Diskriminant 0 olduğunda. Diskriminant: denklem çözme örnekleri

Örneğin, üç terimli \(3x^2+2x-7\) için diskriminant \(2^2-4\cdot3\cdot(-7)=4+84=88\) değerine eşit olacaktır. Ve üç terimli \(x^2-5x+11\) için, \((-5)^2-4\cdot1\cdot11=25-44=-19\)'a eşit olacaktır.

Diskriminant \(D\) ile gösterilir ve genellikle çözmede kullanılır. Ayrıca diskriminantın değerine göre grafiğin yaklaşık olarak nasıl göründüğünü anlayabilirsiniz (aşağıya bakın).

Diskriminant ve denklemin kökleri

Diskriminant değeri ikinci dereceden denklemlerin sayısını gösterir:
- eğer \(D\) pozitifse denklemin iki kökü olacaktır;
- eğer \(D\) sıfıra eşitse – yalnızca bir kök vardır;
- eğer \(D\) negatifse, kök yoktur.

Bunun öğretilmesine gerek yok, sadece diskriminanttan (yani \(\sqrt(D)\) denklemin köklerini hesaplama formülüne dahil edildiğini bilerek böyle bir sonuca varmak zor değil) : \(x_(1)=\)\(\ frac(-b+\sqrt(D))(2a)\) ve \(x_(2)=\)\(\frac(-b-\sqrt(D) ))(2a)\) Her duruma daha detaylı bakalım.

Diskriminant pozitif ise

Bu durumda, bunun kökü bazı pozitif sayı Bu, \(x_(1)\) ve \(x_(2)\)'nin farklı anlamlara sahip olacağı anlamına gelir, çünkü ilk formülde \(\sqrt(D)\) eklenir ve ikincisinde çıkarılır. Ve iki farklı kökümüz var.

Örnek : \(x^2+2x-3=0\) denkleminin köklerini bulun
Çözüm :

Cevap : \(x_(1)=1\); \(x_(2)=-3\)

Diskriminant sıfır ise

Diskriminant ise kaç kök olacaktır? sıfıra eşit? Hadi akıl yürütelim.

Kök formüller şuna benzer: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) ve \(x_(2)=\)\(\frac(-) b- \sqrt(D))(2a)\) . Ve eğer diskriminant sıfırsa kökü de sıfırdır. Sonra ortaya çıkıyor:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

Yani denklemin köklerinin değerleri aynı olacaktır çünkü sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez.

Örnek : \(x^2-4x+4=0\) denkleminin köklerini bulun
Çözüm :

\(x^2-4x+4=0\)

Katsayıları yazıyoruz:

\(a=1;\) \(b=-4;\) \(c=4;\)

Diskriminantı \(D=b^2-4ac\) formülünü kullanarak hesaplıyoruz

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Denklemin köklerini bulma

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


İki tane var özdeş kökler, dolayısıyla bunları ayrı ayrı yazmanın bir anlamı yok - bunları tek olarak yazıyoruz.

Cevap : \(x=2\)

İkinci dereceden denklemler. Ayrımcı. Çözüm, örnekler.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

İkinci dereceden denklem türleri

İkinci dereceden denklem nedir? Nasıl görünüyor? Dönem içi ikinci dereceden denklem anahtar kelime "kare". Bu şu anlama gelir: denklemde mutlaka bir x kare olmalı. Buna ek olarak, denklem yalnızca X'i (birinci kuvvete göre) ve yalnızca bir sayıyı içerebilir (ya da içermeyebilir!) (Ücretsiz Üye). Ve iki derecesine kadar X olmamalıdır.

Konuşuyorum matematik dili ikinci dereceden bir denklem şu şekilde bir denklemdir:

Burada a, b ve c- bazı sayılar. b ve c- kesinlikle herhangi biri, ancak A– sıfırdan başka herhangi bir şey. Örneğin:

Burada A =1; B = 3; C = -4

Burada A =2; B = -0,5; C = 2,2

Burada A =-3; B = 6; C = -18

Peki, anlıyorsun...

Soldaki bu ikinci dereceden denklemlerde tam set üyeler. Katsayılı X'in karesi A, x üzeri katsayılı birinci kuvvet B Ve ücretsiz üye

Bu tür ikinci dereceden denklemlere denir tam dolu.

