Diskriminantın 0 olduğuna nasıl karar verilir? Her zaman havanızda olun

İkinci dereceden denklemler genellikle çözüm sırasında ortaya çıkar çeşitli görevler fizik ve matematik. Bu yazıda bu eşitliklerin nasıl çözüleceğine bakacağız. evrensel bir şekilde"ayrımcı aracılığıyla". Makalede edinilen bilgilerin kullanımına ilişkin örnekler de verilmektedir.

Hangi denklemlerden bahsedeceğiz?

Aşağıdaki şekil x'in bilinmeyen bir değişken olduğu ve latin karakterler a, b, c bilinen bazı sayıları temsil eder.

Bu sembollerin her birine katsayı denir. Gördüğünüz gibi "a" sayısı x kare değişkeninin önünde görünüyor. Bu maksimum derece ifadesi sunulduğu için buna ikinci dereceden denklem denir. Diğer adı sıklıkla kullanılır: ikinci dereceden denklem. a'nın değeri kare katsayısı(değişkenin karesi ile birlikte), b doğrusal bir katsayıdır (birinci kuvvete yükseltilen değişkenin yanında yer alır), son olarak c sayısı ücretsiz üye.

Yukarıdaki şekilde gösterilen denklem türünün genel bir klasik ikinci dereceden ifade olduğuna dikkat edin. Buna ek olarak b ve c katsayılarının sıfır olabileceği başka ikinci dereceden denklemler de vardır.

Görev, söz konusu eşitliği çözmek için belirlendiğinde, bu, x değişkeninin onu tatmin edecek değerlerinin bulunması gerektiği anlamına gelir. Burada hatırlamanız gereken ilk şey şudur: X'in maksimum derecesi 2 olduğuna göre, o zaman bu tip ifadelerin 2'den fazla çözümü olamaz. Bu, bir denklemi çözerken onu karşılayan 2 x değeri bulunursa, o zaman x'in yerine geçen 3. sayının olmadığından emin olabileceğiniz anlamına gelir, eşitlik de doğru olacaktır. Matematikte bir denklemin çözümlerine kökleri denir.

İkinci dereceden denklemleri çözme yöntemleri

Bu tür denklemleri çözmek, onlar hakkında bazı teorilerin bilinmesini gerektirir. İÇİNDE okul kursu cebirler 4'ü dikkate alır çeşitli yöntemlerçözümler. Bunları listeleyelim:

  • çarpanlara ayırma kullanarak;
  • tam kare formülünü kullanarak;
  • karşılık gelen ikinci dereceden fonksiyonun grafiğini uygulayarak;
  • diskriminant denklemini kullanarak.

İlk yöntemin avantajı basitliğidir ancak tüm denklemler için kullanılamaz. İkinci yöntem evrenseldir, ancak biraz hantaldır. Üçüncü yöntem, açıklığıyla ayırt edilir, ancak her zaman uygun ve uygulanabilir değildir. Ve son olarak, diskriminant denklemini kullanmak, herhangi bir ikinci dereceden denklemin köklerini bulmanın evrensel ve oldukça basit bir yoludur. Bu nedenle makalede sadece onu ele alacağız.

Denklemin köklerini elde etmek için formül

Hadi dönelim genel görünüm ikinci dereceden denklem. Bunu yazalım: a*x²+ b*x + c =0. “Ayrımcı yoluyla” çözme yöntemini kullanmadan önce eşitliği her zaman yazılı şekline getirmelisiniz. Yani üç terimden oluşmalıdır (ya da b veya c 0 ise daha az).

Örneğin, eğer bir ifade varsa: x²-9*x+8 = -5*x+7*x², o zaman önce tüm terimlerini eşitliğin bir tarafına taşımalı ve x değişkenini içeren terimleri aynı güçler.

İÇİNDE bu durumda bu işlem şu ifadeye yol açacaktır: -6*x²-4*x+8=0, bu da 6*x²+4*x-8=0 denklemine eşdeğerdir (burada denklemin sol ve sağ taraflarını çarptık) -1 ile eşitlik).


