Aritmetik ilerleme. Aritmetik ilerleme

Veya aritmetik - bu bir tür sıralı işlemdir sayı dizisiözellikleri bir okul cebir dersinde incelenen. Bu makalede, bir aritmetik ilerlemenin toplamının nasıl bulunacağı sorusu ayrıntılı olarak tartışılmaktadır.

Bu nasıl bir ilerleme?

Soruna geçmeden önce (bir aritmetik ilerlemenin toplamı nasıl bulunur), neden bahsettiğimizi anlamakta fayda var.

Herhangi bir sıra gerçek sayılarÖnceki her sayıya bir değer eklenerek (çıkarılarak) elde edilen sayıya cebirsel (aritmetik) ilerleme denir. Bu tanım matematik diline çevrildiğinde şu şekli alır:

işte ben... seri numarası a i serisinin elemanı. Böylece yalnızca bir başlangıç ​​​​numarasını bilerek tüm seriyi kolayca geri yükleyebilirsiniz. Formüldeki d parametresine ilerleme farkı denir.

Söz konusu sayı dizisi için aşağıdaki eşitliğin geçerli olduğu kolaylıkla gösterilebilir:

a n = a 1 + d * (n - 1).

Yani n'inci elemanın değerini sırasıyla bulmak için d farkını ilk eleman a'ya 1 n-1 kez eklemelisiniz.

Aritmetik ilerlemenin toplamı nedir: formül

Belirtilen miktara ilişkin formülü vermeden önce basit bir hususu dikkate almakta fayda vardır. özel durum. İlerleme veriliyor doğal sayılar 1'den 10'a kadar toplamlarını bulmanız gerekir. İlerlemede (10) az sayıda terim olduğundan, sorunu doğrudan çözmek, yani tüm unsurları sırayla toplamak mümkündür.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Göz önünde bulundurmaya değer bir şey ilginç şey: her terim bir sonrakinden aynı d = 1 değeri kadar farklı olduğundan, birincinin onuncuyla, ikincinin dokuzuncuyla vb. ikili toplamı aynı sonucu verecektir. Gerçekten mi:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Gördüğünüz gibi bu toplamlardan sadece 5 adet var, yani serinin eleman sayısından tam iki kat daha az. Daha sonra toplam sayısını (5) her toplamın sonucuyla (11) çarparak ilk örnekte elde edilen sonuca ulaşacaksınız.

Bu argümanları genelleştirirsek aşağıdaki ifadeyi yazabiliriz:

S n = n * (bir 1 + bir n) / 2.

Bu ifade, bir satırdaki tüm öğelerin toplamının hiç de gerekli olmadığını; ilk a 1 ve sonuncusu a n'nin değerini bilmenin yeterli olduğunu gösterir. toplam sayı n terim.

Belirli bir soruna çözüm ararken bu eşitliği ilk düşünenin Gauss olduğuna inanılıyor. okul öğretmeni görev: ilk 100 tam sayıyı toplayın.

m'den n'ye kadar elemanların toplamı: formül

Önceki paragrafta verilen formül, bir aritmetik ilerlemenin (ilk öğeler) toplamının nasıl bulunacağı sorusuna yanıt verir, ancak çoğu zaman problemlerde ilerlemenin ortasında bir sayı dizisinin toplanması gerekir. Bu nasıl yapılır?

Bu soruyu cevaplamanın en kolay yolu düşünmektir. sonraki örnek: m-th'den n-th'e kadar terimlerin toplamını bulmamız gereksin. Sorunu çözmek için, ilerlemenin m'den n'ye kadar verilen bölümünü yeni bir sayı dizisi biçiminde sunmalısınız. bunda m'inci temsil a m terimi ilk olacak ve bir n, n-(m-1) olarak numaralandırılacaktır. Bu durumda, toplam için standart formülün uygulanmasıyla aşağıdaki ifade elde edilecektir:

S m n = (n - m + 1) * (bir m + bir n) / 2.

Formül kullanma örneği

Aritmetik ilerlemenin toplamını nasıl bulacağınızı bildiğinizden, yukarıdaki formülleri kullanmanın basit bir örneğini düşünmeye değer.

