Sonsuz azalan ilerleme görevleri. Geometrik ilerleme

Geometrik ilerleme matematikte aritmetikten daha az önemli değildir. Geometrik ilerleme, her bir sonraki terimi bir öncekiyle çarpılarak elde edilen b1, b2,..., b[n] sayılarından oluşan bir dizidir. sabit sayı. Aynı zamanda büyüme oranını veya ilerlemenin azalmasını da karakterize eden bu sayıya denir. payda geometrik ilerleme ve belirtmek

İçin görevi tamamla Geometrik ilerlemenin paydasına ek olarak ilk terimini de bilmek veya belirlemek gerekir. İçin pozitif değer payda ilerlemesi monoton dizi ve eğer bu sayı dizisi monoton olarak azalıyorsa ve eğer monoton olarak artıyorsa. Paydanın olduğu durum bire eşit pratikte dikkate alınmaz çünkü diziye sahibiz aynı sayılar ve bunların toplamının pratik bir önemi yok

Geometrik ilerlemenin genel terimi formülle hesaplanır

Geometrik ilerlemenin ilk n teriminin toplamı formülle belirlenir

Çözümleri düşünelim klasik problemler geometrik ilerlemeye Anlaşılması en basit olanlarla başlayalım.

Örnek 1. Geometrik ilerlemenin ilk terimi 27 ve paydası 1/3'tür. Geometrik ilerlemenin ilk altı terimini bulun.

Çözüm: Sorunun durumunu forma yazalım.

Hesaplamalar için geometrik ilerlemenin n'inci terimi formülünü kullanırız

Buna dayanarak ilerlemenin bilinmeyen terimlerini buluyoruz

Gördüğünüz gibi geometrik ilerlemenin terimlerini hesaplamak zor değil. İlerlemenin kendisi şöyle görünecek

Örnek 2. Geometrik ilerlemenin ilk üç terimi verilmiştir: 6; -12; 24. Paydayı ve yedinci terimini bulun.

Çözüm: Geomitrik ilerlemenin paydasını tanımına göre hesaplıyoruz.

Paydası -2'ye eşit olan alternatif bir geometrik ilerleme elde ettik. Yedinci terim aşağıdaki formül kullanılarak hesaplanır

Bu sorunu çözer.

Örnek 3. Bir geometrik ilerleme, iki terimiyle verilmektedir. . İlerlemenin onuncu terimini bulun.

Çözüm:

Haydi yazalım değerleri belirle formüller aracılığıyla

Kurallara göre, paydayı bulmamız ve sonra aramamız gerekir. istenen değer ama onuncu dönem için elimizde

Aynı formül, giriş verileriyle yapılan basit manipülasyonlara dayanarak elde edilebilir. Serinin altıncı terimini diğerine bölersek sonuç olarak şunu elde ederiz:

Ortaya çıkan değer altıncı terimle çarpılırsa onuncu terimi elde ederiz.

Böylece, benzer görevler basit dönüşümler kullanarak hızlı yol doğru çözümü bulabilirsiniz.

Örnek 4. Geometrik ilerleme yinelenen formüllerle verilmektedir

Geometrik ilerlemenin paydasını ve ilk altı terimin toplamını bulun.

Çözüm:

Verilen verileri bir denklem sistemi biçiminde yazalım

Paydayı ikinci denklemi birinciye bölerek ifade edin

İlk denklemden ilerlemenin ilk terimini bulalım

Geometrik ilerlemenin toplamını bulmak için aşağıdaki beş terimi hesaplayalım.

Talimatlar

10, 30, 90, 270...

Geometrik ilerlemenin paydasını bulmanız gerekir.
Çözüm:

Seçenek 1. İlerlemenin rastgele bir terimini alalım (örneğin 90) ve onu bir öncekine (30) bölelim: 90/30=3.

Bir geometrik ilerlemenin birkaç teriminin toplamı veya azalan bir geometrik ilerlemenin tüm terimlerinin toplamı biliniyorsa, ilerlemenin paydasını bulmak için uygun formülleri kullanın:
Sn = b1*(1-q^n)/(1-q), burada Sn geometrik ilerlemenin ilk n teriminin toplamıdır ve
S = b1/(1-q), burada S sonsuz derecede azalan geometrik ilerlemenin toplamıdır (paydası birden küçük olan ilerlemenin tüm terimlerinin toplamı).
Örnek.

Azalan geometrik ilerlemenin ilk terimi bire, tüm terimlerin toplamı ise ikiye eşittir.

Bu ilerlemenin paydasını belirlemek gerekiyor.
Çözüm:

Problemdeki verileri formülde değiştirin. Ortaya çıkacak:
2=1/(1-q), dolayısıyla – q=1/2.

İlerleme bir sayı dizisidir. Geometrik ilerlemede, sonraki her terim, bir öncekinin ilerlemenin paydası adı verilen belirli bir q sayısıyla çarpılmasıyla elde edilir.

Talimatlar

Eğer iki bitişik geometrik terim b(n+1) ve b(n) biliniyorsa, paydayı elde etmek için büyük olan sayıyı kendisinden önceki sayıya bölmeniz gerekir: q=b(n+1)/b (N). Bu, ilerlemenin tanımından ve paydasından kaynaklanmaktadır. Önemli bir durum birinci terimin eşitsizliği ve sıfıra ilerlemenin paydasıdır, aksi takdirde belirsiz kabul edilir.

Böylece ilerlemenin terimleri arasında şu ilişkiler kurulur: b2=b1 q, b3=b2 q, ... , b(n)=b(n-1) q. b(n)=b1 q^(n-1) formülünü kullanarak, q paydasının ve b1 teriminin bilindiği geometrik ilerlemenin herhangi bir terimi hesaplanabilir. Ayrıca, ilerlemelerin her biri modül olarak komşu üyelerinin ortalamasına eşittir: |b(n)|=√, ilerlemenin aldığı yer burasıdır.

Geometrik ilerlemenin bir benzeri en basit olanıdır üstel fonksiyon y=a^x, burada x bir üs, a ise belirli bir sayıdır. Bu durumda ilerlemenin paydası ilk terimle çakışır ve sayıya eşit A. Y fonksiyonunun değeri şu şekilde anlaşılabilir: n'inci terim x argümanı alınırsa ilerleme doğal sayı n (sayaç).

Geometrik ilerlemenin ilk n teriminin toplamı için mevcuttur: S(n)=b1 (1-q^n)/(1-q). Bu formül q≠1 için geçerlidir. Eğer q=1 ise ilk n terimin toplamı S(n)=n b1 formülüyle hesaplanır. Bu arada, q birden büyük ve b1 pozitif olduğunda ilerlemeye artan denilecek. İlerlemenin paydası mutlak değer olarak 1'i geçmiyorsa, ilerlemeye azalan ilerleme adı verilir.