Yukarıdaki örnekte a = 6, b=4, c=-8. Söz konusu eşitliğin tüm terimlerinin her zaman birlikte toplandığına dikkat edin; dolayısıyla "-" işareti görünürse, bu, karşılık gelen katsayının, bu durumda c sayısı gibi, negatif olduğu anlamına gelir.


Bu noktayı inceledikten sonra şimdi ikinci dereceden bir denklemin köklerini elde etmeyi mümkün kılan formülün kendisine geçelim. Aşağıdaki fotoğrafta gösterilene benziyor.


Bu ifadeden de anlaşılacağı üzere iki kök almanızı sağlar (“±” işaretine dikkat edin). Bunu yapmak için b, c ve a katsayılarını yerine koymak yeterlidir.

Ayrımcı kavramı

Önceki paragrafta herhangi bir ikinci dereceden denklemi hızlı bir şekilde çözmenize olanak tanıyan bir formül verildi. Burada radikal ifadeye diskriminant denir, yani D = b²-4*a*c.

Formülün bu kısmı neden vurgulanıyor ve hatta özel isim? Gerçek şu ki, diskriminant denklemin üç katsayısını da tek bir ifadede birleştiriyor. Son gerçek aşağıdaki listede ifade edilebilecek köklere ilişkin bilgileri tamamen taşıdığı anlamına gelir:

  1. D>0: eşitlikte 2 var çeşitli çözümler, her ikisi de gerçek sayılardır.
  2. D=0: Denklemin tek kökü vardır ve bu bir reel sayıdır.

Ayırt edici belirleme görevi


Diskriminantın nasıl bulunacağına dair basit bir örnek verelim. Şu eşitlik verilsin: 2*x² - 4+5*x-9*x² = 3*x-5*x²+7.

Hadi onu getirelim standart görünüm, şunu elde ederiz: (2*x²-9*x²+5*x²) + (5*x-3*x) + (- 4-7) = 0, buradan eşitliğe geliyoruz: -2*x²+ 2*x- 11 = 0. Burada a=-2, b=2, c=-11.

Artık diskriminant için yukarıdaki formülü kullanabilirsiniz: D = 2² - 4*(-2)*(-11) = -84. Ortaya çıkan sayı görevin cevabıdır. Örnekte diskriminant olduğundan sıfırdan az O zaman bu ikinci dereceden denklemin gerçek kökleri olmadığını söyleyebiliriz. Çözümü yalnızca karmaşık türdeki sayılar olacaktır.

Bir ayrımcı yoluyla eşitsizliğe bir örnek

Biraz farklı türden problemleri çözelim: -3*x²-6*x+c = 0 eşitliği göz önüne alındığında. D>0 olan c değerlerini bulmak gerekir.

Bu durumda 3 katsayıdan sadece 2'si bilindiğinden diskriminantın kesin değerini hesaplamak mümkün değildir ancak pozitif olduğu bilinmektedir. Eşitsizliği oluştururken son gerçeği kullanıyoruz: D= (-6)²-4*(-3)*c>0 => 36+12*c>0. Ortaya çıkan eşitsizliğin çözülmesi şu sonuca yol açar: c>-3.

Ortaya çıkan sayıyı kontrol edelim. Bunu yapmak için 2 durum için D'yi hesaplıyoruz: c=-2 ve c=-4. -2 sayısı elde edilen sonucu (-2>-3) karşılıyorsa, karşılık gelen diskriminant şu değere sahip olacaktır: D = 12>0. Buna karşılık -4 sayısı eşitsizliği (-4) sağlamaz. Dolayısıyla -3'ten büyük olan herhangi bir c sayısı koşulu karşılayacaktır.

Bir denklem çözme örneği

Sadece diskriminantı bulmayı değil aynı zamanda denklemi çözmeyi de içeren bir problem sunalım. -2*x²+7-9*x = 0 eşitliğinin köklerini bulmak gerekir.

Bu örnekte diskriminant sonraki değer: D = 81-4*(-2)*7= 137. O zaman denklemin kökleri şu şekilde belirlenecektir: x = (9±√137)/(-4). Bu kesin değerler kökler, kökü yaklaşık olarak hesaplarsanız şu sayıları elde edersiniz: x = -5,176 ve x = 0,676.

