Fonksiyonun sıfıra eşit olduğu yer. Türevlerin hesaplanmasına ilişkin kurallar

Problem B9, aşağıdaki niceliklerden birini belirlemeniz gereken bir fonksiyonun veya türevin grafiğini verir:

  1. Türevin değeri x 0 noktasında,
  2. Maksimum veya minimum noktalar (ekstrem noktalar),
  3. Artan ve azalan fonksiyonların aralıkları (monotonluk aralıkları).

Bu problemde sunulan fonksiyonlar ve türevler her zaman süreklidir ve bu da çözümü çok daha kolaylaştırır. Görev bölüme ait olmasına rağmen matematiksel analiz derin bir bilgi olmadığından en zayıf öğrencilerin bile yetenekleri dahilindedir. teorik bilgi burada gerekli değil.

Türevin, ekstrem noktaların ve monotonluk aralıklarının değerini bulmak için basit ve evrensel algoritmalar vardır - hepsi aşağıda tartışılacaktır.

Aptalca hatalar yapmaktan kaçınmak için B9 sorununun koşullarını dikkatlice okuyun: bazen oldukça uzun metinlerle karşılaşırsınız, ancak önemli koşullar Kararın gidişatını etkileyen çok az şey var.

Türev değerinin hesaplanması. İki nokta yöntemi

Probleme bir f(x) fonksiyonunun bu grafiğe x 0 noktasında teğet olan bir grafiği verilirse ve bu noktada türevinin değerinin bulunması gerekiyorsa aşağıdaki algoritma uygulanır:

  1. Teğet grafikte iki "yeterli" nokta bulun: koordinatları tamsayı olmalıdır. Bu noktaları A (x 1 ; y 1) ve B (x 2 ; y 2) olarak gösterelim. Koordinatları doğru yazın - bu kilit noktaçözümler ve buradaki herhangi bir hata, yanlış cevaba yol açar.
  2. Koordinatları bilerek, Δx = x 2 − x 1 argümanının artışını ve Δy = y 2 − y 1 fonksiyonunun artışını hesaplamak kolaydır.
  3. Son olarak D = Δy/Δx türevinin değerini buluyoruz. Başka bir deyişle, fonksiyonun artışını argümanın artışına bölmeniz gerekir - cevap bu olacaktır.

Bir kez daha belirtelim: A ve B noktaları sıklıkla olduğu gibi f(x) fonksiyonunun grafiğinde değil, tam olarak teğet üzerinde aranmalıdır. Teğet çizgisi mutlaka bu türden en az iki nokta içerecektir - aksi takdirde sorun doğru şekilde oluşturulmayacaktır.

A (−3; 2) ve B (−1; 6) noktalarını düşünün ve artışları bulun:
Δx = x 2 - x 1 = −1 - (−3) = 2; Δy = y 2 - y 1 = 6 - 2 = 4.

Türevin değerini bulalım: D = Δy/Δx = 4/2 = 2.

Görev. Şekilde y = f(x) fonksiyonunun grafiği ve apsis x 0 noktasında ona teğet olan bir nokta gösterilmektedir. f(x) fonksiyonunun x 0 noktasındaki türevinin değerini bulun.

A (0; 3) ve B (3; 0) noktalarını göz önünde bulundurun, artışları bulun:
Δx = x 2 - x 1 = 3 - 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Şimdi türevin değerini buluyoruz: D = Δy/Δx = −3/3 = −1.

Görev. Şekilde y = f(x) fonksiyonunun grafiği ve apsis x 0 noktasında ona teğet olan bir nokta gösterilmektedir. f(x) fonksiyonunun x 0 noktasındaki türevinin değerini bulun.

A (0; 2) ve B (5; 2) noktalarını düşünün ve artışları bulun:
Δx = x 2 - x 1 = 5 - 0 = 5; Δy = y 2 - y 1 = 2 - 2 = 0.

Geriye türevin değerini bulmak kalıyor: D = Δy/Δx = 0/5 = 0.

İtibaren son örnek bir kural formüle edebiliriz: eğer teğet OX eksenine paralelse, fonksiyonun teğet noktasındaki türevi sıfırdır. Bu durumda hiçbir şeyi saymanıza bile gerek yok; sadece grafiğe bakın.