Aşağıda sayısal bir dizi verilmiştir, 5'inciden başlayıp 12'nci ile biten terimlerinin toplamını bulmalısınız:

Verilen sayılar d farkının 3'e eşit olduğunu göstermektedir. n'inci eleman ifadesini kullanarak ilerlemenin 5. ve 12. terimlerinin değerlerini bulabilirsiniz. Görünüşe göre:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Söz konusu cebirsel ilerlemenin sonundaki sayıların değerlerini bilmek ve seride hangi sayıları işgal ettiklerini bilmek, önceki paragrafta elde edilen toplamın formülünü kullanabilirsiniz. Ortaya çıkacak:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Bu değerin farklı şekilde elde edilebileceğini belirtmekte fayda var: ilk önce ilk 12 elemanın toplamını şu şekilde bulun: standart formül, ardından aynı formülü kullanarak ilk 4 öğenin toplamını hesaplayın, ardından ikinciyi ilk toplamdan çıkarın.


Örneğin \(2\); dizisi \(5\); \(8\); \(11\); \(14\)... aritmetik bir ilerlemedir, çünkü sonraki her öğe bir öncekinden üç kat farklıdır (bir öncekinden üç ekleyerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) negatif bir sayı da olabilir. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğenin numarasına eşit bir sayısal indeksle gösterilirler.

Örneğin, \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) aritmetik ilerlemesi \(a_1=2\); \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme\(b_1=7; d=4\) koşulları tarafından verilmiştir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk olumsuz) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme verilmiştir aşağıdaki koşullar: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili birçok problem, asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen "kafa kafaya" karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez mi eklememiz gerekiyor? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları ilerlemenin n'inci terimi formülü ve \(n\) ilk terimin toplamı formülüdür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8.2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, sayısına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplam öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık her şeye sahipsin gerekli bilgiler hemen hemen her aritmetik ilerleme problemini çözmek için. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemedeki tüm negatif terimlerin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyoruz... ve burada küçük bir nüans ortaya çıkıyor - \(n\)'i bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Olmak için \(a_n\)'a ihtiyacımız var sıfırdan büyük. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve görünüşe göre ilki pozitif unsur\(66\) numarasına sahip olacaktır. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)'ncı elemandan \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için önceki öğeye eklediğimiz dört öğedir). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha var. Ancak bunları kolayca bulabilirsiniz.

Önemli Notlar!
1. Formüller yerine gobbledygook'u görürseniz önbelleğinizi temizleyin. Tarayıcınızda bunu nasıl yapacağınız burada yazılmıştır:
2. Makaleyi okumaya başlamadan önce en çok gezginimize dikkat edin. faydalı kaynakİçin

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin birinci, hangisinin ikinci olduğunu vb. sonuncuya kadar söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki komşu sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizimiz var.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından ortaya atılmış ve daha sonra anlaşılmıştır. geniş anlamda sonsuz bir sayı dizisi gibi. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya aritmetik ilerlemenin farkı denir ve gösterilir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
öyle mi aritmetik ilerleme - b, c.
değil mi aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini sırayla önceki değere eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Haydi "kişiliksizleştirmeye" çalışalım bu formül- Bunu genel forma koyalım ve şunu elde edelim:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerlemenin özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Başka bir deyişle, bilinen önceki ve verilenler verilen ilerleme teriminin değerini bulmaktır. ardışık değerler, bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Efsaneye göre, tüm zamanların en büyük matematikçilerinden biri olan "matematikçilerin kralı" Carl Gauss'un kendisi için kolayca çıkarıldığı tek bir formülü bulmaya devam ediyor...

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu görevi verdi: "Diğer kaynaklara göre dahil olan tüm doğal sayıların toplamını hesapla." Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözü pek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara daha yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Hiç denedin mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak şunu elde ederiz: toplam tutarşuna eşittir:
.
Dolayısıyla herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamının formülü şu şekilde olacaktır:

Bazı problemlerde n'inci terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendi başınıza hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının eşit olduğunu ve terimlerin toplamının eşit olduğunu buldu. Buna mı karar verdin?

