 , gauname:

x 2 = 5π/6; 17π/6; 29π/6 ir taip toliau.

Dabar pakeiskime reikšmes n (0; 1; 2; 3; 4...) į bendrą viengubo formulę X . Tai yra, minus vieną padidiname iki nulinės galios, tada į pirmą, antrą ir tt. Na, žinoma, mes pakeičiame 0 į antrąjį terminą; 1; 2 3; 4 ir kt. Ir skaičiuojame. Gauname seriją:

x = π/6; 5π/6; 13π/6; 17π/6; 25π/6 ir taip toliau.

Tai viskas, ką galite pamatyti.) Bendra formulė duoda mums lygiai tokie patys rezultatai kaip ir du atsakymai atskirai. Tiesiog viskas iš karto, tvarkinga. Matematikai nebuvo apgauti.)

Taip pat galima patikrinti trigonometrinių lygčių su liestine ir kotangentu sprendimo formules. Bet mes to nepadarysime.) Jie jau paprasti.

Visą šį pakeitimą ir tikrinimą parašiau specialiai. Čia svarbu suprasti vieną dalyką paprastas dalykas: yra elementariųjų trigonometrinių lygčių sprendimo formulės, tiesiog, trumpa pastaba atsakymai. Dėl šio trumpumo turėjome įterpti pliusą / minusą į kosinuso tirpalą ir (-1) n į sinuso tirpalą.

Šie intarpai jokiu būdu netrukdo atlikti užduotis, kur tereikia užsirašyti atsakymą elementarioji lygtis. Bet jei jums reikia išspręsti nelygybę arba reikia ką nors padaryti su atsakymu: pasirinkti šaknis intervale, patikrinti, ar nėra ODZ ir pan., šie įterpimai gali lengvai nuliūdinti žmogų.

Taigi ką turėčiau daryti? Taip, arba parašykite atsakymą dviem eilėmis, arba išspręskite lygtį/nelygybę ant trigonometrinio apskritimo. Tada šie intarpai išnyksta ir gyvenimas tampa lengvesnis.)

Galime apibendrinti.

Norint išspręsti paprasčiausias trigonometrines lygtis, yra paruoštos atsakymų formulės. Keturi gabaliukai. Jie tinkami norint iš karto užrašyti lygties sprendimą. Pavyzdžiui, jums reikia išspręsti lygtis:


sinx = 0,3

Lengvai: x = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Jokių problemų: x = ± lankai 0,2 + 2π n, n ∈ Z


tgx = 1,2

Lengvai: x = arctan 1,2 + π n, n ∈ Z


ctgx = 3,7

Liko vienas: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Jeigu tu, spindėdamas žiniomis, iškart parašyk atsakymą:

x= ± lankai 1,8 + 2π n, n ∈ Z

tada jau šviečiate, tai... tai... iš balos.) Teisingas atsakymas: sprendimų nėra. Nesuprantu kodėl? Skaityti, Kas yra arckozinas? Be to, jei dešinėje pusėje pradinė lygtis yra verti sinuso, kosinuso, liestinės, kotangento lentelės vertės, - 1; 0; √3; 1/2; √3/2 ir tt - atsakymas per arkas bus nebaigtas. Arkos turi būti paverstos radianais.

Ir jei susidursite su nelygybe, pvz

tada atsakymas yra:

x πn, n ∈ Z

yra reta nesąmonė, taip...) Čia reikia trigonometrinis ratas nuspręsti. Ką mes darysime atitinkamoje temoje.

Tiems, kurie herojiškai skaito šias eilutes. Aš tiesiog negaliu neįvertinti jūsų titaniškų pastangų. Premija jums.)

Premija:

Rašydami formules nerimą keliančioje kovos situacijoje, net patyrę vėplai dažnai susipainioja, kur πn, ir kur 2π n. Štai jums paprastas triukas. Į visi formulės vertos πn. Išskyrus vienintelę formulę su lanko kosinusu. Tai ten stovi 2πn. Du peen. raktinis žodis - du. Toje pačioje formulėje yra du pradžioje. Pliusas ir minusas. Ir ten, ir ten - du.

Taigi, jei parašėte duženklą prieš lanko kosinusą, lengviau atsiminti, kas atsitiks pabaigoje du peen. Ir tai atsitinka ir atvirkščiai. Žmogus praleis ženklą ± , pasiekia pabaigą, rašo taisyklingai du Pienas, ir jis susipras. Kažkas laukia du pasirašyti! Žmogus grįš į pradžią ir ištaisys klaidą! Taip.)

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.