Geometrik ilerlemenin özel bir durumu, sonsuz derecede azalan geometrik ilerlemedir (sonsuz derecede azalan geometrik ilerleme). Gerçek şu ki, azalan bir geometrik ilerlemenin terimleri tekrar tekrar azalacak, ancak hiçbir zaman sıfıra ulaşamayacaktır. Buna rağmen böyle bir ilerlemenin tüm terimlerinin toplamını bulmak mümkündür. S=b1/(1-q) formülüyle belirlenir. Toplam n üye sonsuzdur.

Nasıl katlayabileceğinizi görselleştirmek için sonsuz sayı sayılar ve sonsuzluk elde etmeyin, bir pasta pişirin. Yarısını kesin. Daha sonra 1/2'sini yarıya kadar kesin ve bu şekilde devam edin. Elde edeceğiniz parçalar, paydası 1/2 olan sonsuz azalan geometrik dizinin üyelerinden başka bir şey değildir. Tüm bu parçaları toplarsanız orijinal pastayı elde edersiniz.

Geometri problemleri özel çeşitlilik gerektiren egzersizler mekansal düşünme. Bir geometrik soruyu çözemiyorsanız görev, aşağıdaki kurallara uymayı deneyin.

Talimatlar

Görevin koşullarını çok dikkatli okuyun; eğer bir şeyi hatırlamıyorsanız veya anlamıyorsanız, tekrar okuyun.

Ne tür olduğunu belirlemeye çalışın geometrik problemlerörneğin: hesaplamalı, bir değer bulmanız gerektiğinde, mantıksal bir akıl yürütme zinciri gerektiren görevler, pusula ve cetvel kullanarak inşaatla ilgili görevler. Daha fazla görev karışık tip. Sorunun türünü anladıktan sonra mantıklı düşünmeye çalışın.

Uygula gerekli teorem Bu görev için şüpheleriniz varsa veya hiç seçenek yoksa, ilgili konuyla ilgili geliştirdiğiniz teoriyi hatırlamaya çalışın.

Ayrıca sorunun çözümünü taslak halinde yazın. Başvurmayı deneyin bilinen yöntemler Kararınızın doğruluğunu kontrol etmek.

Sorunun çözümünü not defterinize silmeden, üzerini çizmeden dikkatlice yazın ve en önemlisi ilk geometrik problemleri çözmek zaman ve çaba gerektirebilir. Ancak bu süreçte ustalaştığınız anda fındık gibi görevlere tıklamaya başlayacak ve bundan keyif alacaksınız!

Geometrik ilerleme b1, b2, b3, ... , b(n-1), b(n) sayılarından oluşan bir dizidir; öyle ki b2=b1*q, b3=b2*q, ... , b(n) ) =b(n-1)*q, b1≠0, q≠0. Başka bir deyişle, ilerlemenin her terimi bir öncekinden, ilerlemenin sıfır olmayan bir paydası q ile çarpılarak elde edilir.

Talimatlar

İlerleme problemleri çoğunlukla b1 ilerlemesinin ilk terimine ve q ilerlemesinin paydasına göre bir sistem oluşturulup takip edilerek çözülür. Denklem oluşturmak için bazı formülleri hatırlamakta fayda var.

İlerlemenin ilk terimi boyunca ilerlemenin n'inci terimi ve ilerlemenin paydası nasıl ifade edilir: b(n)=b1*q^(n-1).

|q| durumunu ayrıca ele alalım.<1. Если знаменатель прогрессии по модулю меньше единицы, имеем бесконечно убывающую геометрическую . Сумма первых n членов бесконечно убывающей геометрической прогрессии ищется так же, как и для неубывающей геометрической прогрессии. Однако в случае бесконечно убывающей геометрической прогрессии можно найти также сумму всех членов этой прогрессии, поскольку при бесконечном n будет бесконечно уменьшаться значение b(n), и сумма всех членов будет стремиться к определенному пределу. Итак, сумма всех членов бесконечно убывающей геометрической прогрессии

İlk seviye

Geometrik ilerleme. Örneklerle kapsamlı rehber (2019)

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin önce, hangisinin ikinci olduğunu ve sonuncuya kadar böyle devam ettiğini söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.

Sayıyı taşıyan sayıya dizinin n'inci üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

En yaygın ilerleme türleri aritmetik ve geometriktir. Bu başlıkta ikinci tip hakkında konuşacağız - geometrik ilerleme.

Geometrik ilerleme ne için kullanılır ve tarihçesi nedir?

Antik çağda bile, İtalyan matematikçi keşiş Pisalı Leonardo (daha çok Fibonacci olarak bilinir) ticaretin pratik ihtiyaçlarıyla ilgileniyordu. Keşiş, bir ürünü tartmak için kullanılabilecek en küçük ağırlık sayısını belirleme göreviyle karşı karşıyaydı. Fibonacci, çalışmalarında böyle bir ağırlık sisteminin optimal olduğunu kanıtlıyor: Bu, insanların muhtemelen zaten duymuş olduğunuz ve en azından genel bir anlayışa sahip olduğunuz geometrik ilerlemeyle uğraşmak zorunda kaldıkları ilk durumlardan biridir. Konuyu tam olarak anladıktan sonra böyle bir sistemin neden optimal olduğunu düşünün.

Şu anda, yaşam pratiğinde geometrik ilerleme, bir bankaya para yatırırken, önceki dönemde hesapta biriken tutara faiz tahakkuk ettirildiğinde kendini göstermektedir. Başka bir deyişle, bir tasarruf bankasındaki vadeli mevduata para yatırırsanız, bir yıl sonra mevduat orijinal miktarı kadar artacaktır, yani. yeni miktar katkı payının çarpımına eşit olacaktır. Bir sonraki yıl bu miktar artacak, yani. o sırada elde edilen miktar tekrar çarpılacaktır vb. Benzer bir durum sözde hesaplama problemlerinde de anlatılmaktadır. bileşik faiz- Yüzde, önceki faiz dikkate alınarak her seferinde hesaptaki tutardan alınır. Bu görevlerden biraz sonra bahsedeceğiz.

Geometrik ilerlemenin uygulandığı daha birçok basit durum vardır. Örneğin, gribin yayılması: bir kişi başka bir kişiye bulaştırdı, o da başka bir kişiye bulaştırdı ve dolayısıyla enfeksiyonun ikinci dalgası bir kişiye dönüştü ve o da bir başkasına bulaştırdı... ve böyle devam etti. .

Bu arada, aynı MMM olan finansal piramit, geometrik ilerlemenin özelliklerine dayanan basit ve kuru bir hesaplamadır. İlginç? Hadi çözelim.

Geometrik ilerleme.