Aslında, bir aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar, bir aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, hayal edin Eski Mısır ve en çok büyük ölçekli inşaat o zamanlar - bir piramidin inşası... Resimde onun bir tarafı görülüyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse bir duvar inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

İÇİNDE bu durumdaİlerleme şöyle görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Başarabildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, kaydediciler bunları her biri üst katmanöncekinden bir eksik günlük içerir. Duvarın temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Cevaplar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. Birinci tek sayı, son numara.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir sürü katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi, ilerlemedeki sayıların sayısı olan - formülüyle yazılır.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

Aritmetik İlerleme. ORTA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Sayı içeren sayıya dizinin th üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilebilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (buradaki ilk terim eşittir ve fark eşittir). Veya (, fark).

Formül n'inci terim

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin inci terimini bulmak için önceki dokuzunu hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu şimdi anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendiniz karar verin:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark nedir? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O zaman yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre, büyük matematikçi Karl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesaplamıştı. Birincinin toplamının olduğunu fark etti ve son tarih eşittir, ikinci ile sondan bir öncekinin toplamı aynıdır, üçüncü ve sondan üçüncünün toplamı aynıdır, vb. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Hepsinin toplamını bulun çift ​​haneli sayılar, katları.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftada toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan ve altı yıl sonra ruble karşılığında satılan bir buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Cevaplar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca kat edilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

Aritmetik İlerleme. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Bir ilerlemenin bir terimini, eğer komşu terimleri biliniyorsa (ilerlemedeki sayıların sayısı nerede) kolayca bulmanızı sağlar.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.

Neyse konu bitti. Eğer bu satırları okuyorsanız çok havalısınız demektir.

Çünkü insanların yalnızca %5'i bir konuda kendi başına ustalaşabiliyor. Ve eğer sonuna kadar okursanız, o zaman siz de bu %5'in içindesiniz!

Şimdi en önemli şey.

Bu konudaki teoriyi anladınız. Ve tekrar ediyorum, bu... bu gerçekten süper! Zaten akranlarınızın büyük çoğunluğundan daha iyisiniz.

Sorun şu ki bu yeterli olmayabilir...

Ne için?

Başarılı olmak için Birleşik Devlet Sınavını geçmek, düşük bir bütçeyle ve EN ÖNEMLİSİ de ömür boyu üniversiteye kabul için.

Seni hiçbir şeye ikna etmeyeceğim, sadece tek bir şey söyleyeceğim...

Alınan insanlar iyi eğitim, almayanlardan çok daha fazlasını kazanın. Bu istatistik.

Ancak asıl mesele bu değil.

Önemli olan DAHA MUTLU olmalarıdır (böyle çalışmalar var). Belki de önlerinde çok daha açık yollar olduğu için daha fazla olasılık ve hayat daha mı parlaklaşıyor? Bilmiyorum...

Ama kendin düşün...

Birleşik Devlet Sınavında diğerlerinden daha iyi olmak ve sonuçta... daha mutlu olmak için ne gerekir?

BU KONUDAKİ SORUNLARI ÇÖZEREK ELİNİZİ KAZANIN.

Sınav sırasında sizden teori sorulmayacak.

İhtiyacın olacak zamana karşı sorunları çözmek.

Ve eğer bunları çözmediyseniz (ÇOK!), kesinlikle bir yerlerde aptalca bir hata yapacaksınız veya zamanınız olmayacak.

Sporda olduğu gibi - kesin olarak kazanmak için bunu birçok kez tekrarlamanız gerekir.

Koleksiyonu dilediğiniz yerde bulun, mutlaka çözümlerle, detaylı analiz ve karar ver, karar ver, karar ver!

Görevlerimizi kullanabilirsiniz (isteğe bağlı) ve elbette bunları öneririz.

Görevlerimizi daha iyi kullanmak için şu anda okuduğunuz YouClever ders kitabının ömrünün uzatılmasına yardımcı olmanız gerekir.

Nasıl? İki seçenek var:

  1. Bu makaledeki tüm gizli görevlerin kilidini açın -
  2. Ders kitabının 99 makalesinin tamamındaki tüm gizli görevlere erişimin kilidini açın - Bir ders kitabı satın alın - 499 RUR

Evet, ders kitabımızda buna benzer 99 makale var ve tüm görevlere ve bunların içindeki tüm gizli metinlere erişim anında açılabilir.

Sitenin TÜM ömrü boyunca tüm gizli görevlere erişim sağlanır.

Ve sonuç olarak...

Görevlerimizi beğenmiyorsanız başkalarını bulun. Sadece teoride durmayın.