Maksimum ve minimum puanların hesaplanması

Bazen Problem B9, bir fonksiyonun grafiği yerine türevin bir grafiğini verir ve fonksiyonun maksimum veya minimum noktasının bulunmasını gerektirir. Bu durumda iki nokta yöntemi işe yaramaz, ancak daha da basit başka bir algoritma daha vardır. Öncelikle terminolojiyi tanımlayalım:

  1. Eğer bu noktanın bazı komşuluklarında aşağıdaki eşitsizlik geçerliyse, x 0 noktasına f(x) fonksiyonunun maksimum noktası denir: f(x 0) ≥ f(x).
  2. Eğer bu noktanın komşuluğunda aşağıdaki eşitsizlik geçerliyse, x 0 noktasına f(x) fonksiyonunun minimum noktası denir: f(x 0) ≤ f(x).

Türev grafiğinden maksimum ve minimum noktaları bulmak için şu adımları uygulamanız yeterlidir:

  1. Gereksiz tüm bilgileri kaldırarak türev grafiğini yeniden çizin. Uygulamada görüldüğü gibi, gereksiz veriler yalnızca karara müdahale eder. Bu nedenle şunu not ediyoruz: koordinat ekseni Türevin sıfırları - hepsi bu.
  2. Sıfırlar arasındaki aralıklarda türevin işaretlerini bulun. Eğer bir x 0 noktası için f'(x 0) ≠ 0 olduğu biliniyorsa, bu durumda yalnızca iki seçenek mümkündür: f'(x 0) ≥ 0 veya f'(x 0) ≤ 0. Türevin işareti şöyledir: orijinal çizimden bunu belirlemek kolaydır: eğer türev grafiği OX ekseninin üzerinde yer alıyorsa, o zaman f'(x) ≥ 0. Ve bunun tersi, eğer türev grafiği OX ekseninin altında yer alıyorsa, o zaman f'(x) ≤ 0.
  3. Yine türevin sıfırlarını ve işaretlerini kontrol ediyoruz. İşaretin eksiden artıya değiştiği nokta minimum noktadır. Tersine, türevin işareti artıdan eksiye değişirse bu maksimum noktadır. Sayma her zaman soldan sağa doğru yapılır.

Bu şema yalnızca sürekli fonksiyonlar için çalışır - B9 probleminde başka şema yoktur.

Görev. Şekilde [−5; 5]. Bu doğru parçası üzerinde f(x) fonksiyonunun minimum noktasını bulun.

Hadi kurtulalım gereksiz bilgi— sadece [−5] sınırlarını bırakalım; 5] ve türevinin sıfırları x = −3 ve x = 2,5. Ayrıca işaretleri de not ediyoruz:

Açıkçası, x = −3 noktasında türevin işareti eksiden artıya değişir. Bu minimum noktadır.

Görev. Şekil, [−3; 7]. Bu doğru parçası üzerinde f(x) fonksiyonunun maksimum noktasını bulun.

Grafiği yeniden çizelim, yalnızca [−3; 7] ve türevinin sıfırları x = −1,7 ve x = 5. Ortaya çıkan grafikte türevin işaretlerini not edelim. Sahibiz:

Açıkçası, x = 5 noktasında türevin işareti artıdan eksiye değişir - bu maksimum noktadır.

Görev. Şekilde f(x) fonksiyonunun [−6; 4]. f(x) fonksiyonunun [−4; parçasına ait maksimum nokta sayısını bulun; 3].

Sorunun koşullarından, grafiğin yalnızca [−4; 3]. Bu yüzden inşa ediyoruz yeni program, üzerinde yalnızca sınırları işaretliyoruz [−4; 3] ve içindeki türevin sıfırları. Yani, x = −3,5 ve x = 2 noktaları. Şunu elde ederiz:

Bu grafikte yalnızca bir x = 2 maksimum noktası vardır. Bu noktada türevin işareti artıdan eksiye değişir.

Koordinatları tam sayı olmayan noktalar hakkında küçük bir not. Örneğin, son görev x = −3,5 noktası dikkate alındı, ancak aynı başarıyla x = −3,4'ü de alabiliriz. Sorun doğru bir şekilde derlenirse, "sabit bir ikamet yeri olmayan" puanlar kabul edilmediğinden bu tür değişiklikler cevabı etkilememelidir. doğrudan katılım sorunu çözmede. Elbette bu numara tam sayı noktalarda işe yaramayacaktır.