Geometrik problem

Yalnızca diskriminant hesaplama becerisini değil, aynı zamanda becerilerin uygulanmasını da gerektiren bir sorunu çözeceğiz soyut düşünme ve ikinci dereceden denklemlerin nasıl yazılacağı bilgisi.

Bob'un 5 x 4 metrelik bir yorganı vardı. Çocuk, tüm çevresine sürekli bir güzel kumaş şeridi dikmek istedi. Bob'un 10 m² kumaşa sahip olduğunu bilirsek bu şerit ne kadar kalın olur?


Şeridin kalınlığı x m olsun, o zaman battaniyenin uzun kenarı boyunca kumaşın alanı (5+2*x)*x olacaktır ve 2 uzun kenar olduğundan elimizde: 2*x bulunur *(5+2*x). Kısa tarafta dikilen kumaşın alanı 4*x olacaktır, bu kenarlardan 2 adet olduğu için 8*x değerini elde ederiz. Battaniyenin uzunluğu bir o kadar arttığı için uzun tarafa 2*x değerinin eklendiğini unutmayın. Battaniyeye dikilen kumaşın toplam alanı 10 m²'dir. Dolayısıyla şu eşitliği elde ederiz: 2*x*(5+2*x) + 8*x = 10 => 4*x²+18*x-10 = 0.

Bu örnek için diskriminant şuna eşittir: D = 18²-4*4*(-10) = 484. Kökü 22'dir. Formülü kullanarak gerekli kökleri buluruz: x = (-18±22)/( 2*4) = (- 5; 0,5). Açıkçası iki kökten sadece 0,5 sayısı problemin koşullarına göre uygundur.

Böylece Bob'un battaniyesine diktiği kumaş şeridinin genişliği 50 cm olacaktır.

Örneğin, üç terimli \(3x^2+2x-7\) için diskriminant \(2^2-4\cdot3\cdot(-7)=4+84=88\) değerine eşit olacaktır. Ve üç terimli \(x^2-5x+11\) için, \((-5)^2-4\cdot1\cdot11=25-44=-19\)'a eşit olacaktır.

Diskriminant \(D\) harfiyle gösterilir ve genellikle çözmede kullanılır. Ayrıca diskriminantın değerine göre grafiğin yaklaşık olarak nasıl göründüğünü anlayabilirsiniz (aşağıya bakınız).

Diskriminant ve denklemin kökleri

Diskriminant değeri ikinci dereceden denklemlerin sayısını gösterir:
- eğer \(D\) pozitifse denklemin iki kökü olacaktır;
- eğer \(D\) sıfıra eşitse – yalnızca bir kök vardır;
- eğer \(D\) negatifse, kök yoktur.

Bunun öğretilmesine gerek yok, sadece diskriminanttan (yani \(\sqrt(D)\) denklemin köklerini hesaplama formülüne dahil edildiğini bilerek böyle bir sonuca varmak zor değil) : \(x_(1)=\)\(\ frac(-b+\sqrt(D))(2a)\) ve \(x_(2)=\)\(\frac(-b-\sqrt(D) ))(2a)\) Her duruma daha detaylı bakalım.

Diskriminant pozitif ise

Bu durumda, bunun kökü bazı pozitif sayı Bu, \(x_(1)\) ve \(x_(2)\)'nin farklı anlamlara sahip olacağı anlamına gelir, çünkü ilk formülde \(\sqrt(D)\) eklenir ve ikincisinde çıkarılır. Ve iki farklı kökümüz var.

Örnek : \(x^2+2x-3=0\) denkleminin köklerini bulun
Çözüm :

Cevap : \(x_(1)=1\); \(x_(2)=-3\)

Diskriminant sıfır ise

Diskriminant ise kaç kök olacaktır? sıfıra eşit? Hadi akıl yürütelim.

Kök formüller şuna benzer: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) ve \(x_(2)=\)\(\frac(-) b- \sqrt(D))(2a)\) . Ve eğer diskriminant sıfırsa kökü de sıfırdır. Sonra ortaya çıkıyor:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

Yani denklemin köklerinin değerleri aynı olacaktır çünkü sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez.