“Anlamak” ve “çözebilirim” tamamen farklı becerilerdir. İkisine de ihtiyacın var.

Sorunları bulun ve çözün!

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Aritmetik ilerleme, her sayının bir öncekinden aynı miktarda daha büyük (veya daha az) olduğu bir sayı dizisidir.

Bu konu çoğu zaman karmaşık ve anlaşılmaz görünmektedir. Harf endeksleri n'inci terim ilerlemeler, ilerleme farklılıkları - bunların hepsi bir şekilde kafa karıştırıcı, evet... Aritmetik ilerlemenin anlamını çözelim ve her şey hemen daha iyi hale gelecektir.)

Aritmetik ilerleme kavramı.

Aritmetik ilerleme çok basit ve açık bir kavramdır. Herhangi bir şüpheniz var mı? Boşuna.) Kendiniz görün.

Bitmemiş bir sayı dizisi yazacağım:

1, 2, 3, 4, 5, ...

Bu seriyi uzatabilir misiniz? Beşten sonra hangi sayılar gelecek? Herkes... uh... kısacası herkes bundan sonra 6, 7, 8, 9 vb. sayıların geleceğini anlayacak.

Görevi karmaşıklaştıralım. Size bitmemiş bir sayı dizisi veriyorum:

2, 5, 8, 11, 14, ...

Deseni yakalayabilecek, seriyi genişletebilecek ve isim verebileceksiniz. yedinci satır numarası?

Bu sayının 20 olduğunu fark ettiyseniz tebrikler! Sadece hissetmedin önemli noktalar aritmetik ilerleme, ama aynı zamanda bunları iş hayatında da başarıyla kullandı! Eğer çözemediyseniz okumaya devam edin.

Şimdi duyumlardaki önemli noktaları matematiğe çevirelim.)

İlk önemli nokta.

Aritmetik ilerleme sayı dizileriyle ilgilidir. Bu ilk başta kafa karıştırıcıdır. Denklem çözmeye, grafik çizmeye falan alışığız... Ama burada seriyi genişletiyoruz, serinin numarasını buluyoruz...

Önemli değil. Sadece ilerlemeler matematiğin yeni bir dalıyla ilk tanışmadır. Bu bölüme "Seriler" adı verilir ve özellikle sayı ve ifade dizileriyle çalışır. Buna alışın.)

İkinci önemli nokta.

Aritmetik ilerlemede herhangi bir sayı bir öncekinden farklıdır aynı miktarda.

İlk örnekte bu fark birdir. Hangi sayıyı alırsanız alın, bir öncekinin bir fazlasıdır. İkincisinde - üç. Herhangi bir sayı bir öncekinden üç fazladır. Aslında bize kalıbı kavrama ve sonraki sayıları hesaplama fırsatını veren de bu andır.

Üçüncü önemli nokta.

Bu an çok çarpıcı değil evet... Ama çok ama çok önemli. İşte: her biri ilerleme numarası yerinde duruyor. Birinci sayı var, yedinci var, kırk beşinci var vs. Bunları rastgele karıştırırsanız desen kaybolur. Aritmetik ilerleme de ortadan kalkacaktır. Geriye sadece bir dizi sayı kaldı.

Bütün mesele bu.

Tabii ki yeni konu yeni terimler ve tanımlar ortaya çıkıyor. Onları bilmeniz gerekiyor. Aksi takdirde görevi anlayamazsınız. Örneğin, şöyle bir şeye karar vermeniz gerekecek:

a 2 = 5, d = -2,5 ise, aritmetik ilerlemenin ilk altı terimini (a n) yazın.

İlham verici mi?) Mektuplar, bazı dizinler... Ve bu arada, görev daha kolay olamazdı. Sadece terimlerin ve tanımların anlamını anlamanız gerekir. Şimdi bu konuya hakim olacağız ve göreve döneceğiz.

Terimler ve tanımlar.

Aritmetik ilerleme her sayının bir öncekinden farklı olduğu bir sayı dizisidir aynı miktarda.

Bu miktara denir . Bu konsepte daha detaylı bakalım.

Aritmetik ilerleme farkı.

Aritmetik ilerleme farkı herhangi bir ilerleme sayısının ne kadar olduğu Dahaönceki.

Bir önemli nokta. Lütfen söze dikkat edin "Daha". Matematiksel olarak bu, her ilerleme sayısının ekleyerekönceki sayıya aritmetik ilerleme farkı.