Artan ve azalan fonksiyonların aralıklarını bulma

Böyle bir problemde, maksimum ve minimum noktalar gibi, fonksiyonun kendisinin arttığı veya azaldığı alanları bulmak için türev grafiğinin kullanılması önerilmektedir. Öncelikle artan ve azalan şeyin ne olduğunu tanımlayalım:

  1. Bu parçadaki herhangi iki x 1 ve x 2 noktası için aşağıdaki ifade doğruysa, f(x) fonksiyonunun bir parça üzerinde artan olduğu söylenir: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2) . Başka bir deyişle, argüman değeri ne kadar büyük olursa, fonksiyon değeri de o kadar büyük olur.
  2. Bu parçadaki herhangi iki x 1 ve x 2 noktası için aşağıdaki ifade doğruysa, bir f(x) fonksiyonuna bir doğru parçası üzerinde azalan denir: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Onlar. daha yüksek değer argüman eşleşmeleri daha düşük değer işlevler.

Hadi formüle edelim yeterli koşullar artan ve azalan:

  1. İçin sürekli fonksiyon f(x) doğru parçası üzerinde arttığında, parça içindeki türevinin pozitif olması yeterlidir, yani. f’(x) ≥ 0.
  2. Sürekli bir f(x) fonksiyonunun doğru parçası üzerinde azalması için parça içindeki türevinin negatif olması yeterlidir, yani. f’(x) ≤ 0.

Bu açıklamaları delilsiz kabul edelim. Böylece, birçok yönden ekstrem noktaları hesaplama algoritmasına benzeyen, artan ve azalan aralıkları bulmak için bir şema elde ederiz:

  1. Gereksiz tüm bilgileri kaldırın. Türevin orijinal grafiğinde öncelikle fonksiyonun sıfırlarıyla ilgilendiğimiz için yalnızca onları bırakacağız.
  2. Sıfırlar arasındaki aralıklarda türevin işaretlerini işaretleyin. f'(x) ≥ 0 olduğunda fonksiyon artar, f'(x) ≤ 0 olduğunda ise azalır. Eğer problem x değişkenine kısıtlamalar getiriyorsa, bunları ek olarak yeni bir grafikte işaretliyoruz.
  3. Artık fonksiyonun davranışını ve kısıtlamaları bildiğimize göre, problemde gerekli olan miktarı hesaplamak kalıyor.

Görev. Şekil, [−3; 7.5]. f(x) fonksiyonunun azalma aralıklarını bulun. Cevabınızda bu aralıklarda yer alan tam sayıların toplamını belirtiniz.

Her zamanki gibi grafiği yeniden çizelim ve sınırları işaretleyelim [−3; 7,5] ve ayrıca x = −1,5 ve x = 5,3 türevinin sıfırları. Daha sonra türevin işaretlerini not ediyoruz. Sahibiz:

Türev (− 1,5) aralığında negatif olduğundan, bu azalan fonksiyonun aralığıdır. Bu aralığın içindeki tüm tam sayıları toplamaya devam ediyor:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Görev. Şekil, [−10; 4]. f(x) fonksiyonunun artış aralıklarını bulun. Cevabınızda en büyüğünün uzunluğunu belirtin.

Gereksiz bilgilerden kurtulalım. Yalnızca [−10; 4] ve türevin sıfırları, ki bu sefer dört tane vardı: x = −8, x = −6, x = −3 ve x = 2. Türevin işaretlerini işaretleyelim ve aşağıdaki resmi elde edelim:

Artan fonksiyonun aralıklarıyla ilgileniyoruz, yani. f'(x) ≥ 0 olacak şekilde. Grafikte böyle iki aralık vardır: (−8; −6) ve (−3; 2). Uzunluklarını hesaplayalım:
l 1 = − 6 − (−8) = 2;
ben 2 = 2 - (−3) = 5.

Aralıklardan en büyüğünün uzunluğunu bulmamız gerektiğinden cevap olarak l 2 = 5 değerini yazıyoruz.

Türev bulma işlemine farklılaşma denir.

Türevi, argümanın artışına oranının limiti olarak tanımlayarak en basit (ve çok basit olmayan) fonksiyonların türevlerini bulma problemlerinin çözülmesi sonucunda, bir türev tablosu ortaya çıktı ve tam olarak belirli kurallar farklılaşma. Türev bulma alanında ilk çalışmalar yapanlar Isaac Newton (1643-1727) ve Gottfried Wilhelm Leibniz (1646-1716) olmuştur.

Bu nedenle günümüzde herhangi bir fonksiyonun türevini bulmak için yukarıda belirtilen fonksiyonun artımının argümanın artımına oranının limitini hesaplamanıza gerek yoktur, yalnızca tabloyu kullanmanız gerekir. türevler ve türev alma kuralları. Aşağıdaki algoritma türevi bulmak için uygundur.