Diyelim ki bir sayı dizimiz var:

Hemen bunun kolay olduğunu ve böyle bir dizinin adının terimlerinin farkıyla aritmetik bir dizi olduğunu söyleyeceksiniz. Buna ne dersin:

Bir öncekini bir sonraki sayıdan çıkarırsanız, her seferinde yeni bir fark elde ettiğinizde (vb.) göreceksiniz, ancak dizi kesinlikle mevcuttur ve fark edilmesi kolaydır - sonraki her sayı bir öncekinden kat daha büyüktür!

Bu tür sayı dizisine denir geometrik ilerleme ve belirlenir.

Geometrik ilerleme (), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekine eşit olan ve aynı sayıyla çarpılan sayısal bir dizidir. Bu sayıya geometrik ilerlemenin paydası denir.

İlk terimin ( ) eşit olmadığı ve rastgele olmadığı kısıtlamaları. Diyelim ki hiçbiri yok ve ilk terim hala eşit ve q eşittir, hmm.. öyle olsun, o zaman ortaya çıkıyor:

Bunun artık bir ilerleme olmadığını kabul edin.

Anladığınız gibi sıfır a'dan başka bir sayı varsa aynı sonuçları elde edeceğiz. Bu durumlarda, sayı serisinin tamamı ya sıfır ya da bir sayı olacağından ve geri kalan her şey sıfır olacağından hiçbir ilerleme olmayacaktır.

Şimdi geometrik ilerlemenin paydası yani o hakkında daha detaylı konuşalım.

Tekrarlayalım: - bu sayı birbirini takip eden her terim kaç kez değişir? geometrik ilerleme.

Sizce ne olabilir? Bu doğru, olumlu ve olumsuz, ancak sıfır değil (bunun hakkında biraz daha yukarıda konuştuk).

Bizimkinin olumlu olduğunu varsayalım. Bizim durumumuzda a. İkinci terimin değeri nedir ve? Buna kolayca cevap verebilirsiniz:

Bu doğru. Buna göre, ilerlemenin sonraki tüm terimleri aynı işarete sahipse - onlar olumlu.

Ya olumsuzsa? Örneğin, a. İkinci terimin değeri nedir ve?

Bu tamamen farklı bir hikaye

Bu ilerlemenin şartlarını saymaya çalışın. Ne kadar aldın? Sahibim. Dolayısıyla, geometrik ilerlemenin terimlerinin işaretleri değişiyorsa. Yani, üyeleri için değişen işaretlerin olduğu bir ilerleme görürseniz, paydası negatiftir. Bu bilgi, bu konudaki sorunları çözerken kendinizi test etmenize yardımcı olabilir.

Şimdi biraz pratik yapalım: Hangi sayı dizilerinin geometrik ilerleme, hangilerinin aritmetik ilerleme olduğunu belirlemeye çalışın:

Anladım? Cevaplarımızı karşılaştıralım:

  • Geometrik ilerleme - 3, 6.
  • Aritmetik ilerleme - 2, 4.
  • Bu ne aritmetik ne de geometrik bir ilerlemedir - 1, 5, 7.

Son ilerlememize dönelim ve tıpkı aritmetikte olduğu gibi üyesini bulmaya çalışalım. Tahmin edebileceğiniz gibi onu bulmanın iki yolu var.

Her terimi art arda ile çarpıyoruz.

Yani, açıklanan geometrik ilerlemenin inci terimi eşittir.

Zaten tahmin ettiğiniz gibi, artık geometrik ilerlemenin herhangi bir üyesini bulmanıza yardımcı olacak bir formülü kendiniz türeteceksiniz. Yoksa zaten kendiniz için geliştirdiniz mi, adım adım üyeyi nasıl bulacağınızı anlatıyorsunuz? Eğer öyleyse, gerekçenizin doğruluğunu kontrol edin.

Bunu bu ilerlemenin inci terimini bulma örneğiyle açıklayalım:

Başka bir deyişle:

Verilen geometrik ilerlemenin teriminin değerini kendiniz bulun.

Olmuş? Cevaplarımızı karşılaştıralım:

Geometrik ilerlemenin önceki her terimiyle sıralı olarak çarptığımızda, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişiselleştirmeye" çalışalım - genel forma koyalım ve şunu elde edelim:

Türetilen formül hem pozitif hem de negatif tüm değerler için geçerlidir. Aşağıdaki koşullarla geometrik ilerlemenin terimlerini hesaplayarak bunu kendiniz kontrol edin: , a.

Saydın mı? Sonuçları karşılaştıralım:

Bir terimle aynı şekilde bir ilerleme terimi bulmanın mümkün olacağını kabul edin, ancak yanlış hesaplama olasılığı vardır. Ve eğer geometrik ilerlemenin inci terimini zaten bulduysak, formülün "kesilmiş" kısmını kullanmaktan daha basit ne olabilir?

Sonsuz azalan geometrik ilerleme.

Daha yakın zamanlarda sıfırdan büyük ya da küçük olabileceğinden bahsettik, ancak geometrik ilerlemenin çağrıldığı özel değerler var. sonsuz azalan.

Sizce bu isim neden verildi?
Öncelikle terimlerden oluşan bazı geometrik ilerlemeler yazalım.
O halde şöyle diyelim:

Sonraki her terimin bir öncekinden bir kat daha az olduğunu görüyoruz, ancak herhangi bir sayı olacak mı? Hemen cevap vereceksiniz - "hayır". Bu yüzden sonsuza kadar azalıyor; azalıyor, azalıyor ama asla sıfır olmuyor.

Bunun görsel olarak nasıl göründüğünü net bir şekilde anlamak için ilerlememizin bir grafiğini çizmeye çalışalım. Dolayısıyla bizim durumumuz için formül aşağıdaki formu alır:

Grafiklerde bağımlılığı çizmeye alışkınız, bu nedenle:

İfadenin özü değişmedi: ilk girdide geometrik ilerlemenin bir üyesinin değerinin sıra numarasına bağımlılığını gösterdik ve ikinci girdide basitçe geometrik ilerlemenin bir üyesinin değerini şu şekilde aldık: ve sıra sayısını olarak değil, olarak belirledi. Geriye kalan tek şey bir grafik oluşturmaktır.
Bakalım ne almışsın. İşte bulduğum grafik:

Görüyor musun? Fonksiyon azalır, sıfıra yaklaşır ama asla onu geçmez, yani sonsuz azalandır. Grafik üzerinde noktalarımızı ve aynı zamanda koordinat ve ne anlama geldiğini işaretleyelim:

İlk terimi de eşitse, geometrik ilerlemenin grafiğini şematik olarak göstermeye çalışın. Analiz edin, önceki grafiğimizle arasındaki fark nedir?

Becerebildin mi? İşte bulduğum grafik:

Artık geometrik ilerleme konusunun temellerini tam olarak anladığınıza göre: ne olduğunu biliyorsunuz, terimini nasıl bulacağınızı biliyorsunuz ve aynı zamanda sonsuz azalan geometrik ilerlemenin ne olduğunu da biliyorsunuz, haydi ana özelliğine geçelim.

