Trigonometrik denklemlerin oluşturulması. Trigonometrik denklemler - formüller, çözümler, örnekler

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Sitede bir talep gönderdiğinizde toplayabiliriz çeşitli bilgiler adınız, telefon numaranız ve adresiniz dahil e-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Tarafımızca toplandı kişisel bilgiler sizinle iletişim kurmamıza ve benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler hakkında sizi bilgilendirmemize olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri ayrıca denetim, veri analizi ve çeşitli çalışmalar sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak için.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - kanuna, adli prosedüre, hukuki işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

Trigonometrik denklemler. Matematik sınavının ilk bölümünde denklem çözme ile ilgili bir görev bulunmaktadır. basit denklemler Dakikalar içerisinde çözülen bu sorunun birçok türü ağız yoluyla çözülebilmektedir. İçerir: doğrusal, ikinci dereceden, rasyonel, irrasyonel, üstel, logaritmik ve trigonometrik denklemler.

Bu yazıda trigonometrik denklemlere bakacağız. Çözümleri hem hesaplama hacmi hem de karmaşıklık açısından bu bölümdeki diğer problemlerden farklıdır. Paniğe kapılmayın, "zorluk" kelimesi diğer görevlere kıyasla göreceli zorluklarını ifade eder.

Denklemin köklerini bulmanın yanı sıra, en büyük negatifi veya en küçük olanı belirlemek de gereklidir. pozitif kök. Sınavda trigonometrik bir denklem elde etme olasılığınız elbette düşüktür.

Birleşik Devlet Sınavının bu bölümünde bunların% 7'sinden azı var. Ancak bu onların göz ardı edilmesi gerektiği anlamına gelmez. Bölüm C'de ayrıca bir trigonometrik denklemi çözmeniz gerekir, bu nedenle çözüm tekniğini ve teoriyi iyi anlamak kesinlikle gereklidir.

Matematiğin trigonometri bölümünü anlamak, birçok problemi çözmedeki başarınızı büyük ölçüde belirleyecektir. Cevabın bir tam sayı veya sonlu bir sayı olduğunu hatırlatırım ondalık. Denklemin köklerini aldıktan sonra kontrol ettiğinizden emin olun. Fazla zaman almayacak ve sizi hata yapmaktan kurtaracaktır.

İleride diğer denklemlere de bakacağız, kaçırmayın! Kök formülleri hatırlayalım trigonometrik denklemler, bunları bilmeniz gerekir:



Bu değerlerin bilgisi gereklidir; bu, birçok görevle baş etmenin imkansız olacağı “ABC” dir. Harika, eğer hafızanız iyiyse bu değerleri kolaylıkla öğrenmiş ve hatırlamışsınızdır. Bunu yapamıyorsanız ne yapmalısınız, kafanızda bir karmaşa var ama sınava girerken kafanız karıştı. Hesaplamalarınızda yanlış değeri yazdığınız için puan kaybetmek yazık olur.

Bu değerler basittir, bültene abone olduktan sonra aldığınız ikinci mektupta aldığınız teoride de verilmiştir. Henüz abone olmadıysanız mutlaka yapın! Gelecekte bu değerlerin nasıl belirlenebileceğini de ele alacağız. trigonometrik daire. Ona "Trigonometrinin Altın Kalbi" denmesi boşuna değil.

Karışıklığı önlemek için hemen açıklayayım, aşağıda ele alınan denklemlerde açı kullanılarak ark sinüs, ark kosinüs, ark tanjant tanımları verilmiştir. X karşılık gelen denklemler için: cosx=a, sinx=a, tgx=a, burada X bir ifade de olabilir. Aşağıdaki örneklerde argümanımız tam olarak bir ifadeyle belirtilmiştir.

Öyleyse aşağıdaki görevleri ele alalım:

Denklemin kökünü bulun:

Cevabınızdaki en büyük negatif kökü yazın.

Cos x = a denkleminin çözümü iki köktür:


Tanım: Modüldeki a sayısı bir'i aşmasın. Bir sayının ark kosinüsü, kosinüsü a'ya eşit olan 0 ila Pi aralığında yer alan x açısıdır.

Araç

Hadi ifade edelim X:


En büyük negatif kökü bulalım. Bu nasıl yapılır? Hadi değiştirelim farklı anlamlar Ortaya çıkan köklere n ekleyin, en büyük negatif olanı hesaplayın ve seçin.