Türevi bulmak için, asal işaretin altında bir ifadeye ihtiyacınız var basit işlevleri bileşenlere ayırın ve hangi eylemlerin gerçekleştirileceğini belirleyin (çarpım, toplam, bölüm) bu işlevler birbiriyle ilişkilidir. Diğer türevler temel işlevler Türevler tablosunda buluyoruz ve çarpım, toplam ve bölümün türevlerinin formülleri türev alma kurallarında yer alıyor. Türev tablosu ve türev kuralları ilk iki örnekten sonra verilmiştir.

Örnek 1. Bir fonksiyonun türevini bulun

Çözüm. Türev alma kurallarından, bir fonksiyon toplamının türevinin, fonksiyonların türevlerinin toplamı olduğunu öğreniyoruz;

Türev tablosundan "x" türevinin bire, sinüs türevinin kosinüse eşit olduğunu öğreniyoruz. Bu değerleri türevlerin toplamına koyarız ve problemin koşulunun gerektirdiği türevi buluruz:

Örnek 2. Bir fonksiyonun türevini bulun

Çözüm. İkinci terimin sabit bir faktöre sahip olduğu bir toplamın türevi olarak türev alıyoruz; bu, türevin işaretinden çıkarılabilir:

Eğer hala bir şeyin nereden geldiğine dair sorular ortaya çıkıyorsa, bunlar genellikle türev tablosuna ve türev almanın en basit kurallarına aşina olduktan sonra açıklığa kavuşturulur. Şu anda onlara doğru ilerliyoruz.

Basit fonksiyonların türevleri tablosu

1. Bir sabitin (sayı) türevi. İşlev ifadesindeki herhangi bir sayı (1, 2, 5, 200...). Her zaman sıfıra eşittir. Bunu hatırlamak çok önemlidir, çünkü çok sık ihtiyaç duyulur.
2. Bağımsız değişkenin türevi. Çoğu zaman "X". Her zaman bire eşittir. Bunu uzun süre hatırlamak da önemlidir
3. Derecenin türevi. Problem çözerken karekök olmayanları kuvvetlere dönüştürmeniz gerekir.
4. Bir değişkenin -1 kuvvetine göre türevi
5. Karekökün türevi
6. Sinüs türevi
7. Kosinüsün türevi
8. Teğetin türevi
9. Kotanjantın Türevi
10. Arsinüsün türevi
11. Arkosinin türevi
12. Arktanjantın türevi
13. Ark kotanjantının türevi
14. Doğal logaritmanın türevi
15. Logaritmik fonksiyonun türevi
16. Üssün türevi
17. Türev üstel fonksiyon

Farklılaşma kuralları

1. Bir toplamın veya farkın türevi
2. Ürünün türevi
2a. Bir ifadenin sabit bir faktörle çarpılmasının türevi
3. Bölümün türevi
4. Karmaşık bir fonksiyonun türevi

Kural 1.Eğer işlevler

Bir noktada türevlenebilirse fonksiyonlar aynı noktada türevlenebilirdir

Ve

onlar. fonksiyonların cebirsel toplamının türevi şuna eşittir: cebirsel toplam bu fonksiyonların türevleri.

Sonuçlar. İki türevlenebilir fonksiyonun farkı sabit bir terim ise türevleri eşittir yani

Kural 2.Eğer işlevler

Bir noktada türevlenebilirse çarpımları da aynı noktada türevlenebilirdir

Ve

onlar. İki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımları ile diğerinin türevinin toplamına eşittir.

Sonuç 1. Türevin işaretinden sabit faktör çıkarılabilir:

Sonuç 2. Çeşitli türevlenebilir fonksiyonların çarpımının türevi, her faktörün ve diğerlerinin türevinin çarpımlarının toplamına eşittir.

Örneğin üç çarpan için:

Kural 3.Eğer işlevler

bir noktada farklılaşabilir Ve , o zaman bu noktada onların bölümleri de türevlenebiliru/v ve

onlar. iki fonksiyonun bölümünün türevi, pay, paydanın çarpımları ile payın türevi ile pay ve paydanın türevi arasındaki fark olan bir kesire eşittir ve payda, karesidir. eski pay.

Diğer sayfalardaki şeyleri nerede arayabilirim?