Ve eğer B= 0, ne elde ederiz? Sahibiz X'in birinci kuvveti kaybolacak. Bu, sıfırla çarpıldığında meydana gelir.) Örneğin şu şekilde ortaya çıkıyor:

5x2 -25 = 0,

2x2 -6x=0,

-x 2 +4x=0

Ve benzeri. Ve eğer her iki katsayı da B Ve C sıfıra eşitse, o zaman daha da basittir:

2x2 =0,

-0,3x2 =0

Bir şeyin eksik olduğu bu tür denklemlere denir tamamlanmamış ikinci dereceden denklemler. Bu oldukça mantıklı.) Lütfen x karenin tüm denklemlerde mevcut olduğunu unutmayın.

Bu arada neden A sıfıra eşit olamaz mı? Ve onun yerine sen geçiyorsun A sıfır.) X karemiz kaybolacak! Denklem doğrusal hale gelecektir. Ve çözüm tamamen farklı...

Tüm ana türler bunlar ikinci dereceden denklemler. Tam ve eksik.

İkinci dereceden denklemlerin çözümü.

Tam ikinci dereceden denklemlerin çözümü.

İkinci dereceden denklemlerin çözülmesi kolaydır. Formüllere göre ve açık Basit kurallar. İlk aşamada gerekli verilen denklem yol açmak standart görünüm, yani forma:

Eğer denklem size zaten bu formda verilmişse, ilk aşamayı yapmanıza gerek yoktur.) Önemli olan tüm katsayıları doğru belirlemek, A, B Ve C.

İkinci dereceden bir denklemin köklerini bulma formülü şuna benzer:

Kök işaretinin altındaki ifadeye denir ayrımcı. Ama onun hakkında daha fazla bilgiyi aşağıda bulabilirsiniz. Gördüğünüz gibi X'i bulmak için şunu kullanıyoruz: sadece a, b ve c. Onlar. ikinci dereceden bir denklemin katsayıları. Değerleri dikkatlice değiştirin a, b ve c Bu formüle göre hesaplıyoruz. Hadi değiştirelim kendi işaretlerinle! Örneğin denklemde:

A =1; B = 3; C= -4. İşte bunu yazıyoruz:

Örnek neredeyse çözüldü:

Cevap bu.

Her şey çok basit. Peki hata yapmanın imkansız olduğunu mu düşünüyorsun? Evet, nasıl...

En yaygın hatalar işaret değerleriyle karışıklıktır a, b ve c. Daha doğrusu, işaretleriyle değil (nerede karıştırılmalı?), ama ikame ile negatif değerler kökleri hesaplamak için formüle girin. Buraya kaydeder ayrıntılı giriş Belirli sayılara sahip formüller. Hesaplamalarda sorun varsa, yap bunu!

Aşağıdaki örneği çözmemiz gerektiğini varsayalım:

Burada A = -6; B = -5; C = -1

Diyelim ki ilk seferde nadiren yanıt alabildiğinizi biliyorsunuz.

Tembel olmayın. Fazladan bir satır ve hata sayısı yazmak yaklaşık 30 saniye sürecektir. keskin bir şekilde azalacak. Bu yüzden tüm parantez ve işaretlerle birlikte ayrıntılı olarak yazıyoruz:

Bu kadar dikkatli yazmak inanılmaz derecede zor görünüyor. Ama sadece öyle görünüyor. Bir şans ver. Peki ya da seç. Hangisi daha iyi, hızlı mı yoksa doğru mu? Üstelik seni mutlu edeceğim. Bir süre sonra her şeyi bu kadar dikkatli yazmaya gerek kalmayacak. Kendi kendine ortaya çıkacak. Özellikle aşağıda açıklanan pratik teknikleri kullanıyorsanız. Pek çok eksiği olan bu kötü örnek, kolayca ve hatasız çözülebilir!

Ancak ikinci dereceden denklemler sıklıkla biraz farklı görünür. Örneğin şöyle:

Tanıdın mı?) Evet! Bu tamamlanmamış ikinci dereceden denklemler.

Tamamlanmamış ikinci dereceden denklemlerin çözümü.

Genel bir formül kullanılarak da çözülebilirler. Sadece burada neye eşit olduklarını doğru anlamanız gerekiyor. a, b ve c.

Anladın mı? İlk örnekte bir = 1; b = -4; A C? Hiç orada değil! Evet, doğru. Matematikte bu şu anlama gelir: c = 0 ! Bu kadar. Bunun yerine formüle sıfır yazın C, ve başaracağız. İkinci örnekle aynı. Yalnız burada sıfır yok İle, A B !