Hesaplamak için diyelim ki ikinci serinin numaraları, yapmanız gereken Birinci sayı eklemek aritmetik ilerlemenin tam da farkı. Hesaplama için beşinci- fark gerekli eklemekİle dördüncü, peki vb.

Aritmetik ilerleme farkı Belki pozitif, o zaman serideki her sayının gerçek olduğu ortaya çıkacak öncekinden daha fazla. Bu ilerlemeye denir artan.Örneğin:

8; 13; 18; 23; 28; .....

Burada her sayı elde edilir ekleyerek pozitif sayı, bir öncekine +5.

Fark olabilir negatif, o zaman serideki her sayı öncekinden daha az. Bu ilerlemeye denir (buna inanmayacaksınız!) azalıyor.

Örneğin:

8; 3; -2; -7; -12; .....

Burada her sayı da elde edilir ekleyerek bir öncekine, ama zaten negatif sayı, -5.

Bu arada, ilerlemeyle çalışırken, ister artıyor ister azalıyor olsun, doğasını hemen belirlemek çok faydalıdır. Bu, karar vermenize, hatalarınızı tespit etmenize ve çok geç olmadan bunları düzeltmenize çok yardımcı olur.

Aritmetik ilerleme farkı genellikle harfle gösterilir D.

Nasıl bulunur? D? Çok basit. Serideki herhangi bir sayıdan çıkarma yapmak gerekir öncesi sayı. Çıkar. Bu arada çıkarma sonucuna "fark" denir.)

Örneğin şunu tanımlayalım: D aritmetik ilerlemeyi artırmak için:

2, 5, 8, 11, 14, ...

Dizide istediğimiz herhangi bir sayıyı alıyoruz örneğin 11. Ondan çıkarıyoruz önceki numara onlar. 8:

Bu doğru cevaptır. Bu aritmetik ilerleme için fark üçtür.

Alabilirsin herhangi bir ilerleme numarası,Çünkü belirli bir ilerleme için D-hep aynı. En azından sıranın başında bir yerde, en azından ortada, en azından herhangi bir yerde. Yalnızca ilk sayıyı alamazsınız. Basitçe çünkü ilk sayı önceki yok.)

Bu arada bunu bilerek d=3 Bu ilerlemenin yedinci sayısını bulmak çok basittir. Beşinci sayıya 3 ekleyelim - altıncıyı elde ederiz, 17 olur. Altıncı sayıya üç ekleyelim, yedinci sayıyı - yirmiyi elde ederiz.

Hadi tanımlayalım D azalan aritmetik ilerleme için:

8; 3; -2; -7; -12; .....

İşaretler ne olursa olsun, belirlemeniz gerektiğini size hatırlatırım. D herhangi bir numaradan lazım öncekini götür. Herhangi bir ilerleme numarasını seçin, örneğin -7. Önceki numarası -2'dir. Daha sonra:

d = -7 - (-2) = -7 + 2 = -5

Aritmetik ilerlemenin farkı herhangi bir sayı olabilir: tam sayı, kesirli, irrasyonel, herhangi bir sayı.

Diğer terimler ve tanımlar.

Dizideki her sayıya denir aritmetik ilerlemenin üyesi.

İlerlemenin her üyesi kendi numarası vardır. Rakamlar hiçbir hile olmaksızın kesinlikle sıralıdır. Birinci, ikinci, üçüncü, dördüncü vb. Örneğin, 2, 5, 8, 11, 14, ... diziliminde ilk terim iki, ikinci terim beş, dördüncü terim onbir, yani anlıyor musunuz...) Lütfen açıkça anlayın - sayıların kendisi kesinlikle herhangi bir şey olabilir, bütün, kesirli, negatif, her ne olursa olsun, ama sayıların numaralandırılması- kesinlikle sırayla!

bir ilerleme nasıl yazılır genel görünüm? Soru yok! Bir dizideki her sayı bir harf olarak yazılır. Aritmetik ilerlemeyi belirtmek için genellikle harf kullanılır A. Üye numarası sağ altta bir indeksle gösterilir. Terimleri virgülle (veya noktalı virgülle) ayırarak şu şekilde yazarız:

bir 1, bir 2, bir 3, bir 4, bir 5, .....