Geometrik ilerlemenin özelliği.

Aritmetik ilerlemenin terimlerinin özelliğini hatırlıyor musunuz? Evet evet, bu ilerlemenin terimlerinin önceki ve sonraki değerleri varken belirli bir ilerleme sayısının değeri nasıl bulunur? Hatırlıyor musun? Bu:

Şimdi geometrik ilerlemenin terimleri için tamamen aynı soruyla karşı karşıyayız. Böyle bir formül elde etmek için çizmeye ve akıl yürütmeye başlayalım. Göreceksiniz, çok kolay, eğer unutursanız kendiniz de çıkarabilirsiniz.

İçinde bildiğimiz başka bir basit geometrik ilerlemeyi ele alalım ve. Nasıl bulunur? Aritmetik ilerlemeyle bu kolay ve basittir, peki ya burada? Aslında geometrik olarak da karmaşık bir şey yok - bize verilen her değeri formüle göre yazmanız yeterli.

Şimdi bu konuda ne yapmamız gerektiğini sorabilirsiniz. Evet, çok basit. Öncelikle bu formülleri bir resim üzerinde gösterelim ve onlarla çeşitli manipülasyonlar yaparak bir değere ulaşmaya çalışalım.

Bize verilen rakamlardan soyutlayalım, sadece formül üzerinden ifadelerine odaklanalım. Turuncu renkle vurgulanan değeri, yanındaki terimleri bilerek bulmamız gerekiyor. Sonuç olarak alabileceğimiz çeşitli eylemler gerçekleştirmeye çalışalım.

Ek.
İki ifade eklemeye çalışalım ve şunu elde edelim:

Gördüğünüz gibi bu ifadeyi hiçbir şekilde ifade edemiyoruz, bu nedenle başka bir seçenek olan çıkarma işlemini deneyeceğiz.

Çıkarma.

Gördüğünüz gibi bunu da ifade edemiyoruz o yüzden bu ifadeleri birbiriyle çarpmaya çalışalım.

Çarpma işlemi.

Şimdi bize verilen geometrik ilerlemenin terimlerini bulunması gerekenlerle karşılaştırarak elimizde ne olduğuna dikkatlice bakın:

Bilin bakalım neden bahsediyorum? Doğru şekilde bulmak için, istenen sayıya bitişik geometrik ilerleme sayılarının karekökünü birbiriyle çarpmamız gerekir:

Hadi bakalım. Geometrik ilerleme özelliğini kendiniz elde ettiniz. Bu formülü genel biçimde yazmaya çalışın. Olmuş?

Durumu unuttunuz mu? Bunun neden önemli olduğunu düşünün, örneğin bunu kendiniz hesaplamaya çalışın. Bu durumda ne olacak? Bu doğru, tamamen saçmalık çünkü formül şöyle görünüyor:

Bu nedenle bu sınırlamayı unutmayın.

Şimdi neye eşit olduğunu hesaplayalım

Doğru cevap - ! Hesaplama sırasında ikinci olası değeri unutmadıysanız, o zaman harikasınız ve hemen eğitime geçebilirsiniz ve unutursanız, aşağıda tartışılanları okuyun ve her iki kökü de yazmanın neden gerekli olduğuna dikkat edin. cevapta.

Her iki geometrik ilerlememizi de (biri değerle, diğeri değerle) çizelim ve her ikisinin de var olma hakkına sahip olup olmadığını kontrol edelim:

Böyle bir geometrik ilerlemenin var olup olmadığını kontrol etmek için verilen tüm terimlerin aynı olup olmadığına bakmak gerekir. Birinci ve ikinci durumlar için q'yu hesaplayın.

Neden iki cevap yazmamız gerektiğini anladınız mı? Çünkü aradığınız terimin işareti olumlu ya da olumsuz olmasına bağlıdır! Ve ne olduğunu bilmediğimiz için her iki cevabı da artı ve eksi ile yazmamız gerekiyor.

Artık ana noktalarda uzmanlaştığınıza ve geometrik ilerleme özelliğinin formülünü türettiğinize göre, bulma, bilme ve

Cevaplarınızı doğru olanlarla karşılaştırın:

Ne düşünüyorsunuz, ya bize istenen sayıya bitişik geometrik ilerleme terimlerinin değerleri değil de ondan eşit uzaklıkta verilmiş olsaydı. Örneğin, bulmamız ve vermemiz gerekiyor ve. Bu durumda elde ettiğimiz formülü kullanabilir miyiz? Formülü orijinal olarak türettiğinizde yaptığınız gibi, her bir değerin nelerden oluştuğunu açıklayarak bu olasılığı aynı şekilde doğrulamaya veya çürütmeye çalışın.
Ne aldın?

Şimdi tekrar dikkatlice bakın.
ve buna bağlı olarak:

Buradan formülün işe yaradığı sonucuna varabiliriz. sadece komşularla değil geometrik ilerlemenin istenen terimleriyle, aynı zamanda eşit uzaklıktaüyelerin aradıklarından.

Böylece ilk formülümüz şu şekli alır:

Yani, ilk durumda öyle dediysek, şimdi bundan daha küçük olan herhangi bir doğal sayıya eşit olabileceğini söylüyoruz. Önemli olan, verilen her iki sayı için de aynı olmasıdır.

Belirli örneklerle pratik yapın, ancak son derece dikkatli olun!

  1. , . Bulmak.
  2. , . Bulmak.
  3. , . Bulmak.

Karar verilmiş? Umarım son derece dikkatli davranmışsınızdır ve küçük bir yakalamayı fark etmişsinizdir.

Sonuçları karşılaştıralım.

İlk iki durumda yukarıdaki formülü sakince uygularız ve aşağıdaki değerleri elde ederiz:

Üçüncü durumda ise bize verilen numaraların seri numaralarını dikkatlice incelediğimizde aradığımız numaraya eşit uzaklıkta olmadıklarını anlarız: bir önceki numaradır ancak bir pozisyonda kaldırılmıştır yani formülü uygulamak mümkün değil.

Nasıl çözeceksin? Aslında göründüğü kadar zor değil! Bize verilen her sayının ve aradığımız sayının nelerden oluştuğunu yazalım.

Yani elimizde ve var. Bakalım onlarla neler yapabiliriz? Bölmeyi öneriyorum. Şunu elde ederiz:

Verilerimizi formülde yerine koyarız:

Bulabileceğimiz bir sonraki adım - bunun için ortaya çıkan sayının küp kökünü almamız gerekiyor.

Şimdi elimizdekilere tekrar bakalım. Elimizde var ama bulmamız gerekiyor ve bu da şuna eşit:

Hesaplama için gerekli tüm verileri bulduk. Formülde yerine koyun:

Cevabımız: .

Başka bir benzer sorunu kendiniz çözmeyi deneyin:
Verilen: ,
Bulmak:

Ne kadar aldın? Sahibim - .