Ancak tamamlanmamış ikinci dereceden denklemler çok daha basit bir şekilde çözülebilir. Herhangi bir formül olmadan. İlkini ele alalım tamamlanmamış denklem. Sol tarafta ne yapabilirsiniz? X'i parantezlerden çıkarabilirsiniz! Hadi çıkaralım.

Peki bundan ne haber? Ve çarpımın sıfıra eşit olması ancak ve ancak faktörlerden herhangi birinin sıfıra eşit olması durumunda! Bana inanmıyor musun? Tamam, o zaman çarpıldığında sıfır verecek iki sıfır olmayan sayı bulun!
Çalışmıyor? Bu kadar...
Bu nedenle güvenle yazabiliriz: x 1 = 0, x 2 = 4.

Tüm. Bunlar denklemimizin kökleri olacak. Her ikisi de uygundur. Bunlardan herhangi birini yerine koyarken orijinal denklem 0 = 0 doğru kimliğini elde ederiz. Gördüğünüz gibi çözüm genel formülü kullanmaktan çok daha basittir. Bu arada, hangi X'in birinci, hangisinin ikinci olacağını - kesinlikle kayıtsız olduğunu not edeyim. Sırayla yazmakta fayda var x 1- daha küçük olan ve x 2- hangisi daha büyükse.

İkinci denklem de basit bir şekilde çözülebilir. 9'u şuraya taşı: Sağ Taraf. Şunu elde ederiz:

Geriye kalan tek şey 9'dan kökü çıkarmak, hepsi bu. Ortaya çıkacak:

Ayrıca iki kök . x1 = -3, x 2 = 3.

Tüm tamamlanmamış ikinci dereceden denklemler bu şekilde çözülür. Ya X'i parantezlerin dışına yerleştirerek ya da basitçe sayıyı sağa taşıyıp ardından kökü çıkartarak.
Bu teknikleri karıştırmak son derece zordur. Basitçe, çünkü ilk durumda X'in kökünü çıkarmanız gerekecek ki bu bir şekilde anlaşılmaz ve ikinci durumda parantez içinde çıkarılacak hiçbir şey yok...

Ayrımcı. Ayırıcı formül.

sihirli kelime ayrımcı ! Nadiren bir lise öğrencisi bu kelimeyi duymamıştır! “Ayrımcı aracılığıyla çözüyoruz” ifadesi güven ve güvence veriyor. Çünkü ayrımcıdan hile beklemeye gerek yok! Kullanımı basit ve sorunsuzdur.) En çok hatırlatırım Genel formülçözümler için herhangiİkinci dereceden denklemler:

Kök işaretinin altındaki ifadeye diskriminant denir. Tipik olarak ayrımcı harfle gösterilir D. Diskriminant formülü:

D = b 2 - 4ac

Peki bu ifadede bu kadar dikkat çekici olan ne? Neden hak etti özel isim? Ne diskriminantın anlamı? Nihayet -B, veya 2a bu formülde ona özel olarak hiçbir şey demiyorlar... Harfler ve harfler.

İşte olay şu. Bu formülü kullanarak ikinci dereceden bir denklemi çözerken mümkündür sadece üç vaka.

1. Diskriminant pozitiftir. Bu, kökün ondan çıkarılabileceği anlamına gelir. Kökün iyi mi yoksa kötü mü çıkarıldığı farklı bir sorudur. Önemli olan prensipte neyin çıkarıldığıdır. O halde ikinci dereceden denkleminizin iki kökü vardır. İki farklı çözüm.

2. Diskriminant sıfırdır. O zaman tek bir çözümünüz olacak. Payda sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez. Aslına bakılırsa bu tek bir kök değil, iki özdeş. Ancak basitleştirilmiş bir versiyonda, hakkında konuşmak gelenekseldir. bir çözüm.

3. Diskriminant negatiftir. Negatif bir sayının karekökü alınamaz. İyi tamam. Bu, hiçbir çözümün olmadığı anlamına gelir.

Dürüst olmak gerekirse, ne zaman basit çözümİkinci dereceden denklemlerde diskriminant kavramı özellikle gerekli değildir. Katsayıların değerlerini formülde yerine koyarız ve sayarız. Orada her şey kendi kendine oluyor, iki kök, bir ve yok. Ancak daha fazlasını çözerken zor görevler, bilgisi olmadan diskriminantın anlamı ve formülü yeterli değil. Özellikle parametreli denklemlerde. Bu tür denklemler Devlet Sınavı ve Birleşik Devlet Sınavı için akrobasi niteliğindedir!)