Bir çarpımın türevini ve bölümünü bulurken gerçek sorunlar Aynı anda birden fazla farklılaşma kuralının uygulanması her zaman gereklidir, bu nedenle daha fazla örnek bu türevler için - makalede"Çarpının türevi ve fonksiyonların bölümü".

Yorum. Bir sabiti (yani bir sayıyı) toplamdaki bir terim ve sabit bir faktör olarak karıştırmamalısınız! Bir terim durumunda türevi sıfıra eşittir ve bu durumda sabit faktör türev işaretinden çıkarılır. Bu tipik hata, üzerinde meydana gelen başlangıç ​​aşaması Türevleri inceliyorlar, ancak birkaç bir ve iki parçalı örnekleri çözdükçe, ortalama bir öğrenci artık bu hatayı yapmıyor.

Ve eğer bir ürünü veya bölümü farklılaştırırken bir teriminiz varsa sen"v, hangisinde sen- bir sayı, örneğin 2 veya 5, yani bir sabit, o zaman bu sayının türevi sıfıra eşit olacaktır ve dolayısıyla tüm terim sıfıra eşit olacaktır (bu durum örnek 10'da tartışılmıştır).

Diğer yaygın hata - mekanik çözüm basit bir fonksiyonun türevi olarak karmaşık bir fonksiyonun türevi. Bu yüzden karmaşık bir fonksiyonun türevi ayrı bir makale ayrılmıştır. Ama önce türevleri bulmayı öğreneceğiz basit işlevler.

Yol boyunca ifadeleri dönüştürmeden yapamazsınız. Bunu yapmak için kılavuzu yeni pencerelerde açmanız gerekebilir. Güçleri ve kökleri olan eylemler Ve Kesirlerle işlemler .

Kesirlerin kuvvetleri ve kökleri olan türevlerine çözüm arıyorsanız, yani fonksiyon şöyle göründüğünde , ardından “Kesirlerin toplamlarının kuvvetleri ve kökleri olan türevi” dersini takip edin.

gibi bir göreviniz varsa , daha sonra “Basit trigonometrik fonksiyonların türevleri” dersini alacaksınız.

Adım adım örnekler - türev nasıl bulunur

Örnek 3. Bir fonksiyonun türevini bulun

Çözüm. Fonksiyon ifadesinin bölümlerini tanımlarız: ifadenin tamamı bir çarpımı temsil eder ve faktörleri toplamlardır; ikincisinde terimlerden biri sabit bir faktör içerir. Çarpım farklılaşma kuralını uyguluyoruz: iki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımlarının diğerinin türevine göre toplamına eşittir:

Daha sonra, toplamın türev alma kuralını uyguluyoruz: Cebirsel fonksiyonların toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir. Bizim durumumuzda her toplamda ikinci terimin bir eksi işareti vardır. Her toplamda hem türevi bire eşit olan bağımsız bir değişken hem de türevi sıfıra eşit olan bir sabit (sayı) görüyoruz. Yani “X” bire, eksi 5 ise sıfıra dönüşüyor. İkinci ifadede "x" 2 ile çarpıldığından ikiyi "x"in türeviyle aynı birim ile çarpıyoruz. Aldık aşağıdaki değerler türevler:

Bulunan türevleri çarpımların toplamına koyarız ve problemin koşulunun gerektirdiği tüm fonksiyonun türevini elde ederiz:

Örnek 4. Bir fonksiyonun türevini bulun

Çözüm. Bölümün türevini bulmamız gerekiyor. Bölümün türevini almak için formülü uyguluyoruz: iki fonksiyonun bölümünün türevi, payı paydanın çarpımları ile payın türevi ile pay ve payın türevi arasındaki fark olan bir kesire eşittir. payda ve payda önceki payın karesidir. Şunu elde ederiz:

Örnek 2'de paydaki faktörlerin türevini zaten bulmuştuk. Mevcut örnekte payda ikinci faktör olan çarpımın eksi işaretiyle alındığını da unutmayalım:

Bir fonksiyonun türevini bulmanız gereken, sürekli bir kök ve kuvvet yığınının olduğu problemlere çözüm arıyorsanız, örneğin, , o zaman sınıfa hoş geldiniz "Kuvvetleri ve kökleri olan kesirlerin toplamlarının türevi" .

Sinüs, kosinüs, teğet ve diğerlerinin türevleri hakkında daha fazla bilgi edinmek istiyorsanız trigonometrik fonksiyonlar, yani fonksiyon şöyle göründüğünde o zaman sana bir ders "Basit trigonometrik fonksiyonların türevleri" .