Gördüğünüz gibi aslında ihtiyacınız var sadece bir formülü hatırla- . Geri kalanını istediğiniz zaman hiçbir zorlukla karşılaşmadan kendiniz çekebilirsiniz. Bunu yapmak için, bir parça kağıda en basit geometrik ilerlemeyi yazmanız ve yukarıda açıklanan formüle göre her bir sayısının neye eşit olduğunu yazmanız yeterlidir.

Geometrik ilerlemenin terimlerinin toplamı.

Şimdi belirli bir aralıktaki geometrik ilerlemenin terimlerinin toplamını hızlı bir şekilde hesaplamamızı sağlayan formüllere bakalım:

Sonlu bir geometrik ilerlemenin terimlerinin toplamına ilişkin formülü elde etmek için yukarıdaki denklemin tüm kısımlarını çarparız. Şunu elde ederiz:

Dikkatli bakın: son iki formülün ortak noktası nedir? Bu doğru, örneğin ortak üyeler vb., ilk ve son üye hariç. 2. denklemden 1.yi çıkarmaya çalışalım. Ne aldın?

Şimdi geometrik ilerlemenin terimini formül aracılığıyla ifade edin ve elde edilen ifadeyi son formülümüzde yerine koyun:

İfadeyi gruplandırın. Almalısınız:

Geriye sadece şunu ifade etmek kalıyor:

Buna göre bu durumda.

Farzedelim? O zaman hangi formül işe yarıyor? Geometrik bir ilerleme hayal edin. Neye benziyor? Bir dizi aynı sayı doğrudur, dolayısıyla formül şöyle görünecektir:

Hem aritmetik hem de geometrik ilerlemeyle ilgili birçok efsane vardır. Bunlardan biri de satrancın yaratıcısı Set efsanesidir.

Birçok kişi satranç oyununun Hindistan'da icat edildiğini biliyor. Hindu kralı onunla tanıştığında onun zekasından ve sahip olabileceği pozisyonların çeşitliliğinden çok memnun kaldı. Bunun tebaasından biri tarafından icat edildiğini öğrenen kral, onu bizzat ödüllendirmeye karar verdi. Mucidi yanına çağırdı ve ona istediği her şeyi istemesini emretti, en yetenekli arzuyu bile yerine getireceğine söz verdi.

Seta düşünmek için zaman istedi ve ertesi gün Seta kralın huzuruna çıktığında, bu isteğinin benzeri görülmemiş alçakgönüllülüğüyle kralı şaşırttı. Satranç tahtasının ilk karesine bir buğday tanesi, ikinci karesine bir buğday tanesi, üçüncü karesine bir buğday tanesi, dördüncü karesine bir buğday tanesi vb. verilmesini istedi.

Kral sinirlendi ve hizmetkarın isteğinin kralın cömertliğine yakışmadığını söyleyerek Seth'i uzaklaştırdı, ancak hizmetkarın tahtanın tüm kareleri için tahıllarını alacağına söz verdi.

Ve şimdi soru şu: Geometrik ilerlemenin terimlerinin toplamı formülünü kullanarak Seth'in kaç tane tane alması gerektiğini hesaplayın?

Mantık yürütmeye başlayalım. Şarta göre Seth satranç tahtasının ilk karesi için, ikinci karesi için, üçüncüsü için, dördüncüsü için vb. bir buğday tanesi istediğine göre problemin geometrik ilerlemeyle ilgili olduğunu görüyoruz. Bu durumda neye eşittir?
Sağ.

Satranç tahtasının toplam kareleri. Sırasıyla, . Tüm verilere sahibiz, geriye sadece bunları formüle ekleyip hesaplamak kalıyor.

Belirli bir sayının en azından yaklaşık "ölçeği"ni hayal etmek için derecenin özelliklerini kullanarak dönüşüm yaparız:

Tabii ki, isterseniz bir hesap makinesi alıp hangi sayıya ulaşacağınızı hesaplayabilirsiniz, yoksa benim sözüme güvenmek zorunda kalacaksınız: ifadenin son değeri şu olacaktır.
Yani:

kentilyon katrilyon trilyon milyar milyon bin.

Phew) Bu sayının büyüklüğünü hayal etmek istiyorsanız, tahıl miktarının tamamını barındırmak için ne kadar büyük bir ahırın gerekli olacağını tahmin edin.
Ahır m yüksekliğinde ve m genişliğinde ise uzunluğunun km kadar uzaması gerekir. Dünya'dan Güneş'e olan uzaklığın iki katı.

Kral matematikte güçlü olsaydı, bilim adamını tahılları saymaya davet edebilirdi, çünkü bir milyon taneyi saymak için en az bir gün yorulmak bilmeden saymaya ihtiyacı olurdu ve kentilyonları saymanın gerekli olduğu göz önüne alındığında, taneleri saymak hayatı boyunca sayılması gerekirdi.

Şimdi geometrik ilerlemenin terimlerinin toplamını içeren basit bir problemi çözelim.
5A sınıfı öğrencisi Vasya gribe yakalandı ancak okula gitmeye devam ediyor. Vasya her gün iki kişiye bulaştırıyor, o da iki kişiye daha bulaştırıyor ve bu böyle devam ediyor. Sınıfta sadece insanlar var. Kaç gün sonra tüm sınıf gripten hasta olacak?

Yani geometrik ilerlemenin ilk terimi Vasya'dır, yani kişidir. Geometrik ilerlemenin üçüncü terimi, geldiği ilk gün enfekte ettiği iki kişidir. İlerleme dönemlerinin toplamı 5A öğrenci sayısına eşittir. Buna göre şöyle bir ilerlemeden bahsediyoruz:

Verilerimizi geometrik ilerlemenin terimlerinin toplamı formülünde yerine koyalım:

Birkaç gün içinde tüm sınıf hastalanacak. Formüllere ve sayılara inanmıyor musunuz? Öğrencilerin “enfeksiyonunu” kendiniz tasvir etmeye çalışın. Olmuş? Bakın benim için nasıl görünüyor:

Her biri bir kişiye bulaşırsa ve sınıfta yalnızca bir kişi varsa, öğrencilerin gripten kaç gün sonra hastalanacağını kendiniz hesaplayın.

Hangi değeri aldın? Bir gün sonra herkesin hastalanmaya başladığı ortaya çıktı.

Gördüğünüz gibi, böyle bir görev ve onun çizimi, her birinin yeni insanları “getirdiği” bir piramite benziyor. Ancak er ya da geç öyle bir an gelir ki ikincisi kimseyi çekemez. Bizim durumumuzda sınıfın izole olduğunu hayal edersek, gelen kişi zinciri () kapatır. Bu nedenle, bir kişi, diğer iki katılımcıyı getirirseniz paranın verildiği bir mali piramide dahil olsaydı, o zaman kişi (veya genel olarak) kimseyi getirmeyecek, dolayısıyla bu mali dolandırıcılığa yatırdığı her şeyi kaybedecekti.