Bu yüzden, ikinci dereceden denklemler nasıl çözülür hatırladığın ayrımcı aracılığıyla. Veya öğrendiniz ki bu da fena değil.) Nasıl doğru bir şekilde belirleyeceğinizi biliyorsunuz a, b ve c. Nasıl olduğunu biliyor musun? dikkatle bunları kök formülde değiştirin ve dikkatle sonucu sayın. Bunu anladın mı anahtar kelime Burada - dikkatle mi?

Şimdi hata sayısını önemli ölçüde azaltan pratik teknikleri not edin. Dikkatsizlikten kaynaklananların aynısı... Daha sonra acı verici ve rencide edici hale gelenler...

İlk randevu . İkinci dereceden bir denklemi çözmeden ve onu standart forma getirmeden önce tembel olmayın. Bu ne anlama gelir?
Diyelim ki tüm dönüşümlerden sonra aşağıdaki denklemi elde ettiniz:

Kök formülünü yazmak için acele etmeyin! Neredeyse kesinlikle oranları karıştıracaksınız a, b ve c.Örneği doğru şekilde oluşturun. Önce X'in karesi, sonra karesiz, sonra da serbest terim. Bunun gibi:

Ve yine acele etmeyin! X karesinin önündeki eksi sizi gerçekten üzebilir. Unutmak kolaydır... Eksilerden kurtulun. Nasıl? Evet, önceki konuda öğretildiği gibi! Denklemin tamamını -1 ile çarpmamız gerekiyor. Şunu elde ederiz:

Ancak artık köklerin formülünü güvenle yazabilir, diskriminantı hesaplayabilir ve örneği çözmeyi tamamlayabilirsiniz. Kendin için karar ver.

Artık 2 ve -1 köklerine sahip olmalısınız. Resepsiyon ikinci. Kökleri kontrol edin! Vieta teoremine göre. Korkma, her şeyi açıklayacağım! Kontrol etme son şey denklem. Onlar. kök formülü yazarken kullandığımız formül. Eğer (bu örnekte olduğu gibi) katsayı bir = 1 , kökleri kontrol etmek kolaydır. Bunları çoğaltmak yeterlidir. Sonuç ücretsiz bir üye olmalıdır, yani. bizim durumumuzda -2. Lütfen dikkat, 2 değil, -2! Ücretsiz Üye senin burcunla

. Eğer işe yaramazsa, zaten bir yerlerde hata yapmışsınız demektir. Hatayı arayın. Bİşe yararsa kökleri eklemeniz gerekir. Son ve son kontrol. Katsayı şu şekilde olmalıdır: İle zıt B aşina. Bizim durumumuzda -1+2 = +1. bir katsayı
X'ten önce gelen -1'e eşittir. Yani her şey doğru! Bunun yalnızca x karenin saf olduğu ve katsayılı olduğu örnekler için bu kadar basit olması üzücü bir = 1.

Ama en azından bu tür denklemleri kontrol edin! Gittikçe daha az hata olacak. Üçüncü resepsiyon . Eğer denkleminiz varsa kesirli oranlar , - kesirlerden kurtulun! Denklemi şununla çarpın: ortak payda

, "Denklemler nasıl çözülür? Özdeş dönüşümler" dersinde anlatıldığı gibi. Kesirlerle çalışırken bazı nedenlerden dolayı hatalar ortaya çıkmaya devam ediyor...

Bu arada, kötü örneği bir sürü eksiyle basitleştireceğime söz verdim. Lütfen! İşte burada.

Eksilerle karıştırılmamak için denklemi -1 ile çarpıyoruz. Şunu elde ederiz:

Bu kadar! Çözmek bir zevktir!

O halde konuyu özetleyelim.:

Pratik tavsiye 1. Çözmeden önce ikinci dereceden denklemi standart forma getirip oluşturuyoruz.

Sağ

3. Katsayılar kesirli ise denklemin tamamını karşılık gelen faktörle çarparak kesirleri ortadan kaldırırız.

4. Eğer x kare saf ise katsayısı bire eşitçözüm Vieta teoremi kullanılarak kolayca doğrulanabilir. Yap!

Artık karar verebiliriz.)