Hesaplıyoruz:

n = – 2 x 1 = 3 (– 2) – 4,5 = – 10,5 x 2 = 3 (– 2) – 5,5 = – 11,5

n = – 1 x 1 = 3 (– 1) – 4,5 = – 7,5 x 2 = 3 (– 1) – 5,5 = – 8,5

n = 0 x 1 = 3∙0 – 4,5 = – 4,5 x 2 = 3∙0 – 5,5 = – 5,5 ile

n = 1 x 1 = 3∙1 – 4,5 = – 1,5 x 2 = 3∙1 – 5,5 = – 2,5 ile

n = 2 x 1 = 3∙2 – 4,5 = 1,5 x 2 = 3∙2 – 5,5 = 0,5 ile

En büyük negatif kökün –1,5 olduğunu bulduk

Cevap: –1.5

Kendiniz karar verin:


Denklemi çözün:

Sin x = a denkleminin çözümü iki köktür:

Ya (yukarıdakilerin her ikisini de birleştirir):


Tanım: Modüldeki a sayısı bir'i aşmasın. Bir sayının ark sinüsü -90° ila 90° aralığında yer alan ve sinüsü a'ya eşit olan bir x açısıdır.

Araç

x'i ifade edin (denklemin her iki tarafını 4 ile çarpın ve Pi'ye bölün):

En küçük pozitif kökü bulalım. Burada ikame sırasında hemen anlaşılıyor negatif değerler n alacağız negatif kökler. Bu nedenle n = 0,1,2'yi yerine koyacağız...

n = 0 olduğunda x = (– 1) 0 + 4∙0 + 3 = 4

n = 1 olduğunda x = (– 1) 1 + 4∙1 + 3 = 6

n = 2 x = (– 1) 2 + 4∙2 + 3 = 12 olduğunda

n = –1 x = (–1) –1 + 4∙(–1) + 3 = –2 ile kontrol edelim.

Yani en küçük pozitif kök 4'tür.

Cevap: 4

Kendiniz karar verin:


Denklemi çözün:

Cevabınızdaki en küçük pozitif kökü yazın.

Sipariş verebilirsiniz detaylı çözüm senin görevin!!!

İşaretin altında bilinmeyeni içeren eşitlik trigonometrik fonksiyon("sin x, cos x, tan x" veya "ctg x") trigonometrik denklem olarak adlandırılır ve bunların formüllerini daha fazla ele alacağız.

En basit denklemlere "sin x=a, cos x=a, tg x=a, ctg x=a" adı verilir; burada "x" bulunacak açı, "a" ise herhangi bir sayıdır. Her birinin kök formüllerini yazalım.

1. Denklem 'sin x=a'.

`|a|>1` için çözümü yoktur.

Ne zaman `|a| \leq 1` var sonsuz sayı kararlar.

Kök formülü: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Denklem 'çünkü x=a'

`|a|>1` için - sinüs durumunda olduğu gibi, aralarındaki çözümler gerçek sayılar sahip değil.

Ne zaman `|a| \leq 1` var sonsuz küme kararlar.

Kök formülü: `x=\pm arccos a + 2\pi n, n \in Z`

Grafiklerde sinüs ve kosinüs için özel durumlar.

3. Denklem 'tg x=a'

'a'nın herhangi bir değeri için sonsuz sayıda çözüme sahiptir.

Kök formülü: `x=arctg a + \pi n, n \in Z'

4. Denklem 'ctg x=a'

Ayrıca 'a'nın herhangi bir değeri için sonsuz sayıda çözüm vardır.

Kök formülü: `x=arcctg a + \pi n, n \in Z`

Tablodaki trigonometrik denklemlerin kökleri için formüller

Sinüs için:
Kosinüs için:
Teğet ve kotanjant için:
Ters trigonometrik fonksiyonlar içeren denklemleri çözmek için formüller:

Trigonometrik denklemleri çözme yöntemleri

Herhangi bir trigonometrik denklemin çözümü iki aşamadan oluşur:

  • en basitine dönüştürmenin yardımıyla;
  • Yukarıda yazılan kök formülleri ve tabloları kullanarak elde edilen en basit denklemi çözer.

Örnekler kullanarak ana çözüm yöntemlerine bakalım.

Cebirsel yöntem.

Bu yöntem, bir değişkeni değiştirmeyi ve onu bir eşitlikle değiştirmeyi içerir.