Örnek : \(x^2-4x+4=0\) denkleminin köklerini bulun
Çözüm :

\(x^2-4x+4=0\)

Katsayıları yazıyoruz:

\(a=1;\) \(b=-4;\) \(c=4;\)

Diskriminantı \(D=b^2-4ac\) formülünü kullanarak hesaplıyoruz

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Denklemin köklerini bulma

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


İki tane var özdeş kökler yani bunları ayrı ayrı yazmanın bir anlamı yok; tek olarak yazıyoruz.

Cevap : \(x=2\)

İkinci dereceden denklemler 8. sınıfta çalışılıyor, bu yüzden burada karmaşık bir şey yok. Bunları çözme yeteneği kesinlikle gereklidir.

İkinci dereceden bir denklem, a, b ve c katsayılarının olduğu ax 2 + bx + c = 0 formundaki bir denklemdir. keyfi sayılar ve a ≠ 0.

Belirli çözüm yöntemlerini incelemeden önce, tüm ikinci dereceden denklemlerin üç sınıfa ayrılabileceğini unutmayın:

  1. Kökleri yoktur;
  2. Tam olarak bir köke sahip olun;
  3. İki farklı kökü var.

Bu önemli fark kökün her zaman mevcut olduğu ve benzersiz olduğu doğrusal olanlardan ikinci dereceden denklemler. Bir denklemin kaç kökü olduğu nasıl belirlenir? Bunun için harika bir şey var - ayrımcı.

diskriminant

İkinci dereceden denklem ax 2 + bx + c = 0 verilse, diskriminant basitçe D = b 2 − 4ac sayısı olur.

Bu formülü ezbere bilmeniz gerekiyor. Artık nereden geldiği önemli değil. Başka bir şey daha önemlidir: Diskriminantın işaretiyle ikinci dereceden bir denklemin kaç kökü olduğunu belirleyebilirsiniz. Yani:

  1. Eğer D< 0, корней нет;
  2. Eğer D = 0 ise tam olarak bir kök vardır;
  3. D > 0 ise iki kök olacaktır.

Lütfen dikkat: Birçok insanın inandığı gibi, ayrımcı, hiçbir şekilde işaretlerini değil, köklerin sayısını gösterir. Örneklere bir göz atın ve her şeyi kendiniz anlayacaksınız:

Görev. İkinci dereceden denklemlerin kaç kökü vardır:

  1. x 2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

İlk denklemin katsayılarını yazalım ve diskriminantı bulalım:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Diskriminant pozitif olduğundan denklemin iki farklı kökü vardır. İkinci denklemi de benzer şekilde analiz ediyoruz:
bir = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant negatiftir, kök yoktur. Geriye kalan son denklem:
bir = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminant sıfırdır; kök bir olacaktır.

Lütfen her denklem için katsayıların yazıldığını unutmayın. Evet uzun, evet sıkıcı ama olasılıkları karıştırıp aptalca hatalar yapmayacaksınız. Kendiniz seçin: hız veya kalite.

Bu arada, eğer alışırsanız, bir süre sonra tüm katsayıları yazmanıza gerek kalmayacak. Bu tür operasyonları kafanızda gerçekleştireceksiniz. Çoğu insan bunu 50-70 çözülmüş denklemden sonra bir yerde yapmaya başlar - genel olarak o kadar da değil.

İkinci dereceden bir denklemin kökleri

Şimdi çözümün kendisine geçelim. Diskriminant D > 0 ise kökler aşağıdaki formüller kullanılarak bulunabilir:

İkinci dereceden bir denklemin kökleri için temel formül

D = 0 olduğunda bu formüllerden herhangi birini kullanabilirsiniz; cevap olan aynı sayıyı elde edersiniz. Son olarak eğer D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

İlk denklem:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ denklemin iki kökü vardır. Onları bulalım:

İkinci denklem:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ Denklemin yine iki kökü vardır. Haydi onları bulalım

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(hizala)\]

Son olarak üçüncü denklem:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ denklemin tek kökü vardır. Herhangi bir formül kullanılabilir. Örneğin, ilki:

Örneklerden de görebileceğiniz gibi her şey çok basit. Formülleri biliyorsanız ve sayabiliyorsanız hiçbir sorun yaşanmayacaktır. Çoğu zaman, formülde negatif katsayılar değiştirilirken hatalar meydana gelir. Burada yine yukarıda açıklanan teknik yardımcı olacaktır: formüle tam anlamıyla bakın, her adımı yazın - ve çok yakında hatalardan kurtulacaksınız.