Denklemleri çözün:

8x2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Cevaplar (karışıklık içinde):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x2 = -0,5

x - herhangi bir sayı

x1 = -3
x 2 = 3

çözüm yok

x 1 = 0,25
x2 = 0,5

Her şey uyuyor mu? Harika! İkinci dereceden denklemler sana göre değil baş ağrısı. İlk üçü işe yaradı ama geri kalanı işe yaramadı mı? O zaman sorun ikinci dereceden denklemlerde değil. Sorun denklemlerin özdeş dönüşümlerindedir. Linke bir göz atın, işinize yarar.

Pek işe yaramıyor mu? Yoksa hiç mi işe yaramıyor? O zaman Bölüm 555 size yardımcı olacaktır. Tüm bu örnekler burada ayrıntılı olarak açıklanmıştır. Gösterilen anaÇözümdeki hatalar. Tabii ki, aynı zamanda kullanımdan da bahsediyor kimlik dönüşümleri kararda farklı denklemler. Çok yardımcı oluyor!

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

Umarım bu makaleyi okuduktan sonra ikinci dereceden tam bir denklemin köklerini nasıl bulacağınızı öğreneceksiniz.

Diskriminant kullanılarak yalnızca tam ikinci dereceden denklemler çözülür; tamamlanmamış ikinci dereceden denklemleri çözmek için, "Eksik ikinci dereceden denklemleri çözme" makalesinde bulacağınız diğer yöntemler kullanılır.

Hangi ikinci dereceden denklemlere tam denir? Bu ax 2 + b x + c = 0 formundaki denklemler a, b ve c katsayılarının sıfıra eşit olmadığı durumda. Dolayısıyla ikinci dereceden bir denklemi tam olarak çözmek için diskriminant D'yi hesaplamamız gerekir.

D = b 2 – 4ac.

Diskriminantın değerine bağlı olarak cevabı yazacağız.

Diskriminant negatif bir sayı ise (D< 0),то корней нет.

Diskriminant sıfır ise x = (-b)/2a olur. Diskriminant pozitif bir sayı olduğunda (D > 0),

bu durumda x 1 = (-b - √D)/2a ve x 2 = (-b + √D)/2a olur.

Örneğin. Denklemi çözün x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Cevap: 2.

Denklem 2'yi Çöz x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Cevap: Kök yok.

Denklem 2'yi Çöz x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Cevap: – 3.5; 1.

Şimdi Şekil 1'deki diyagramı kullanarak tam ikinci dereceden denklemlerin çözümünü hayal edelim.

Bu formülleri kullanarak herhangi bir tam ikinci dereceden denklemi çözebilirsiniz. Sadece dikkatli olman gerekiyor denklem standart formun bir polinomu olarak yazılmıştır

A x 2 + bx + c, aksi halde hata yapabilirsiniz. Örneğin, x + 3 + 2x 2 = 0 denklemini yazarken yanlışlıkla şuna karar verebilirsiniz:

a = 1, b = 3 ve c = 2. O halde

D = 3 2 – 4 1 2 = 1 ve bu durumda denklemin iki kökü vardır. Ve bu doğru değil. (Yukarıdaki örnek 2'nin çözümüne bakın).

Bu nedenle, eğer denklem standart formun bir polinomu olarak yazılmamışsa, ilk olarak tam ikinci dereceden denklemin standart formun bir polinomu (tek terimli) olarak yazılması gerekir. en yüksek gösterge derece yani A x 2 , daha azıyla bx ve sonra ücretsiz bir üye İle.

İkinci dereceden ikinci dereceden denklemi ve çift katsayılı ikinci dereceden denklemi çözerken, diğer formülleri kullanabilirsiniz. Gelin bu formülleri tanıyalım. Tam ikinci dereceden bir denklemde ikinci terimin çift katsayısı varsa (b = 2k), o zaman denklemi Şekil 2'deki şemada gösterilen formülleri kullanarak çözebilirsiniz.

Tam bir ikinci dereceden denklem, eğer katsayı x 2 bire eşittir ve denklem şu şekli alır x 2 + piksel + q = 0. Böyle bir denklem çözüm için verilebileceği gibi denklemin tüm katsayılarının katsayıya bölünmesiyle de elde edilebilir. A, ayakta x 2 .

Şekil 3, indirgenmiş kareyi çözmek için bir diyagramı göstermektedir
denklemler. Bu makalede tartışılan formüllerin uygulanmasına bir örnek verelim.