Örnek. Denklemi çözün: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

değiştirmeyi yapın: `cos(x+\frac \pi 6)=y`, ardından `2y^2-3y+1=0`,

kökleri buluyoruz: `y_1=1, y_2=1/2`, bundan iki durum çıkıyor:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Cevap: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizasyon.

Örnek. Denklemi çözün: 'sin x+cos x=1'.

Çözüm. Eşitliğin tüm terimlerini sola taşıyalım: `sin x+cos x-1=0`. kullanarak sol tarafı dönüştürür ve çarpanlara ayırırız:

'sin x — 2sin^2 x/2=0',

'2sin x/2 cos x/2-2sin^2 x/2=0',

'2sin x/2 (cos x/2-sin x/2)=0',

  1. "sin x/2 =0", "x/2 =\pi n", "x_1=2\pi n".
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , 'x_2=\pi/2+ 2\pi n'.

Cevap: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Homojen bir denkleme indirgeme

Öncelikle bu trigonometrik denklemi iki biçimden birine indirgemeniz gerekir:

`a günah x+b çünkü x=0` ( homojen denklem birinci derece) veya 'a sin^2 x + b sin x cos x +c cos^2 x=0' (ikinci derecenin homojen denklemi).

Daha sonra her iki parçayı da ilk durum için "cos x \ne 0"a, ikinci durum için "cos^2 x \ne 0"a bölün. Bilinen yöntemler kullanılarak çözülmesi gereken "tg x": "a tg x+b=0" ve "a tg^2 x + b tg x +c =0" denklemlerini elde ederiz.

Örnek. Denklemi çözün: "2 sin^2 x+sin x cos x - cos^2 x=1".

Çözüm. Haydi yazalım sağ taraf, '1=sin^2 x+cos^2 x' gibi:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

"sin^2 x+sin x cos x — 2 cos^2 x=0".

Bu ikinci dereceden homojen bir trigonometrik denklemdir, sol ve sağ taraflarını 'cos^2 x \ne 0'a bölersek şunu elde ederiz:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

"tg^2 x+tg x — 2=0". Şimdi "t^2 + t - 2=0" sonucunu veren "tg x=t" yerine geçen ifadeyi tanıtalım. Bu denklemin kökleri "t_1=-2" ve "t_2=1"dir. Daha sonra:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z'
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Cevap. `x_1=arctg (-2)+\pi n`, `Z'de n \', `x_2=\pi/4+\pi n`, `Z'de n \'.

Yarım köşeye git

Örnek. Denklemi çözün: '11 sin x - 2 cos x = 10'.

Çözüm. Formülleri uygulayalım çift ​​açı, sonuçta: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^ 2x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Yukarıdakileri uygulamak cebirsel yöntem, şunu elde ederiz:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Cevap. `x_1=2 arctg 2+2\pi n, n \Z'de`, `x_2=arctg 3/4+2\pi n`, `n \Z'de`.

Yardımcı açının tanıtılması

a,b,c'nin katsayılar ve x'in bir değişken olduğu "a sin x + b cos x =c" trigonometrik denkleminde, her iki tarafı da "sqrt (a^2+b^2)"'ye bölün:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) çünkü x =` `\frac c(sqrt (a^2) ) +b^2))'.

Sol taraftaki katsayılar sinüs ve kosinüs özelliğindedir yani karelerinin toplamı 1'e eşit ve modülleri 1'den büyük değildir. Bunları şu şekilde gösterelim: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, o zaman:

`çünkü \varphi sin x + sin \varphi çünkü x =C`.

Aşağıdaki örneğe daha yakından bakalım:

Örnek. Denklemi çözün: '3 sin x+4 cos x=2'.

Çözüm. Eşitliğin her iki tarafını da "sqrt (3^2+4^2)"ye bölersek şunu elde ederiz:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))'

'3/5 günah x+4/5 çünkü x=2/5'.

`3/5 = cos \varphi`, `4/5=sin \varphi` olsun. `sin \varphi>0`, `cos \varphi>0` olduğundan, o zaman yardımcı açı`\varphi=arcsin 4/5`'i alalım. Daha sonra eşitliğimizi şu şekilde yazıyoruz:

`çünkü \varphi sin x+sin \varphi çünkü x=2/5`

Sinüs açılarının toplamı formülünü uygulayarak eşitliğimizi aşağıdaki biçimde yazıyoruz:

'sin (x+\varphi)=2/5',

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Cevap. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Kesirli rasyonel trigonometrik denklemler

Bunlar pay ve paydaları trigonometrik fonksiyonlar içeren kesirli eşitliklerdir.