Örnek 5. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda faktörlerinden biri olan bir ürün görüyoruz. karekök türev tablosunda türevini gördüğümüz bağımsız değişkenden. Ürünün farklılaştırılması kuralına göre ve tablo değeri elde ettiğimiz karekökün türevi:

Örnek 6. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, payı bağımsız değişkenin karekökü olan bir bölüm görüyoruz. Örnek 4'te tekrarladığımız ve uyguladığımız bölümlerin farklılaşma kuralını ve karekök türevinin tablolaştırılmış değerini kullanarak şunu elde ederiz:

Paydaki kesirden kurtulmak için pay ve paydayı ile çarpın.

Giriş seviyesi

Bir fonksiyonun türevi. Kapsamlı Kılavuz (2019)

Tepelik bir alandan geçen düz bir yol düşünelim. Yani yukarı aşağı gidiyor ama sağa sola dönmüyor. Eksen yol boyunca yatay ve dikey olarak yönlendirilirse, yol çizgisi bazı sürekli fonksiyonların grafiğine çok benzer olacaktır:

Eksen belli bir seviyede sıfır rakımdır; yaşamda deniz seviyesini öyle kullanırız.

Böyle bir yolda ilerlerken aynı zamanda yukarı veya aşağı da hareket ediyoruz. Şunu da söyleyebiliriz: argüman değiştiğinde (apsis ekseni boyunca hareket), fonksiyonun değeri de değişir (ordinat ekseni boyunca hareket). Şimdi yolumuzun “dikliğini” nasıl belirleyeceğimizi düşünelim? Bu nasıl bir değer olabilir? Çok basit: Belirli bir mesafeye doğru ilerlerken yüksekliğin ne kadar değişeceği. Nitekim yolun farklı kesimlerinde, (x ekseni boyunca) bir kilometre ileriye doğru ilerleyerek, yükselecek veya alçalacağız. farklı miktarlar deniz seviyesine göre metre (koordinat ekseni boyunca).

İlerlemeyi gösterelim (“delta x” okuyun).

Yunanca harf (delta), matematikte "değişim" anlamına gelen bir önek olarak yaygın olarak kullanılır. Yani - bu nicelikteki bir değişikliktir - bir değişikliktir; peki o nedir? Doğru, büyüklükte bir değişiklik.

Önemli: Bir ifade tek bir bütündür, tek bir değişkendir. “Delta”yı asla “x”ten veya başka bir harften ayırmayın!

Yani örneğin .

Böylece yatay olarak ileriye doğru ilerledik. Yolun çizgisini fonksiyonun grafiğiyle karşılaştırırsak yükselişi nasıl gösteririz? Kesinlikle, . Yani ilerledikçe daha da yükseliriz. Değerin hesaplanması kolaydır: Başlangıçta yüksekteysek ve hareket ettikten sonra kendimizi yüksekte bulursak, o zaman. Eğer bitiş noktası

Tekrar "diklik" konusuna dönelim: Bu, bir birim mesafe ileri gidildiğinde yüksekliğin ne kadar (dik) arttığını gösteren bir değerdir:

Yolun bir bölümünde bir kilometre ileri gidildiğinde yolun bir kilometre yukarıya çıktığını varsayalım. O halde bu yerdeki eğim eşittir. Peki ya yol m ileri giderken km düşerse? O halde eğim eşittir.

Şimdi bir tepenin zirvesine bakalım. Bölümün başlangıcını zirveden yarım kilometre önce ve sonunu yarım kilometre sonra alırsanız yüksekliğin hemen hemen aynı olduğunu görürsünüz.

Yani bizim mantığımıza göre buradaki eğimin neredeyse sıfıra eşit olduğu ortaya çıkıyor ki bu kesinlikle doğru değil. Kilometrelerce uzakta çok şey değişebilir. Dikliğin daha yeterli ve doğru bir şekilde değerlendirilmesi için daha küçük alanların dikkate alınması gerekir. Örneğin bir metre hareket ettikçe yükseklikteki değişimi ölçerseniz sonuç çok daha doğru olacaktır. Ancak bu doğruluk bile bizim için yeterli olmayabilir - sonuçta yolun ortasında bir direk varsa onu kolayca geçebiliriz. O halde hangi mesafeyi seçmeliyiz? Santimetre? Milimetre? Daha azı daha fazladır!