Tamamlanmamış ikinci dereceden denklemler

İkinci dereceden bir denklemin tanımda verilenden biraz farklı olduğu görülür. Örneğin:

  1. x2 + 9x = 0;
  2. x 2 − 16 = 0.

Bu denklemlerde terimlerden birinin eksik olduğunu fark etmek kolaydır. Bu tür ikinci dereceden denklemleri çözmek standart denklemlerden bile daha kolaydır: diskriminantın hesaplanmasını bile gerektirmezler. O halde yeni bir konsept sunalım:

ax 2 + bx + c = 0 denklemine, b = 0 veya c = 0 ise tamamlanmamış ikinci dereceden denklem denir; x değişkeninin veya serbest elemanın katsayısı sıfıra eşittir.

Elbette bu katsayıların her ikisinin de sıfıra eşit olması durumunda çok zor bir durum mümkündür: b = c = 0. Bu durumda denklem ax 2 = 0 formunu alır. Böyle bir denklemin tek bir kökü olduğu açıktır: x = 0.

Geri kalan durumları ele alalım. b = 0 olsun, sonra ax 2 + c = 0 formunda tamamlanmamış ikinci dereceden bir denklem elde ederiz. Bunu biraz dönüştürelim:

Aritmetikten beri karekök yalnızca itibaren var negatif olmayan sayı, son eşitlik yalnızca (−c /a) ≥ 0 için anlamlıdır. Sonuç:

  1. Eğer ax 2 + c = 0 formundaki tamamlanmamış ikinci dereceden bir denklemde (−c /a) ≥ 0 eşitsizliği karşılanıyorsa, iki kök olacaktır. Formül yukarıda verilmiştir;
  2. Eğer (−c /a)< 0, корней нет.

Gördüğünüz gibi diskriminant gerekli değildi; tamamlanmamış ikinci dereceden denklemlerde diskriminant gerekli değildi. karmaşık hesaplamalar. Aslında (−c /a) ≥ 0 eşitsizliğini hatırlamaya bile gerek yok. x 2 değerini ifade edip eşittir işaretinin diğer tarafında ne olduğunu görmek yeterli. Pozitif bir sayı varsa iki kökü olacaktır. Negatif ise hiçbir kök kalmayacaktır.

Şimdi serbest elemanın sıfıra eşit olduğu ax 2 + bx = 0 formundaki denklemlere bakalım. Burada her şey basit: her zaman iki kök olacak. Polinomu çarpanlara ayırmak yeterlidir:

Kaldırma ortak çarpan parantez dışında

Faktörlerden en az biri sıfır olduğunda ürün sıfırdır. Köklerin geldiği yer burasıdır. Sonuç olarak bu denklemlerden birkaçına bakalım:

Görev. İkinci dereceden denklemleri çözün:

  1. x 2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Kök yok çünkü kare negatif bir sayıya eşit olamaz.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Diskriminant çok değerli bir terimdir. Bu makalede, belirli bir polinomun geçerli çözümlerinin olup olmadığını belirlemenizi sağlayan bir polinomun diskriminantından bahsedeceğiz. İkinci dereceden polinomun formülü okuldaki cebir ve analiz dersinde bulunur. Bir diskriminant nasıl bulunur? Denklemi çözmek için ne gerekiyor?

İkinci dereceden ikinci dereceden bir polinom veya denklem denir i * w ^ 2 + j * w + k 0'a eşittir; burada "i" ve "j" sırasıyla birinci ve ikinci katsayılardır, "k" bazen "küçümseme terimi" olarak adlandırılan bir sabittir ve "w" bir değişkendir. Kökleri, kimliğe dönüştüğü değişkenin tüm değerleri olacaktır. Böyle bir eşitlik i, (w - w1) ve (w - w2) çarpımının 0'a eşit olması şeklinde yeniden yazılabilir. Bu durumda, "i" katsayısı sıfır olmazsa o zaman fonksiyonun onda olacağı açıktır. sol taraf ancak x'in w1 veya w2 değerini alması durumunda sıfır olacaktır. Bu değerler polinomun sıfıra ayarlanmasının sonucudur.