1- bu ilk sayı, 3- üçüncü vb. Süslü bir şey yok. Bu seriyi kısaca şu şekilde yazabiliriz: (BİR).

İlerlemeler oluyor sonlu ve sonsuz.

Nihai ilerleme var sınırlı miktarüyeler. Beş, otuz sekiz, her neyse. Ama bu sonlu bir sayı.

Sonsuz ilerleme - var sonsuz sayı Tahmin edebileceğiniz gibi üyeler.)

Yaz sonlu ilerleme bunun gibi bir diziyi inceleyebilirsiniz, tüm terimler ve sonunda bir nokta:

1, 2, 3, 4, 5.

Veya çok sayıda üye varsa şöyle:

bir 1, bir 2,... bir 14, bir 15.

İÇİNDE kısa not ayrıca üye sayısını da belirtmeniz gerekecektir. Örneğin (yirmi üye için), şöyle:

(bir n), n = 20

Bu dersteki örneklerde olduğu gibi, satırın sonundaki üç nokta ile sonsuz bir ilerleme fark edilebilir.

Artık görevleri çözebilirsiniz. Görevler basit, yalnızca aritmetik ilerlemenin anlamını anlamaya yönelik.

Aritmetik ilerlemeyle ilgili görev örnekleri.

Yukarıda verilen göreve ayrıntılı olarak bakalım:

1. a 2 = 5, d = -2,5 ise, aritmetik ilerlemenin ilk altı terimini (a n) yazın.

Görevi şuraya aktarıyoruz: açık dil. Sonsuz bir aritmetik ilerleme verilmiştir. Bu ilerlemenin ikinci sayısı biliniyor: 2 = 5.İlerleme farkı bilinmektedir: d = -2,5. Bu ilerlemenin birinci, üçüncü, dördüncü, beşinci ve altıncı terimlerini bulmamız gerekiyor.

Netlik sağlamak için sorunun koşullarına göre bir dizi yazacağım. İkinci terimin beş olduğu ilk altı terim:

1, 5, 3, 4, 5, 6,...

3 = 2 + D

İfadeye ikame bir 2 = 5 Ve d = -2,5. Eksileri unutma!

3=5+(-2,5)=5 - 2,5 = 2,5

Üçüncü dönem ikinciden daha az çıktı. Her şey mantıklı. Sayı öncekinden büyükse negatif değer, bu da sayının kendisinin öncekinden daha az olacağı anlamına gelir. İlerleme azalıyor. Tamam, dikkate alalım.) Serimizin dördüncü dönemini sayıyoruz:

4 = 3 + D

4=2,5+(-2,5)=2,5 - 2,5 = 0

5 = 4 + D

5=0+(-2,5)= - 2,5

6 = 5 + D

6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Böylece üçüncüden altıncıya kadar olan terimler hesaplandı. Sonuç aşağıdaki seridir:

a 1, 5, 2,5, 0, -2,5, -5, ....

Geriye ilk terimi bulmak kalıyor 1İle ünlü ikinci. Bu, diğer yönde, sola doğru bir adımdır.) Yani, aritmetik ilerlemenin farkı D eklenmemelidir 2, A götürmek:

1 = 2 - D

1=5-(-2,5)=5 + 2,5=7,5

İşte bu. Ödev cevabı:

7,5, 5, 2,5, 0, -2,5, -5, ...

Bu arada, bu görevi çözdüğümüzü belirtmek isterim. tekrarlayan yol. Bu korkutucu kelime basitçe ilerlemenin bir üyesini aramak anlamına gelir önceki (bitişik) numaraya göre. Aşağıda ilerlemeyle çalışmanın diğer yollarına bakacağız.

Bu basit görevden önemli bir sonuç çıkarılabilir.

Hatırlamak:

Bir aritmetik ilerlemenin en az bir terimini ve farkını biliyorsak, bu ilerlemenin herhangi bir terimini bulabiliriz.

Hatırlıyor musun? Bu basit sonuç çoğu sorunu çözmenize olanak tanır okul kursu bu konu hakkında. Tüm görevler etrafında döner üç ana parametreler: Bir aritmetik ilerlemenin üyesi, bir ilerlemenin farkı, ilerlemenin bir üyesinin sayısı. Tüm.