Örnek. Denklemi çözün. `\frac (sin x)(1+cos x)=1-cos x`.

Çözüm. Eşitliğin sağ tarafını '(1+cos x)' ile çarpın ve bölün. Sonuç olarak şunu elde ederiz:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Paydanın sıfıra eşit olamayacağını düşünürsek, `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z` elde ederiz.

Kesrin payını sıfıra eşitleyelim: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Daha sonra "sin x=0" veya "1-sin x=0".

  1. `sin x=0`, `x=\pi n`, `Z'de n \`
  2. "1-sin x=0", "sin x=-1", "x=\pi /2+2\pi n, n \in Z".

` x \ne \pi+2\pi n, n \in Z` olduğu göz önüne alındığında, çözümler `x=2\pi n, n \in Z` ve `x=\pi /2+2\pi n` olur , 'n \ Z'de'.

Cevap. `x=2\pi n`, `Z'de n \`, `x=\pi /2+2\pi n`, `Z'de n \`.

Trigonometri ve özellikle trigonometrik denklemler geometri, fizik ve mühendisliğin hemen hemen tüm alanlarında kullanılmaktadır. Eğitim 10. sınıfta başlıyor, Birleşik Devlet Sınavı için her zaman görevler vardır, bu nedenle trigonometrik denklemlerin tüm formüllerini hatırlamaya çalışın - bunlar kesinlikle sizin için yararlı olacaktır!

Ancak bunları ezberlemenize bile gerek yok, asıl önemli olan özü anlamak ve onu çıkarabilmektir. Göründüğü kadar zor değil. Videoyu izleyerek kendiniz görün.

Basit trigonometrik denklemlerin çözümü.

Herhangi bir karmaşıklık düzeyindeki trigonometrik denklemlerin çözülmesi, sonuçta en basit trigonometrik denklemlerin çözülmesine indirgenir. Ve bunda en iyi yardımcı yine trigonometrik bir daire olduğu ortaya çıkıyor.

Kosinüs ve sinüs tanımlarını hatırlayalım.

Bir açının kosinüsü, üzerindeki bir noktanın apsisidir (yani eksen boyunca koordinattır). birim çember, belirli bir açı boyunca dönüşe karşılık gelir.

Bir açının sinüsü, belirli bir açı boyunca bir dönüşe karşılık gelen birim daire üzerindeki bir noktanın ordinatıdır (yani eksen boyunca koordinattır).

Boyunca pozitif hareket yönü trigonometrik daire Saat yönünün tersine hareket dikkate alınır. 0 derecelik (veya 0 radyan) bir dönüş, koordinatları (1;0) olan bir noktaya karşılık gelir

Bu tanımları basit trigonometrik denklemleri çözmek için kullanırız.

1. Denklemi çözün

Bu denklem, koordinatı eşit olan daire üzerindeki noktalara karşılık gelen dönme açısının tüm değerleri tarafından karşılanır.

Ordinat ekseninde ordinatı olan bir noktayı işaretleyelim:


Hadi gerçekleştirelim yatay çizgiçemberle kesişene kadar x eksenine paraleldir. Çember üzerinde uzanan ve ordinatı olan iki nokta elde ediyoruz. Bu noktalar dönme açılarına ve radyanlara karşılık gelir:


Radyanlarla dönme açısına karşılık gelen noktayı bırakarak etrafta dolaşırsak tam daire sonra radyan başına dönüş açısına karşılık gelen ve aynı koordinata sahip bir noktaya ulaşacağız. Yani bu dönme açısı da denklemimizi sağlıyor. Aynı noktaya dönerek istediğimiz kadar "boşta" dönüş yapabiliriz ve tüm bu açı değerleri denklemimizi karşılayacaktır. “Boşta” devirlerin sayısı (veya) harfiyle belirtilecektir. Bu devrimleri hem olumlu hem de manevi anlamda yapabildiğimiz için negatif yön, (veya ) herhangi bir tamsayı değerini alabilir.

Yani ilk çözüm serisi orijinal denklemşu forma sahiptir:

, , - tam sayılar kümesi (1)

Benzer şekilde ikinci çözüm serisi de şu şekildedir:

, Nerede , . (2)

Tahmin edebileceğiniz gibi, bu çözüm serisi dairenin üzerindeki dönme açısına karşılık gelen noktaya dayanmaktadır.