İÇİNDE gerçek hayat Mesafeleri en yakın milimetreye kadar ölçmek fazlasıyla yeterlidir. Ancak matematikçiler her zaman mükemmellik için çabalarlar. Bu nedenle kavram icat edildi sonsuz küçük yani mutlak değer isimlendirebileceğimiz herhangi bir sayıdan küçüktür. Örneğin şöyle diyorsunuz: trilyonuncu! Ne kadar az? Ve bu sayıyı -'ye bölerseniz daha da az olacaktır. Ve benzeri. Bir niceliğin sonsuz küçük olduğunu yazmak istersek şöyle yazarız: (“x sıfıra doğru gider” şeklinde okuruz). Anlamak çok önemli bu sayının sıfıra eşit olmadığını! Ama buna çok yakın. Bu, ona bölebileceğiniz anlamına gelir.

Sonsuz küçük kavramının karşısındaki kavram sonsuz büyüktür (). Muhtemelen eşitsizlikler üzerinde çalışırken bununla zaten karşılaşmışsınızdır: bu sayı, aklınıza gelebilecek herhangi bir sayıdan modülo daha büyüktür. Eğer en büyüğünü bulursan olası sayılar, bunu ikiyle çarpın ve daha da fazlasını elde edin. Ve hala sonsuzluk Dahası ne olacak? Aslında sonsuz büyük ve sonsuz küçük birbirinin tersidir, yani at ve tam tersi: at.

Şimdi yolumuza geri dönelim. İdeal olarak hesaplanan eğim, yolun sonsuz küçük bir bölümü için hesaplanan eğimdir, yani:

Sonsuz küçük bir yer değiştirmeyle yükseklikteki değişimin de sonsuz küçük olacağını not ediyorum. Ama size sonsuz küçüklüğün şu anlama gelmediğini hatırlatmama izin verin: sıfıra eşit. Sonsuz küçük sayıları birbirine bölerseniz oldukça fazla sonuç elde edebilirsiniz. normal numara, Örneğin, . Yani küçük bir değer diğerinden tam olarak kat daha büyük olabilir.

Bütün bunlar ne için? Yol, diklik... Araba rallisine gitmiyoruz ama matematik öğretiyoruz. Ve matematikte her şey tamamen aynıdır, yalnızca farklı adlandırılır.

Türev kavramı

Bir fonksiyonun türevi, argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranıdır.

Kademeli olarak matematikte değişim diyorlar. Bağımsız değişkenin () eksen boyunca hareket ettikçe ne ölçüde değiştiğine denir argüman artışı Eksen boyunca bir mesafe kadar ileri doğru hareket edildiğinde fonksiyonun (yüksekliğin) ne kadar değiştiğine denir. fonksiyon artışı ve belirlenir.

Yani bir fonksiyonun türevi ne zamana oranıdır. Türevi fonksiyonla aynı harfle, yalnızca sağ üstte bir asal sayıyla veya basitçe belirtiriz. Şimdi bu gösterimleri kullanarak türev formülünü yazalım:

Yol benzetmesinde olduğu gibi burada fonksiyon arttığında türev pozitif, azaldığında ise negatif olur.

Türev sıfıra eşit olabilir mi? Kesinlikle. Örneğin düz yatay bir yolda gidiyorsak diklik sıfırdır. Ve bu doğru, yükseklik hiç değişmiyor. Türev ile aynı: türev sabit fonksiyon(sabitler) sıfıra eşittir:

çünkü böyle bir fonksiyonun artışı herhangi biri için sıfıra eşittir.

Tepe örneğini hatırlayalım. Segmentin uçlarını birlikte düzenlemenin mümkün olduğu ortaya çıktı farklı taraflar uçlardaki yükseklik aynı olacak, yani bölüm eksene paralel olacak şekilde üstten:

Ancak büyük segmentler yanlış ölçümün işaretidir. Segmentimizi kendine paralel olarak yukarı kaldıracağız, sonra uzunluğu azalacak.

Sonunda tepeye sonsuz derecede yaklaştığımızda, parçanın uzunluğu sonsuz derecede küçük olacaktır. Ancak aynı zamanda eksene paralel kalmıştır, yani uçlarındaki yükseklik farkı sıfıra eşittir (eğiliminde değildir ancak eşittir). Yani türev

Bu şu şekilde anlaşılabilir: En tepede durduğumuzda, sola veya sağa doğru küçük bir kayma, boyumuzu ihmal edilebilecek kadar değiştirir.