Elbette önceki cebirlerin tümü iptal edilmez.) Eşitsizlikler, denklemler ve diğer şeyler ilerlemeye bağlıdır. Ancak ilerlemenin kendisine göre- her şey üç parametre etrafında dönüyor.

Örnek olarak bu konuyla ilgili bazı popüler görevlere bakalım.

2. n=5, d = 0,4 ve a 1 = 3,6 ise sonlu aritmetik ilerlemeyi bir seri olarak yazın.

Burada her şey basit. Her şey zaten verildi. Aritmetik ilerlemenin terimlerinin nasıl sayıldığını hatırlamanız, saymanız ve yazmanız gerekir. Görev koşullarındaki kelimeleri kaçırmamanız tavsiye edilir: “final” ve “ n=5". Yüzün tamamen morarıncaya kadar saymamak için.) Bu ilerlemede yalnızca 5 (beş) üye var:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

4 = 3 + d = 4,4 + 0,4 = 4,8

5 = 4 + d = 4,8 + 0,4 = 5,2

Cevabı yazmaya devam ediyor:

3,6; 4; 4,4; 4,8; 5,2.

Başka bir görev:

3. 7 sayısının aritmetik ilerlemenin (a n) bir üyesi olup olmayacağını belirleyin: a 1 = 4,1; d = 1,2.

Hımm... Kim bilir? Bir şey nasıl belirlenir?

Nasıl-nasıl... İlerlemeyi bir seri halinde yazın ve orada yedi olup olmayacağını görün! Biz sayıyoruz:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

4 = 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Şimdi sadece yedi kişi olduğumuz açıkça görülüyor içinden geçti 6,5 ile 7,7 arasında! Yedi, sayı dizimize girmedi ve bu nedenle yedi, verilen ilerlemenin bir üyesi olmayacak.

Cevap: hayır.

İşte buna dayalı bir sorun gerçek seçenek- GIA:

4. Aritmetik ilerlemenin birkaç ardışık terimi yazılır:

...; 15; X; 9; 6; ...

İşte sonu ve başlangıcı olmayan yazılmış bir seri. Üye sayısı yok, fark yok D. Önemli değil. Sorunu çözmek için aritmetik ilerlemenin anlamını anlamak yeterlidir. Hadi bakalım ve neyin mümkün olduğunu görelim bilmek bu seriden mi? Üç ana parametre nedir?

Üye numaraları? Burada tek bir numara yok.

Ama üç sayı var ve - dikkat! - kelime "tutarlı" durumda. Bu, sayıların boşluksuz, kesinlikle sıralı olduğu anlamına gelir. Bu sırada iki tane mi var? komşu bilinen sayılar? Evet, yaptım! Bunlar 9 ve 6'dır. Dolayısıyla aritmetik ilerlemenin farkını hesaplayabiliriz! Altıdan çıkar öncesi sayı, yani dokuz:

Geriye sadece önemsiz şeyler kaldı. X'in bir önceki sayısı hangi sayı olacak? On beş. Bu, X'in kolayca bulunabileceği anlamına gelir basit ekleme. Aritmetik ilerlemenin farkını 15'e ekleyin:

İşte bu. Cevap: x=12

Aşağıdaki sorunları kendimiz çözüyoruz. Not: Bu problemler formüllere dayalı değildir. Tamamen aritmetik ilerlemenin anlamını anlamak için.) Sadece bir dizi rakam ve harf yazıyoruz, bakıp anlıyoruz.

5. a 5 = -3 ise aritmetik ilerlemenin ilk pozitif terimini bulun; d = 1.1.

6. 5,5 sayısının aritmetik ilerlemenin (an n) bir üyesi olduğu bilinmektedir; burada a 1 = 1,6; d = 1,3. Bu terimin n sayısını belirleyin.

7. Aritmetik ilerlemede a 2 = 4 olduğu bilinmektedir; 5 = 15,1. 3'ü bulun.

8. Aritmetik ilerlemenin birkaç ardışık terimi yazılmıştır:

...; 15.6; X; 3.4; ...

İlerlemenin x harfiyle gösterilen terimini bulun.

9. Tren, hızını dakikada 30 metre artırarak istasyondan hareket etmeye başladı. Beş dakika sonra trenin hızı ne olacak? Cevabınızı km/saat cinsinden verin.