Yukarıda söylenen her şey azalan veya artan bir geometrik ilerlemeye atıfta bulunur, ancak hatırladığınız gibi, özel bir türümüz var - sonsuz azalan bir geometrik ilerleme. Üyelerinin toplamı nasıl hesaplanır? Peki neden bu tür bir ilerlemenin belirli özellikleri var? Hadi birlikte çözelim.

Öncelikle örneğimizden sonsuz azalan geometrik ilerlemenin çizimine tekrar bakalım:

Şimdi biraz daha önce türetilen geometrik ilerlemenin toplamı formülüne bakalım:
veya

Ne için çabalıyoruz? Doğru, grafik sıfıra doğru yöneldiğini gösteriyor. Yani at, neredeyse elde edeceğimiz ifadeyi hesaplarken sırasıyla neredeyse eşit olacaktır. Bu bakımdan sonsuz azalan geometrik ilerlemenin toplamını hesaplarken bu parantez eşit olacağından ihmal edilebileceğine inanıyoruz.

- formül sonsuz azalan geometrik ilerlemenin terimlerinin toplamıdır.

ÖNEMLİ! Sonsuz derecede azalan bir geometrik ilerlemenin terimlerinin toplamı için formülü yalnızca koşulun toplamı bulmamız gerektiğini açıkça belirtmesi durumunda kullanırız. sonsuzÜye sayısı.

Belirli bir n sayısı belirtilirse, o zaman veya olsa bile n terimin toplamı için formülü kullanırız.

Şimdi pratik yapalım.

  1. Ve ile geometrik ilerlemenin ilk terimlerinin toplamını bulun.
  2. Ve ile sonsuz azalan geometrik ilerlemenin terimlerinin toplamını bulun.

Umarım çok dikkatli davranmışsınızdır. Cevaplarımızı karşılaştıralım:

Artık geometrik ilerleme hakkında her şeyi biliyorsunuz ve teoriden pratiğe geçme zamanı geldi. Sınavda en sık karşılaşılan geometrik ilerleme problemleri bileşik faiz hesaplama problemleridir. Bunlar konuşacaklarımız.

Bileşik faiz hesaplamasında karşılaşılan sorunlar.

Muhtemelen bileşik faiz formülünü duymuşsunuzdur. Ne anlama geldiğini anlıyor musun? Değilse, hadi çözelim, çünkü sürecin kendisini anladığınızda, geometrik ilerlemenin bununla ne ilgisi olduğunu hemen anlayacaksınız.

Hepimiz bankaya gideriz ve mevduatlar için farklı koşulların olduğunu biliriz: Buna vade, ek hizmetler ve hesaplamanın iki farklı yolu olan faiz dahildir: basit ve karmaşık.

İLE basit ilgi her şey az çok açıktır: faiz, mevduat vadesinin sonunda bir kez tahakkuk ettirilir. Yani yılda 100 ruble yatırdığımızı söylersek, bunlar ancak yıl sonunda kredilendirilecektir. Buna göre depozito sonunda ruble alacağız.

Bileşik faiz- bu, meydana geldiği bir seçenektir faiz kapitalizasyonu, yani bunların depozito tutarına eklenmesi ve daha sonra gelirin başlangıçtan değil, birikmiş depozito tutarından hesaplanması. Büyük harf kullanımı sürekli olarak gerçekleşmez, ancak belirli bir sıklıkta gerçekleşir. Kural olarak, bu tür süreler eşittir ve çoğu zaman bankalar bir ay, üç aylık dönem veya yılı kullanır.

Her yıl aynı rubleyi yatırdığımızı, ancak depozitonun aylık kapitalizasyonunu yaptığımızı varsayalım. Biz ne yapıyoruz?

Buradaki her şeyi anlıyor musun? Değilse, adım adım çözelim.

Bankaya ruble getirdik. Ay sonuna kadar hesabımızda ruble artı faizinden oluşan bir miktar olmalı, yani:

Kabul etmek?

Bunu parantezlerin dışına çıkarabiliriz ve şunu elde ederiz:

Katılıyorum, bu formül zaten başlangıçta yazdıklarımıza daha çok benziyor. Geriye kalan tek şey yüzdeleri hesaplamak

Sorun bildiriminde bize yıllık oranlar anlatılıyor. Bildiğiniz gibi çarpma yapmıyoruz - yüzdeleri ondalık kesirlere dönüştürüyoruz, yani:

Sağ? Şimdi sorabilirsiniz, bu sayı nereden geldi? Çok basit!
Tekrar ediyorum: sorun bildirimi şunu söylüyor YILLIK tahakkuk eden faiz AYLIK. Bildiğiniz gibi, buna göre bir yıl içinde banka bizden aylık yıllık faizin bir kısmını tahsil edecek:

Anladın mı? Şimdi faizin günlük olarak hesaplandığını söyleseydim formülün bu kısmının nasıl görüneceğini yazmaya çalışın.
Becerebildin mi? Sonuçları karşılaştıralım:

Tebrikler! Görevimize dönelim: Birikmiş mevduat tutarına faiz tahakkuk ettiğini de dikkate alarak ikinci ayda hesabımıza ne kadar yatırılacağını yazın.
İşte elde ettiklerim:

Veya başka bir deyişle:

Sanırım zaten bir model fark ettiniz ve tüm bunlarda geometrik bir ilerleme gördünüz. Üyesinin neye eşit olacağını, yani ay sonunda ne kadar para alacağımızı yazın.
Yaptı? Hadi kontrol edelim!

Gördüğünüz gibi, bir yıl boyunca bir bankaya basit faiz oranıyla para koyarsanız ruble, bileşik faiz oranıyla ise ruble alırsınız. Faydası küçüktür, ancak bu yalnızca üçüncü yılda gerçekleşir, ancak daha uzun bir süre için kapitalizasyon çok daha karlıdır:

Bileşik faizi içeren başka bir problem türüne bakalım. Anladığınız şeyden sonra, bu sizin için temel olacaktır. Yani görev:

Zvezda şirketi 2000 yılında dolar sermayesiyle sektöre yatırım yapmaya başladı. 2001 yılından bu yana her yıl bir önceki yılın sermayesine eşit kâr elde etmektedir. Kârlar dolaşımdan çekilmeseydi Zvezda şirketi 2003 yılı sonunda ne kadar kâr elde edecek?

2000 yılında Zvezda şirketinin başkenti.
- 2001 yılında Zvezda şirketinin sermayesi.
- 2002 yılında Zvezda şirketinin sermayesi.
- 2003 yılında Zvezda şirketinin sermayesi.

Veya kısaca şunu yazabiliriz:

Bizim durumumuz için:

2000, 2001, 2002 ve 2003.