Pamoka ir pristatymas tema: „Paprastų trigonometrinių lygčių sprendimas“

Papildomos medžiagos
Mieli vartotojai, nepamirškite palikti savo komentarų, atsiliepimų, pageidavimų! Visa medžiaga buvo patikrinta antivirusine programa.

Vadovai ir treniruokliai „Integral“ internetinėje parduotuvėje 10 klasei nuo 1C
Geometrijos uždavinių sprendimas. Interaktyvios užduotys kuriant erdvėje
Programinės įrangos aplinka "1C: Mathematical Constructor 6.1"

Ką mes studijuosime:
1. Kas yra trigonometrinės lygtys?

3. Du pagrindiniai trigonometrinių lygčių sprendimo būdai.
4. Homogeninės trigonometrinės lygtys.
5. Pavyzdžiai.

Kas yra trigonometrinės lygtys?

Vaikinai, mes jau ištyrėme arcsinusą, arkosinusą, arctangentą ir arkotangentą. Dabar pažvelkime į trigonometrines lygtis apskritai.

Trigonometrinės lygtys– lygtis, kurioje kintamasis yra po trigonometrinės funkcijos ženklu.

Pakartokime paprasčiausių trigonometrinių lygčių sprendimo formą:

1)Jei |a|≤ 1, tai lygtis cos(x) = a turi sprendimą:

X= ± arccos(a) + 2πk

2) Jei |a|≤ 1, tai nuodėmės lygtis(x) = a turi sprendimą:

3) Jei |a| > 1, tada lygtis sin(x) = a ir cos(x) = a neturi sprendinių 4) Lygtis tg(x)=a turi sprendimą: x=arctg(a)+ πk

5) Lygtis ctg(x)=a turi sprendimą: x=arcctg(a)+ πk

Visoms formulėms k yra sveikas skaičius

Paprasčiausios trigonometrinės lygtys turi tokią formą: T(kx+m)=a, T yra kokia nors trigonometrinė funkcija.

Pavyzdys.

Išspręskite lygtis: a) sin(3x)= √3/2

Sprendimas:

A) Pažymime 3x=t, tada perrašysime savo lygtį į formą:

Šios lygties sprendimas bus toks: t=((-1)^n)arcsin(√3 /2)+ πn.

Iš verčių lentelės gauname: t=((-1)^n)×π/3+ πn.

Grįžkime prie mūsų kintamojo: 3x =((-1)^n)×π/3+ πn,

Tada x= ((-1)^n)×π/9+ πn/3

Atsakymas: x= ((-1)^n)×π/9+ πn/3, kur n yra sveikas skaičius. (-1)^n – atėmus vieną iki n laipsnio.

Daugiau trigonometrinių lygčių pavyzdžių.

Išspręskite lygtis: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Sprendimas:

A) Šį kartą pereikime tiesiai prie lygties šaknų skaičiavimo:

X/5= ± arccos(1) + 2πk. Tada x/5= πk => x=5πk

Atsakymas: x=5πk, kur k yra sveikas skaičius.

B) Rašome tokia forma: 3x- π/3=arctg(√3)+ πk. Žinome, kad: arctan(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Atsakymas: x=2π/9 + πk/3, kur k yra sveikas skaičius.

Išspręskite lygtis: cos(4x)= √2/2. Ir raskite visas šaknis segmente.

Sprendimas:

Mes nuspręsime bendras vaizdas mūsų lygtis: 4x= ± arccos(√2/2) + 2πk

4x = ± π/4 + 2πk;

X= ± π/16+ πk/2;

Dabar pažiūrėkime, kokios šaknys patenka į mūsų segmentą. Ties k Kai k=0, x= π/16, esame duotame atkarpoje.
Kai k=1, x= π/16+ π/2=9π/16, pataikome dar kartą.
Jei k=2, x= π/16+ π=17π/16, bet čia nepataikėme, vadinasi, esant dideliam k, taip pat akivaizdžiai nepataikėme.

Atsakymas: x= π/16, x= 9π/16

Du pagrindiniai sprendimo būdai.

Mes pažvelgėme į paprasčiausias trigonometrines lygtis, tačiau yra ir sudėtingesnių. Jiems išspręsti naudojamas naujo kintamojo įvedimo ir faktorizavimo metodas. Pažiūrėkime į pavyzdžius.

Išspręskime lygtį:

Sprendimas:
Norėdami išspręsti mūsų lygtį, naudosime naujo kintamojo įvedimo metodą, žymėdami: t=tg(x).

Dėl pakeitimo gauname: t 2 + 2t -1 = 0

Raskime šaknis kvadratinė lygtis: t=-1 ir t=1/3

Tada tg(x)=-1 ir tg(x)=1/3, gauname paprasčiausią trigonometrinę lygtį, suraskime jos šaknis.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Atsakymas: x= -π/4+πk; x=arctg(1/3) + πk.