10. Aritmetik ilerlemede a 2 = 5 olduğu bilinmektedir; a 6 = -5. 1'i bul.

Cevaplar (karışıklık içinde): 7.7; 7.5; 9.5; 9; 0,3; 4.

Her şey yolunda gitti mi? İnanılmaz! Daha fazlası için aritmetik ilerlemede ustalaşabilirsiniz yüksek seviye, aşağıdaki derslerde.

Her şey yolunda gitmedi mi? Sorun değil. Özel Bölüm 555'te tüm bu sorunlar parça parça sıralanmıştır.) Ve elbette, bu tür görevlerin çözümünü bir bakışta net, net bir şekilde hemen vurgulayan basit pratik bir teknik anlatılmaktadır!

Bu arada, tren bulmacasında insanların sıklıkla karşılaştığı iki sorun var. Biri tamamen ilerleme açısından, ikincisi ise matematik ve fizikteki herhangi bir problem için geneldir. Bu, boyutların birinden diğerine çevrilmesidir. Bu sorunların nasıl çözülmesi gerektiğini gösteriyor.

Bu derste aritmetik ilerlemenin temel anlamına ve ana parametrelerine baktık. Bu, bu konudaki hemen hemen tüm sorunları çözmek için yeterlidir. Eklemek D sayılara seri yaz her şey çözülecek.

Parmak çözümü, bu dersteki örneklerde olduğu gibi, sıranın çok kısa parçaları için işe yarar. Seri uzunsa hesaplamalar daha karmaşık hale gelir. Örneğin, eğer sorudaki 9. problemde yerine koyarsak "beş dakika" Açık "otuz beş dakika" sorun önemli ölçüde daha da kötüleşecektir.)

Ayrıca özünde basit ancak hesaplamalar açısından saçma olan görevler de vardır, örneğin:

Aritmetik ilerleme (a n) verilmiştir. a 1 =3 ve d=1/6 ise 121'i bulun.

Peki 1/6'yı defalarca mı toplayacağız? Kendini öldürebilirsin!?

Yapabilirsin.) Bilmiyorsan basit formül, bu tür görevleri bir dakika içinde çözmenize olanak tanır. Bu formül bir sonraki derste olacak. Ve bu sorun orada çözüldü. Bir dakika içinde.)

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

Sayı dizisi kavramı, her doğal sayının belirli bir sayıya karşılık geldiğini ima eder. gerçek değer. Böyle bir sayı dizisi keyfi olabilir veya belirli özellikler– ilerleme. İÇİNDE ikinci durum dizinin her bir sonraki elemanı (üyesi), bir önceki kullanılarak hesaplanabilir.

Aritmetik ilerleme - dizi sayısal değerler komşu üyelerinin birbirinden farklı olduğu aynı numara (benzer mülk 2'den başlayarak serinin tüm unsurları vardır). Bu numara– Önceki ve sonraki terimler arasındaki fark sabittir ve ilerleme farkı olarak adlandırılır.

İlerleme farkı: tanım

A = a(1), a(2), a(3), a(4) ... a(j), j'nin N doğal sayılar kümesine ait j değerlerinden oluşan bir dizi düşünün. ilerleme, tanımına göre bir dizidir ve burada a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. d değeri bu ilerlemenin istenen farkıdır.

d = a(j) – a(j-1).

Vurgulayın:

  • Artan bir ilerleme, bu durumda d > 0. Örnek: 4, 8, 12, 16, 20, ...
  • İlerleme azalıyor, sonra d< 0. Пример: 18, 13, 8, 3, -2, …

Fark ilerlemesi ve keyfi unsurları

İlerlemenin 2 rastgele terimi biliniyorsa (i-th, k-th), o zaman belirli bir dizi için fark, ilişkiye dayalı olarak belirlenebilir:

a(i) = a(k) + (i – k)*d, bunun anlamı d = (a(i) – a(k))/(i-k).

İlerleme farkı ve ilk dönemi

Bu ifade, yalnızca dizi öğesinin sayısının bilindiği durumlarda bilinmeyen bir değerin belirlenmesine yardımcı olacaktır.

İlerleme farkı ve toplamı

Bir ilerlemenin toplamı, terimlerinin toplamıdır. İlk j elemanlarının toplam değerini hesaplamak için uygun formülü kullanın:

S(j) =((a(1) + a(j))/2)*j, fakat beri a(j) = a(1) + d(j – 1), sonra S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!