Bir değişkenin değerini bulmak için ikinci dereceden polinom sıfır olduğunda, katsayıları üzerine inşa edilen ve diskriminant adı verilen bir yardımcı yapı kullanılır. Bu tasarım D eşittir j * j - 4 * i * k formülüne göre hesaplanır. Neden kullanılıyor?

  1. Hiç var mı diyor geçerli sonuçlar.
  2. Bunların hesaplanmasına yardımcı oluyor.

Bu değer gerçek köklerin varlığını nasıl gösterir:

  • Pozitif ise bölgede iki kök bulabiliriz gerçek sayılar.
  • Diskriminant sıfır ise her iki çözüm de aynıdır. Tek bir çözümün olduğunu söyleyebiliriz, o da reel sayılar alanındandır.
  • Diskriminant sıfırdan küçükse polinomun gerçek kökleri yoktur.

Malzemeyi güvence altına almak için hesaplama seçenekleri

Toplam için (7 * w^2; 3 * w; 1) 0'a eşit D'yi 3 * 3 - 4 * 7 * 1 = 9 - 28 formülünü kullanarak hesaplıyoruz, -19 elde ediyoruz. Sıfırın altındaki bir diskriminant değeri, gerçek satırda hiçbir sonuç olmadığını gösterir.

2 * w^2 - 3 * w + 1'in 0'a eşdeğer olduğunu düşünürsek D, (-3) kare eksi (4; 2; 1) sayılarının çarpımı olarak hesaplanır ve 9 - 8'e, yani 1'e eşittir. Pozitif değer gerçek doğru üzerinde iki sonuç olduğunu söylüyor.

Toplamı (w ^ 2; 2 * w; 1) alıp 0'a eşitlersek, D iki kare eksi (4; 1; 1) sayılarının çarpımı olarak hesaplanır. Bu ifade 4 - 4'e sadeleştirilecek ve sıfıra gidecektir. Sonuçların aynı olduğu ortaya çıktı. Eğer yakından bakarsanız bu formül, o zaman bunun “ mükemmel kare" Bu, eşitliğin (w + 1) ^ 2 = 0 şeklinde yeniden yazılabileceği anlamına gelir. Bu problemde sonucun “-1” olduğu ortaya çıktı. D'nin 0 olduğu bir durumda, sol taraf Eşitlikler her zaman "toplamın karesi" formülü kullanılarak daraltılabilir.

Köklerin hesaplanmasında diskriminant kullanımı

Bu yardımcı yapı yalnızca gerçek çözümlerin sayısını göstermekle kalmaz, aynı zamanda bunların bulunmasına da yardımcı olur. Genel formülİkinci derece denklemin hesaplanması:

w = (-j +/- d) / (2 * i), burada d, 1/2'nin kuvvetinin ayırt edicisidir.

Diyelim ki diskriminant sıfırın altında, bu durumda d sanal ve sonuçlar sanaldır.

D sıfırsa d eşittir D üzeri 1/2 de sıfırdır. Çözüm: -j / (2 * i). Yine 1 * w ^ 2 + 2 * w + 1 = 0 dikkate alındığında -2 / (2 * 1) = -1'e eşdeğer sonuçlar buluyoruz.

Diyelim ki D > 0, sonra d - gerçek sayı ve buradaki cevap iki kısma ayrılıyor: w1 = (-j + d) / (2 * i) ve w2 = (-j - d) / (2 * i). Her iki sonuç da geçerli olacaktır. 2 * w ^ 2 - 3 * w + 1 = 0'a bakalım. Burada diskriminant ve d birlerdir. w1'in (3 + 1) bölü (2 * 2) veya 1'e eşit olduğu ve w2'nin (3 - 1) bölü 2 * 2 veya 1/2'ye eşit olduğu ortaya çıktı.

Denklem sonucu ikinci dereceden ifade sıfıra kadar algoritmaya göre hesaplanır:

  1. Miktarın belirlenmesi geçerli çözümler.
  2. Hesaplama d = D^(1/2).
  3. (-j +/- d) / (2 * i) formülüne göre sonucu bulma.
  4. Elde edilen sonucun doğrulama için orijinal eşitlikle değiştirilmesi.