Örnek. Denklemi çözün

3x 2 + 6x – 6 = 0.

Bu denklemi Şekil 1'deki diyagramda gösterilen formülleri kullanarak çözelim.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3))))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3))))/6 = –1 + √3

Cevap: –1 – √3; –1 + √3

Bu denklemde x katsayısının olduğunu fark edebilirsiniz. çift ​​sayı yani b = 6 veya b = 2k, dolayısıyla k = 3. O halde denklemi, şekildeki diyagramda verilen formülleri kullanarak çözmeye çalışalım. D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Cevap: –1 – √3; –1 + √3. Bu ikinci dereceden denklemdeki tüm katsayıların 3'e bölünebilir olduğunu fark edip bölme işlemini gerçekleştirerek indirgenmiş ikinci dereceden denklemi elde ederiz x 2 + 2x – 2 = 0 Bu denklemi indirgenmiş ikinci dereceden denklem formüllerini kullanarak çözün
denklemler şekil 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Cevap: –1 – √3; –1 + √3.

Görüldüğü gibi bu denklemi çözerken çeşitli formüller aynı cevabı aldık. Bu nedenle, Şekil 1'deki diyagramda gösterilen formüllere tamamen hakim olduğunuzda, her zaman herhangi bir ikinci dereceden denklemi tam olarak çözebileceksiniz.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

İkinci dereceden denklem - çözülmesi kolay! *Bundan sonra “KU” olarak anılacaktır. Arkadaşlar öyle görünüyor ki matematikte böyle bir denklemi çözmekten daha basit bir şey olamaz. Ama içimden bir ses birçok insanın onunla sorunları olduğunu söyledi. Yandex'in ayda kaç tane isteğe bağlı gösterim verdiğini görmeye karar verdim. İşte ne oldu, bakın:


Bu ne anlama geliyor? Bu, ayda yaklaşık 70.000 kişinin aradığı anlamına geliyor bu bilgi, bu yazın bununla ne ilgisi var ve aralarında neler olacak? okul yılı— iki kat daha fazla talep olacak. Bu şaşırtıcı değil, çünkü okuldan uzun zaman önce mezun olan ve Birleşik Devlet Sınavına hazırlanan kız ve erkekler bu bilgiyi arıyorlar ve okul çocukları da hafızalarını tazelemeye çalışıyorlar.

Bu denklemin nasıl çözüleceğini anlatan birçok site olmasına rağmen ben de katkıda bulunup materyali yayınlamaya karar verdim. Öncelikle bu isteğe istinaden ziyaretçilerin siteme gelmesini istiyorum; ikinci olarak diğer yazılarımda “KU” konusu açıldığında bu yazının linkini vereceğim; üçüncü olarak, size çözümü hakkında diğer sitelerde genellikle belirtilenden biraz daha fazlasını anlatacağım. Başlayalım! Makalenin içeriği:

İkinci dereceden bir denklem şu şekilde bir denklemdir:

burada katsayılar a,BVe birlikte keyfi sayılar, burada a≠0.

İÇİNDE okul kursu materyal aşağıdaki biçimde verilmiştir - denklemler geleneksel olarak üç sınıfa ayrılır:

1. İki kökleri vardır.

2. *Tek bir kökü vardır.

3. Kökleri yoktur. Burada gerçek köklerinin olmadığını özellikle belirtmekte fayda var.

Kökler nasıl hesaplanır? Sadece!

Diskriminant değerini hesaplıyoruz. Bu “korkunç” kelimenin altında çok basit bir formül yatıyor:

Kök formülleri aşağıdaki gibidir:

*Bu formülleri ezbere bilmeniz gerekiyor.

Hemen yazıp çözebilirsiniz:

Örnek:


1. Eğer D > 0 ise denklemin iki kökü vardır.

2. Eğer D = 0 ise denklemin bir kökü vardır.

3. Eğer D< 0, то уравнение не имеет действительных корней.

Denkleme bakalım:


Bu bakımdan diskriminant sıfıra eşit olduğunda okul dersi bir kökün elde edildiğini söylüyor, burada dokuza eşit oluyor. Her şey doğru, öyle ama...