Sırasıyla:
ruble
Yüzdenin YILLIK olarak verildiği ve YILLIK olarak hesaplandığı için bu problemde ne ile ne de ile bölme işlemimizin olmadığını lütfen unutmayın. Yani bileşik faizle ilgili bir problemi okurken, yüzde kaç verildiğine ve hangi dönemde hesaplandığına dikkat edin ve ancak ondan sonra hesaplamalara geçin.
Artık geometrik ilerleme hakkında her şeyi biliyorsunuz.

Eğitim.

  1. Eğer biliniyorsa geometrik ilerlemenin terimini bulun ve
  2. Eğer biliniyorsa, geometrik ilerlemenin ilk terimlerinin toplamını bulun ve
  3. MDM Capital şirketi 2003 yılında dolar cinsinden sermayeyle sektöre yatırım yapmaya başladı. 2004 yılından bu yana her yıl bir önceki yılın sermayesine eşit kâr elde etmektedir. MSK Cash Flows şirketi 2005 yılında sektöre 10.000$ tutarında yatırım yapmaya başlamış, 2006 yılında ise 200.000$ kar elde etmeye başlamıştır. Karlar dolaşımdan çekilmemişse, 2007 yılı sonunda bir şirketin sermayesi diğerinden kaç dolar daha fazladır?

Yanıtlar:

  1. Problem cümlesi ilerlemenin sonsuz olduğunu söylemediğinden ve belirli sayıda terimin toplamının bulunması gerektiğinden hesaplama aşağıdaki formüle göre yapılır:

  2. MDM Sermaye Şirketi:

    2003, 2004, 2005, 2006, 2007.
    - %100 yani 2 kat artar.
    Sırasıyla:
    ruble
    MSK Nakit Akışları şirketi:

    2005, 2006, 2007.
    - kat kat artar.
    Sırasıyla:
    ruble
    ruble

Özetleyelim.

1) Geometrik ilerleme ( ), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekinin aynı sayıyla çarpımına eşit olan bir sayısal dizidir. Bu sayıya geometrik ilerlemenin paydası denir.

2) Geometrik ilerlemenin terimlerinin denklemi .

3) ve dışında her değeri alabilir.

  • eğer, o zaman ilerlemenin sonraki tüm terimleri aynı işarete sahipse - onlar olumlu;
  • eğer öyleyse, ilerlemenin sonraki tüm koşulları alternatif işaretler;
  • ne zaman - ilerlemeye sonsuz azalma denir.

4) , - geometrik ilerleme özelliğine sahip (bitişik terimler)

veya
, (eşit mesafeli terimler)

Bulduğunda bunu unutma iki cevap olmalı.

Örneğin,

5) Geometrik ilerlemenin terimlerinin toplamı aşağıdaki formülle hesaplanır:
veya

İlerleme sonsuza kadar azalıyorsa, o zaman:
veya

ÖNEMLİ! Sonsuz derecede azalan bir geometrik ilerlemenin terimlerinin toplamına ilişkin formülü yalnızca koşulun sonsuz sayıda terimin toplamını bulmamız gerektiğini açıkça belirtmesi durumunda kullanırız.

6) Bileşik faiz sorunları, fonların dolaşımdan çekilmemesi koşuluyla geometrik ilerlemenin 3. dönemi formülü kullanılarak da hesaplanır:

GEOMETRİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Geometrik ilerleme( ), ilk terimi sıfırdan farklı olan ve ikinciden başlayarak her terim bir öncekinin aynı sayıyla çarpımına eşit olan bir sayısal dizidir. Bu numara denir geometrik ilerlemenin paydası.

Geometrik ilerlemenin paydası ve dışında herhangi bir değer alabilir.

  • Eğer ilerlemenin sonraki tüm terimleri aynı işarete sahipse - bunlar pozitiftir;
  • eğer öyleyse, ilerlemenin sonraki tüm üyeleri alternatif işaretler;
  • ne zaman - ilerlemeye sonsuz azalma denir.

Geometrik ilerleme terimlerinin denklemi - .

Geometrik ilerlemenin terimlerinin toplamı formülle hesaplanır:
veya

SAYISAL DİZİLER VI

§ l48. Sonsuz azalan geometrik ilerlemenin toplamı

Şimdiye kadar toplamlardan bahsederken, bu toplamlardaki terim sayısının sonlu olduğunu (örneğin 2, 15, 1000 vb.) varsayıyorduk. Ancak bazı problemleri (özellikle yüksek matematik) çözerken sonsuz sayıda terimin toplamlarıyla uğraşmak gerekir.

S= A 1 + A 2 + ... + A N + ... . (1)

Bu miktarlar nedir? A-tarikatı sonsuz sayıda terimin toplamı A 1 , A 2 , ..., A N , ... S toplamının limiti olarak adlandırılır N Birinci P sayılar ne zaman P -> :

S=S N = (A 1 + A 2 + ... + A N ). (2)

Limit (2) elbette mevcut olabilir veya olmayabilir. Buna göre (1) toplamının var ya da yok olduğunu söylüyorlar.

Her özel durumda toplam (1)'in mevcut olup olmadığını nasıl öğrenebiliriz? Ortak karar Bu konu programımızın kapsamını çok aşıyor. Ancak önemli bir şey var özel durumşimdi bunu dikkate almamız gerekiyor. Sonsuz azalan bir geometrik ilerlemenin terimlerinin toplanmasından bahsedeceğiz.

İzin vermek A 1 , A 1 Q , A 1 Q 2, ... sonsuz azalan bir geometrik ilerlemedir. Bu şu anlama gelir: | Q |< 1. Сумма первых P bu ilerlemenin şartları eşittir

Limitlerle ilgili ana teoremlerden değişkenler(bkz. § 136) şunu elde ederiz:

Fakat 1 = 1, a qn = 0. Bu nedenle

Yani sonsuz azalan bir geometrik ilerlemenin toplamı, bu ilerlemenin ilk teriminin bir eksi bu ilerlemenin paydasına bölünmesine eşittir.

1) 1, 1/3, 1/9, 1/27, ... geometrik ilerlemesinin toplamı şuna eşittir:

ve geometrik ilerlemenin toplamı 12'dir; -6; 3; - 3/2 , ... eşit

2) Basit periyodik kesir 0,454545 ... normale dönüştürün.

Bu sorunu çözmek için hayal edelim verilen kesir sonsuz bir toplam olarak:

Sağ kısım Bu eşitlik, ilk terimi 45/100, paydası 1/100 olan sonsuz azalan geometrik ilerlemenin toplamıdır. Bu yüzden

Açıklanan yöntemi kullanarak aynı zamanda elde edilebilir. Genel kural basit periyodik kesirlerin sıradan kesirlere dönüştürülmesi (bkz. Bölüm II, § 38):

Basit bir periyodik kesri sıradan bir kesire dönüştürmek için aşağıdakileri yapmanız gerekir: noktayı paya koyun ondalık, payda ise ondalık kesrin periyodundaki rakam sayısı kadar alınan dokuzlardan oluşan bir sayıdır.