Bazı özel durumlar

Katsayılara bağlı olarak çözüm biraz basitleştirilebilir. Açıkçası, eğer bir değişkenin ikinci kuvvetine olan katsayısı sıfır ise, o zaman doğrusal bir eşitlik elde edilir. Bir değişkenin birinci kuvvete katsayısı sıfır olduğunda iki seçenek mümkündür:

  1. serbest terim negatif olduğunda polinom kareler farkına genişletilir;
  2. pozitif bir sabit için hiçbir gerçek çözüm bulunamaz.

Serbest terim sıfır ise kökler (0; -j) olacaktır.

Ancak çözüm bulmayı kolaylaştıran başka özel durumlar da var.

Azaltılmış ikinci derece denklem

Verilen denirçok ikinci dereceden üç terimli, burada baş terimin önündeki katsayı birdir. Bu durum için köklerin toplamının değişkenin birinci kuvvet katsayısının -1 ile çarpımına eşit olduğunu ve çarpımın “k” sabitine karşılık geldiğini belirten Vieta teoremi uygulanabilir.

Dolayısıyla w1 + w2 eşittir -j ve eğer birinci katsayı bir ise w1 * w2 k'ye eşittir. Bu gösterimin doğruluğunu doğrulamak için, ilk formülden w2 = -j - w1'i ifade edebilir ve bunu ikinci w1 * (-j - w1) = k eşitliğinde değiştirebilirsiniz. Sonuç, orijinal eşitlik w1 ^ 2 + j * w1 + k = 0'dır.

Dikkat edilmesi gereken önemli i * w ^ 2 + j * w + k = 0'a “i”ye bölünerek ulaşılabilir. Sonuç şu şekilde olacaktır: w^2 + j1 * w + k1 = 0, burada j1, j/i'ye ve k1, k/i'ye eşittir.

Halihazırda çözülmüş olan 2 * w^2 - 3 * w + 1 = 0'a, sonuçları w1 = 1 ve w2 = 1/2'ye bakalım. Sonuç olarak ikiye bölmemiz gerekiyor w ^ 2 - 3/2 * w + 1/2 = 0. Bulunan sonuçlar için teoremin koşullarının doğru olup olmadığını kontrol edelim: 1 + 1/2 = 3/ 2 ve 1*1/2 = 1/2.

Hatta ikinci faktör

Bir değişkenin birinci kuvvetine (j) çarpanı 2'ye bölünüyorsa o zaman formülü basitleştirmek ve D/4 = (j / 2) ^ 2 - i * k diskriminantının dörtte biri üzerinden bir çözüm aramak mümkün olacaktır. w = (-j +/- d/2) / i ortaya çıkıyor, burada d/2 = D/4 üzeri 1/2.

Eğer i = 1 ve j katsayısı çift ise, o zaman çözüm -1 ile w değişkeninin katsayısının yarısı, artı/eksi bu yarının karesinin kökü eksi “k” sabitinin çarpımı olacaktır. Formül: w = -j/2 +/- (j^2/4 - k)^1/2.

Daha yüksek diskriminant sırası

Yukarıda tartışılan ikinci derece trinomiyalin diskriminantı en yaygın kullanılanıdır. özel durum. Genel durumda, bir polinomun diskriminantı şöyledir: bu polinomun köklerinin farklarının çarpımlı kareleri. Bu nedenle diskriminantın sıfıra eşit olması en az iki çoklu çözümün varlığını gösterir.

i * w^3 + j * w^2 + k * w + m = 0'ı düşünün.

D = j^2 * k^2 - 4 * i * k^3 - 4 * i^3 * k - 27 * i^2 * m^2 + 18 * i * j * k * m.

Diskriminantın sıfırı aştığını varsayalım. Bu, reel sayılar bölgesinde üç kökün olduğu anlamına gelir. Sıfırda birden fazla çözüm var. Eğer D< 0, то два корня комплексно-сопряженные, которые дают negatif değer kare alırken ve aynı zamanda bir kök gerçektir.

Video

Videomuzda diskriminantın hesaplanması hakkında detaylı bilgi verilecektir.

Sorunuza yanıt alamadınız mı? Yazarlara bir konu önerin.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!