Bu fikir biraz yanlıştır. Aslında iki kök var. Evet, evet, şaşırmayın, iki eşit kök elde edersiniz ve matematiksel olarak kesin olmak gerekirse, cevabın iki kök yazması gerekir:

x 1 = 3 x 2 = 3

Ama bu böyle - küçük bir ara söz. Okulda bunu yazıp tek bir kök olduğunu söyleyebilirsin.

Şimdi bir sonraki örnek:


Bildiğimiz gibi negatif bir sayının kökü alınamadığı için çözümler bu durumda HAYIR.

Bütün karar süreci bundan ibaret.

İkinci dereceden fonksiyon.

Bu, çözümün geometrik olarak neye benzediğini gösterir. Bunu anlamak son derece önemlidir (gelecekte makalelerden birinde ikinci dereceden eşitsizliğin çözümünü ayrıntılı olarak analiz edeceğiz).

Bu formun bir fonksiyonudur:

burada x ve y değişkenlerdir

a, b, c – verilen sayılar, burada a ≠ 0

Grafik bir paraboldür:

Yani, "y" noktasında ikinci dereceden bir denklemin çözülmesi gerektiği ortaya çıktı. sıfıra eşit parabolün x ekseniyle kesişme noktalarını buluyoruz. Bu noktalardan ikisi (ayırıcı pozitiftir), biri (ayırıcı sıfırdır) ve hiçbiri (ayırıcı negatiftir) olabilir. Hakkında ayrıntılar ikinci dereceden fonksiyon Görüntüleyebilirsiniz Inna Feldman'ın makalesi.

Örneklere bakalım:

Örnek 1: Çöz 2 kere 2 +8 X–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Cevap: x 1 = 8 x 2 = –12

*Denklemin sol ve sağ taraflarını hemen 2'ye bölmek, yani basitleştirmek mümkündü. Hesaplamalar daha kolay olacaktır.

Örnek 2: Karar vermek x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

x 1 = 11 ve x 2 = 11 olduğunu bulduk

Cevapta x=11 yazmak caizdir.

Cevap: x = 11

Örnek 3: Karar vermek x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant negatiftir, reel sayılarda çözüm yoktur.

Cevap: çözüm yok

Diskriminant negatiftir. Bir çözüm var!

Burada ortaya çıktığında denklemin çözümü hakkında konuşacağız. negatif diskriminant. hakkında bir şey biliyor musun? Karışık sayılar? Burada bunların neden, nerede ortaya çıktıkları ve ne oldukları konusunda ayrıntılara girmeyeceğim. özel rol ve matematiğe duyulan ihtiyaç, bu ayrı bir makalenin konusu.

Karmaşık sayı kavramı.

Küçük bir teori.

Karmaşık sayı z, formdaki bir sayıdır

z = a + bi

a ve b nerede gerçek sayılar i sözde sanal birimdir.

a+bi – bu TEK BİR NUMARAdır, toplama değil.

Sanal birim eksi birin köküne eşittir:

Şimdi denklemi düşünün:


İki eşlenik kök elde ediyoruz.

Tamamlanmamış ikinci dereceden denklem.

Özel durumları ele alalım; bu, “b” veya “c” katsayısının sıfıra eşit olduğu (veya her ikisinin de sıfıra eşit olduğu) durumdur. Herhangi bir ayrım yapılmadan kolayca çözülebilirler.

Durum 1. Katsayı b = 0.

Denklem şöyle olur:

Haydi dönüştürelim:

Örnek:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Durum 2. Katsayı c = 0.

Denklem şöyle olur:

Dönüştürüp çarpanlara ayıralım:

*Faktörlerden en az biri sıfıra eşit olduğunda ürün sıfıra eşittir.

Örnek:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 veya x–5 =0

x 1 = 0 x 2 = 5

Durum 3. Katsayılar b = 0 ve c = 0.

Burada denklemin çözümünün her zaman x = 0 olacağı açıktır.

Faydalı özellikler ve katsayı kalıpları.

Büyük katsayılı denklemleri çözmenizi sağlayan özellikler vardır.

AX 2 + bx+ C=0 eşitlik geçerlidir

A + B+ c = 0, O

- denklemin katsayıları için ise AX 2 + bx+ C=0 eşitlik geçerlidir

A+ s =B, O

Bu özellikler karar vermenize yardımcı olur belirli bir tür denklemler

Örnek 1: 5001 X 2 –4995 X – 6=0

Oranların toplamı 5001+( 4995)+( 6) = 0, bunun anlamı

Örnek 2: 2501 X 2 +2507 X+6=0

Eşitlik geçerlidir A+ s =B, Araç

Katsayıların düzenlilikleri.