3) Karışık periyodik kesir 0,58333 ....'yi sıradan bir kesire dönüştürün.

Bu kesri sonsuz bir toplam olarak düşünelim:

Bu eşitliğin sağ tarafında 3/1000'den başlayarak tüm terimler, ilk terimi 3/1000, paydası 1/10 olan sonsuz azalan geometrik dizi oluşturur. Bu yüzden

Açıklanan yöntemi kullanarak, karışık periyodik kesirleri sıradan kesirlere dönüştürmek için genel bir kural elde edilebilir (bkz. Bölüm II, § 38). Burada bilinçli olarak sunmuyoruz. Bu hantal kuralı hatırlamanıza gerek yok. Herhangi bir karışık periyodik kesirin, sonsuz azalan geometrik ilerlemenin ve belirli bir sayının toplamı olarak temsil edilebileceğini bilmek çok daha faydalıdır. Ve formül

Sonsuza kadar azalan geometrik ilerlemenin toplamı için elbette şunu hatırlamanız gerekir.

Bir alıştırma olarak, aşağıda verilen 995-1000 numaralı problemlere ek olarak, bir kez daha 301 § 38 numaralı probleme dönmenizi öneriyoruz.

Egzersizler

995. Sonsuza kadar azalan geometrik ilerlemenin toplamına ne denir?

996. Sonsuz azalan geometrik ilerlemelerin toplamlarını bulun:

997. Hangi değerlerde X ilerleme

sonsuza kadar mı azalıyor? Böyle bir ilerlemenin toplamını bulun.

998.V eşkenar üçgen yan ile A kenarlarının orta noktaları birleştirilerek yeni bir üçgen yazılır; bu üçgenin içine aynı şekilde yeni bir üçgen yazılır ve bu böyle sonsuza kadar devam eder.

a) tüm bu üçgenlerin çevrelerinin toplamı;

b) alanlarının toplamı.

999. Kenarlı kare A kenarlarının orta noktaları birleştirilerek yeni bir kare yazılır; Bu karenin içine de aynı şekilde bir kare yazılır ve bu böyle sonsuza kadar devam eder. Bu karelerin çevrelerinin toplamını ve alanlarının toplamını bulun.

1000. Toplamı 25/4 ve terimlerinin kareleri toplamı 625/24 olacak şekilde sonsuz azalan bir geometrik dizi oluşturun.

Şimdi sonsuz bir geometrik ilerlemenin toplanması sorununu ele alalım. Belirli bir sonsuz ilerlemenin kısmi toplamına, onun ilk terimlerinin toplamı diyelim. Kısmi toplamı sembolle gösterelim

Her sonsuz ilerleme için

kısmi toplamlarının (aynı zamanda sonsuz) bir dizisi oluşturulabilir

Artışı sınırsız olan bir dizinin bir limiti olsun

Bu durumda S sayısına, yani bir ilerlemenin kısmi toplamlarının limitine sonsuz ilerlemenin toplamı denir. Sonsuz azalan geometrik ilerlemenin her zaman bir toplamı olduğunu kanıtlayacağız ve bu toplam için bir formül türeteceğiz (aynı zamanda şunu da gösterebiliriz: sonsuz ilerleme toplamı yoktur, mevcut değildir).

İfadeyi yazalım kısmi miktar formül (91.1)'e göre ilerlemenin terimlerinin toplamı olarak ve kısmi toplamın limitini şu şekilde ele alacağız:

Teorem 89'dan azalan bir ilerleme için; bu nedenle fark limiti teoremini uygulayarak şunu buluruz:

(burada da kural kullanılır: sabit faktör limit işaretinin ötesine alınır). Varlığı kanıtlanır ve aynı zamanda sonsuz azalan geometrik ilerlemenin toplamının formülü elde edilir:

Eşitlik (92.1) şeklinde de yazılabilir.

Burada miktarın paradoksal olduğu düşünülebilir. sonsuz sayı Terimlere çok kesin bir nihai değer atanır.

Bu durumu açıklamak için net bir örnek verilebilir. Kenarı olan bir kare düşünün bire eşit(Şek. 72). Bu kareyi bölelim yatay çizgi iki eşit parçaya bölünür ve Üst kısmı Bunu, kenarları 2 ve olan bir dikdörtgen oluşturacak şekilde alt tarafa uygulayın. daha sonrasında sağ yarı Bu dikdörtgeni yine yatay bir çizgiyle ikiye bölüp üst kısmı alt kısma bağlayacağız (Şekil 72'de gösterildiği gibi). Bu işleme devam ederek alanı 1 olan orijinal kareyi sürekli olarak şu şekle dönüştürüyoruz: eşit boyutlu rakamlar(ince basamaklı bir merdiven şeklini alır).

Bu sürecin sonsuz devamı ile karenin tüm alanı sonsuz sayıda terime ayrıştırılır - tabanları 1'e eşit olan dikdörtgenlerin alanları ve yükseklikleri tam olarak sonsuz bir azalan ilerleme oluşturur, toplamı.

yani beklendiği gibi karenin alanına eşittir.

Örnek. Aşağıdaki sonsuz ilerlemelerin toplamlarını bulun:

Çözüm, a) Bu ilerlemenin olduğunu fark ediyoruz. Dolayısıyla (92.2) formülünü kullanarak şunu buluyoruz:

b) Burada aynı formül (92.2)'yi kullanarak şunu elde ettiğimiz anlamına gelir:

c) Dolayısıyla bu ilerlemenin toplamının olmadığını görüyoruz.

Paragraf 5'te, periyodik bir ondalık kesirin sıradan bir kesir haline dönüştürülmesine yönelik sonsuz azalan ilerlemenin terimlerinin toplamına ilişkin formülün uygulanması gösterilmiştir.

Egzersizler

1. Sonsuz azalan bir geometrik ilerlemenin toplamı 3/5 ve ilk dört teriminin toplamı 13/27'dir. İlerlemenin ilk terimini ve paydasını bulun.

2. İkinci terimin birinci terimden 35 sayı daha küçük ve üçüncü terimin dördüncü terimden 560 birim büyük olduğu, alternatif bir geometrik ilerleme oluşturan dört sayı bulun.

3. Sıranın şu şekilde olduğunu gösterin:

sonsuz derecede azalan bir geometrik ilerleme oluşturur, ardından dizi

herhangi biri için sonsuz derecede azalan bir geometrik ilerleme oluşturur. Bu ifade şu durumda geçerli olacak mı?

Geometrik ilerlemenin terimlerinin çarpımı için bir formül türetin.



Makaleyi beğendin mi? Arkadaşlarınla ​​paylaş!