Lygties sprendimo pavyzdys

Išspręskite lygtis: 2sin 2 (x) + 3 cos (x) = 0

Sprendimas:

Naudokime tapatybę: sin 2 (x) + cos 2 (x)=1

Mūsų lygtis bus tokia: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos (x) -2 = 0

Įveskime pakeitimą t=cos(x): 2t 2 -3t - 2 = 0

Mūsų kvadratinės lygties sprendimas yra šaknys: t=2 ir t=-1/2

Tada cos(x)=2 ir cos(x)=-1/2.

Nes kosinusas negali būti didesnis už vieną, tada cos(x)=2 neturi šaknų.

Jei cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Atsakymas: x= ±2π/3 + 2πk

Homogeninės trigonometrinės lygtys.

Apibrėžimas: a sin(x)+b cos(x) formos lygtys vadinamos pirmojo laipsnio vienarūšėmis trigonometrinėmis lygtimis.

Formos lygtys

antrojo laipsnio vienarūšės trigonometrinės lygtys.

Norėdami išspręsti homogeninę pirmojo laipsnio trigonometrinę lygtį, padalinkite ją iš cos (x): Negalite dalyti iš kosinuso, jei taip lygus nuliui, įsitikinkime, kad taip nėra:
Tegu cos(x)=0, tada asin(x)+0=0 => sin(x)=0, bet sinusas ir kosinusas nelygu nuliui tuo pačiu metu gauname prieštaravimą, todėl galime drąsiai dalyti nuliu.

Išspręskite lygtį:
Pavyzdys: cos 2 (x) + sin (x) cos (x) = 0

Sprendimas:

Išimsime bendras daugiklis: cos(x)(c0s(x) + sin (x)) = 0

Tada turime išspręsti dvi lygtis:

Cos(x)=0 ir cos(x)+sin(x)=0

Cos(x)=0, kai x= π/2 + πk;

Apsvarstykite lygtį cos(x)+sin(x)=0 Padalinkite mūsų lygtį iš cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Atsakymas: x= π/2 + πk ir x= -π/4+πk

Kaip išspręsti vienarūšes antrojo laipsnio trigonometrines lygtis?
Vaikinai, visada laikykitės šių taisyklių!

1. Pažiūrėkite, kam lygus koeficientas a, jei a=0, mūsų lygtis bus formos cos(x)(bsin(x)+ccos(x)), kurios sprendimo pavyzdys yra ankstesnėje skaidrėje

2. Jei a≠0, tuomet reikia padalyti abi lygties puses iš kosinuso kvadrato, gauname:


Keičiame kintamąjį t=tg(x) ir gauname lygtį:

Išspręskite pavyzdį Nr.:3

Išspręskite lygtį:
Sprendimas:

Abi lygties puses padalinkime iš kosinuso kvadrato:

Keičiame kintamąjį t=tg(x): t 2 + 2 t - 3 = 0

Raskime kvadratinės lygties šaknis: t=-3 ir t=1

Tada: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Atsakymas: x=-arctg(3) + πk ir x= π/4+ πk

Išspręskite pavyzdį Nr.:4

Išspręskite lygtį:

Sprendimas:
Pakeiskime savo išraišką:


Galime išspręsti tokias lygtis: x= - π/4 + 2πk ir x=5π/4 + 2πk

Atsakymas: x= - π/4 + 2πk ir x=5π/4 + 2πk

Išspręskite pavyzdį Nr.:5

Išspręskite lygtį:

Sprendimas:
Pakeiskime savo išraišką:


Įveskime pakaitalą tg(2x)=t:2 2 - 5t + 2 = 0

Mūsų kvadratinės lygties sprendimas bus šaknys: t=-2 ir t=1/2

Tada gauname: tg(2x)=-2 ir tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Atsakymas: x=-arctg(2)/2 + πk/2 ir x=arctg(1/2)/2+ πk/2

Savarankiško sprendimo problemos.

1) Išspręskite lygtį

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 d) ctg(0,5x) = -1,7

2) Išspręskite lygtis: sin(3x)= √3/2. Ir suraskite visas šaknis atkarpoje [π/2; π].

3) Išspręskite lygtį: 2 lovelė (x) + 2 lovytė (x) + 1 =0

4) Išspręskite lygtį: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Išspręskite lygtį: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Išspręskite lygtį: cos 2 (2x) -1 - cos (x) =√3/2 -sin 2 (2x)



Ar jums patiko straipsnis? Pasidalinkite su draugais!