1. Eğer ax 2 + bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse, kökleri eşittir

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Örnek. 6x 2 + 37x + 6 = 0 denklemini düşünün.

x 1 = –6 x 2 = –1/6.

2. ax 2 – bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse kökleri eşittir

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Örnek. 15x 2 –226x +15 = 0 denklemini düşünün.

x 1 = 15 x 2 = 1/15.

3. Denklemde ise. ax 2 + bx – c = 0 katsayısı “b” eşittir (a 2 – 1) ve katsayısı “c” sayısal olarak “a” katsayısına eşittir, o zaman kökleri eşittir

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Örnek. 17x 2 +288x – 17 = 0 denklemini düşünün.

x 1 = – 17 x 2 = 1/17.

4. Eğer ax 2 – bx – c = 0 denkleminde “b” katsayısı (a 2 – 1)'e eşitse ve c katsayısı sayısal olarak “a” katsayısına eşitse kökleri eşittir

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Örnek. 10x 2 – 99x –10 = 0 denklemini düşünün.

x 1 = 10 x 2 = – 1/10

Vieta'nın teoremi.

Vieta teoremi adını ünlülerden alıyor Fransız matematikçi François Vieta. Vieta teoremini kullanarak, rastgele bir KU'nun köklerinin toplamını ve çarpımını katsayıları cinsinden ifade edebiliriz.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Toplamda 14 sayısı sadece 5 ve 9'u verir. Bunlar köklerdir. Belirli bir beceriyle, sunulan teoremi kullanarak birçok ikinci dereceden denklemi sözlü olarak anında çözebilirsiniz.

Ayrıca Vieta teoremi. İkinci dereceden bir denklemi olağan şekilde (bir diskriminant aracılığıyla) çözdükten sonra ortaya çıkan köklerin kontrol edilebilmesi uygundur. Bunu her zaman yapmanızı öneririm.

ULAŞIM ŞEKLİ

Bu yöntemle “a” katsayısı serbest terimle sanki kendisine “atılmış” gibi çarpılır, bu yüzden buna denir. "aktarma" yöntemi. Bu yöntem, denklemin kökleri Vieta teoremi kullanılarak kolayca bulunabildiğinde ve en önemlisi diskriminantın tam kare olduğu durumlarda kullanılır.

Eğer A± b+c≠ 0 ise transfer tekniği kullanılır, örneğin:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Denklem (2)'deki Vieta teoremini kullanarak x 1 = 10 x 2 = 1 olduğunu belirlemek kolaydır.

Denklemin ortaya çıkan kökleri 2'ye bölünmelidir (çünkü ikisi x 2'den "atılmıştır"), şunu elde ederiz:

x 1 = 5 x 2 = 0,5.

Gerekçesi nedir? Bakın neler oluyor.

Denklem (1) ve (2)'nin ayırıcıları eşittir:

Denklemlerin köklerine bakarsanız, yalnızca şunu elde edersiniz: farklı paydalar ve sonuç tam olarak x 2 katsayısına bağlıdır:


İkincisi (değiştirilmiş) 2 kat daha büyük köklere sahiptir.

Bu nedenle sonucu 2'ye bölüyoruz.

*Üç atarsak sonucu 3'e vb. böleriz.

Cevap: x 1 = 5 x 2 = 0,5

meydan ur-ie ve Birleşik Devlet Sınavı.

Önemini kısaca anlatacağım - Çabuk ve düşünmeden KARAR VERMELİSİNİZ, köklerin ve ayırıcıların formüllerini ezbere bilmeniz gerekiyor. Birleşik Devlet Sınavı görevlerinde yer alan birçok problem, ikinci dereceden bir denklemin (geometrik olanlar dahil) çözülmesine indirgenir.

Dikkate değer bir şey!

1. Bir denklemin yazım şekli “örtük” olabilir. Örneğin aşağıdaki giriş mümkündür:

15+ 9x 2 - 45x = 0 veya 15x+42+9x 2 - 45x=0 veya 15 -5x+10x 2 = 0.

Bunu standart bir forma getirmeniz gerekiyor (çözerken kafanızın karışmaması için).

2. X'in bilinmeyen bir miktar olduğunu ve herhangi bir harfle (t, q, p, h ve diğerleri) gösterilebileceğini unutmayın.



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!