Bu iki çözüm serisi tek bir girişte birleştirilebilir:

Bu girişi (yani eşit) alırsak, ilk çözüm serisini elde ederiz.

Bu girdiyi (yani tek) alırsak, ikinci çözüm serisini elde ederiz.

2. Şimdi denklemi çözelim

Bu, birim çember üzerindeki bir noktanın bir açıyla döndürülerek elde edilen apsisi olduğundan, eksen üzerinde apsis bulunan noktayı işaretleriz:


Hadi gerçekleştirelim dikey çizgi daireyle kesişene kadar eksene paraleldir. Çemberin üzerinde uzanan ve apsisi olan iki nokta elde edeceğiz. Bu noktalar dönme açılarına ve radyanlara karşılık gelir. Saat yönünde hareket ettiğimizde şunu elde ettiğimizi hatırlayın: negatif açı rotasyon:


İki dizi çözümü yazalım:

,

,

(Ana tam daireden yani yani daireden giderek istenilen noktaya ulaşıyoruz.

Bu iki seriyi tek bir girdide birleştirelim:

3. Denklemi çözün

Teğet doğru birim çemberin OY eksenine paralel (1,0) koordinatlı noktadan geçer

Üzerinde ordinatı 1'e eşit olan bir nokta işaretleyelim (açıları 1'e eşit olan teğetini arıyoruz):


Bu noktayı bir doğru ile koordinatların orijinine bağlayalım ve doğrunun birim çember ile kesişme noktalarını işaretleyelim. Düz çizgi ile dairenin kesişme noktaları ve üzerindeki dönme açılarına karşılık gelir:


Denklemimizi sağlayan dönme açılarına karşılık gelen noktalar birbirinden radyan uzaklıkta olduğundan çözümü şu şekilde yazabiliriz:

4. Denklemi çözün

Kotanjant çizgisi birim çemberin koordinatları eksene paralel olan noktadan geçer.

Kotanjantlar doğrusu üzerinde apsis -1 olan bir noktayı işaretleyelim:


Bu noktayı doğrunun başlangıç ​​noktasına bağlayalım ve çemberle kesişene kadar devam edelim. Bu düz çizgi, daireyi dönme açılarına ve radyanlara karşılık gelen noktalarda kesecektir:


Bu noktalar birbirinden eşit mesafe ile ayrıldığından, o zaman genel çözüm Bu denklemi şu şekilde yazabiliriz:

En basit trigonometrik denklemlerin çözümünü gösteren verilen örneklerde, trigonometrik fonksiyonların tablo değerleri kullanılmıştır.

Ancak denklemin sağ tarafında hiçbir şey yoksa tablo değeri sonra değeri denklemin genel çözümüne koyarız:





ÖZEL ÇÖZÜMLER:

Ordinatı 0 olan çember üzerinde noktaları işaretleyelim:


Ordinatı 1'e eşit olan çember üzerinde tek bir nokta işaretleyelim:


Çember üzerinde koordinatı -1 olan tek bir noktayı işaretleyelim:


Sıfıra en yakın değerleri belirtmek alışılmış olduğundan çözümü şu şekilde yazıyoruz:

Apsisi 0’a eşit olan çember üzerinde noktaları işaretleyelim:


5.
Apsisi 1’e eşit olan çember üzerinde tek bir noktayı işaretleyelim:


Apsisi -1'e eşit olan çember üzerinde tek bir nokta işaretleyelim:


Ve biraz daha karmaşık örnekler:

1.

Sinüs bire eşit eğer argüman eşitse

Sinüsümüzün argümanı eşittir, dolayısıyla şunu elde ederiz:

Eşitliğin her iki tarafını da 3'e bölelim:

Cevap:

2.

Kosinüs sıfıra eşit kosinüs argümanı eşitse

Kosinüsümüzün argümanı eşittir ve şunu elde ederiz:

İfade edelim, bunun için önce ters işaretle sağa doğru hareket edelim:

Sağ tarafı sadeleştirelim:

Her iki tarafı da -2'ye bölün:

K herhangi bir tamsayı değeri alabildiğinden, terimin önündeki işaretin değişmediğine dikkat edin.

Cevap:

Ve son olarak “Trigonometrik daire kullanarak trigonometrik bir denklemde köklerin seçilmesi” video dersini izleyin.

Böylece basit trigonometrik denklemlerin çözümü hakkındaki konuşmamız sona eriyor. Bir dahaki sefere nasıl karar vereceğimizi konuşacağız.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!