Ayrıca tamamen cebirsel bir açıklama da var: Tepe noktasının solunda fonksiyon artar ve sağında azalır. Daha önce öğrendiğimiz gibi, bir fonksiyon arttığında türevi pozitif, azaldığında ise negatif olur. Ancak atlamalar olmadan sorunsuz bir şekilde değişir (çünkü yol eğimini hiçbir yerde keskin bir şekilde değiştirmez). Bu nedenle negatif ile negatif arasında pozitif değerler mutlaka bulunması gerekir. Köşe noktasında, fonksiyonun ne arttığı ne de azaldığı yer olacaktır.

Aynı durum çukur (soldaki fonksiyonun azaldığı, sağdaki fonksiyonun arttığı alan) için de geçerlidir:

Artışlar hakkında biraz daha.

Bu yüzden argümanı büyüklük olarak değiştiriyoruz. Hangi değerden değişiyoruz? Şimdi bu (tartışma) ne hale geldi? Herhangi bir noktayı seçebiliriz ve şimdi oradan dans edeceğiz.

Koordinatı olan bir nokta düşünün. İçindeki fonksiyonun değeri eşittir. Sonra aynı artışı yapıyoruz: koordinatı artırıyoruz. Şimdi argüman nedir? Çok kolay: . Şimdi fonksiyonun değeri nedir? Argüman nereye giderse fonksiyon da oraya gider: . Peki ya fonksiyon artışı? Yeni bir şey yok: Bu hala fonksiyonun değişme miktarıdır:

Artışları bulma alıştırması yapın:

  1. Bağımsız değişkenin artışının eşit olduğu bir noktada fonksiyonun artışını bulun.
  2. Aynı şey bir noktada fonksiyon için de geçerlidir.

Çözümler:

İÇİNDE farklı noktalar aynı argüman artışıyla, fonksiyon artışı farklı olacaktır. Bu, her noktadaki türevin farklı olduğu anlamına gelir (bunu en başta tartıştık - yolun dikliği farklı noktalarda farklıdır). Bu nedenle bir türev yazarken hangi noktada olduğunu belirtmeliyiz:

Güç fonksiyonu.

Güç fonksiyonu, argümanın bir dereceye kadar (mantıklı, değil mi?) geçerli olduğu bir fonksiyondur.

Üstelik - herhangi bir ölçüde: .

En basit durum- bu durumda üs:

Bir noktadaki türevini bulalım. Türevin tanımını hatırlayalım:

Yani argüman 'dan 'a değişir. Fonksiyonun artışı nedir?

Artış şudur. Ancak herhangi bir noktadaki bir fonksiyon argümanına eşittir. Bu yüzden:

Türev şuna eşittir:

Türevi şuna eşittir:

b) Şimdi düşünün ikinci dereceden fonksiyon (): .

Şimdi şunu hatırlayalım. Bu, artışın değerinin ihmal edilebileceği anlamına gelir, çünkü bu son derece küçüktür ve bu nedenle diğer terimin arka planına göre önemsizdir:

Böylece başka bir kural bulduk:

c) Mantıksal seriye devam ediyoruz: .

Bu ifade farklı şekillerde basitleştirilebilir: toplamın küpünün kısaltılmış çarpımı formülünü kullanarak ilk parantezi açın veya küp farkı formülünü kullanarak ifadenin tamamını çarpanlara ayırın. Önerilen yöntemlerden herhangi birini kullanarak bunu kendiniz yapmaya çalışın.

Böylece aşağıdakileri elde ettim:

Ve şunu bir kez daha hatırlayalım. Bu, aşağıdakileri içeren tüm terimleri ihmal edebileceğimiz anlamına gelir:

Şunu alıyoruz: .

d) Büyük kuvvetler için de benzer kurallar elde edilebilir:

e) Bu kuralın, tamsayı bile olmayan, keyfi bir üssü olan bir kuvvet fonksiyonu için genelleştirilebileceği ortaya çıktı:

(2)

Kural şu ​​şekilde formüle edilebilir: "Derece bir katsayı olarak öne çıkarılır ve ardından azaltılır."

Bu kuralı daha sonra kanıtlayacağız (neredeyse en sonunda). Şimdi birkaç örneğe bakalım. Fonksiyonların türevini bulun:

  1. (iki şekilde: formülle ve türev tanımını kullanarak - fonksiyonun artışını hesaplayarak);
  1. . İster inanın ister inanmayın, bu bir güç işlevidir. “Bu nasıl?” gibi sorularınız varsa. Derece nerede?”, “” konusunu hatırlayın!
    Evet, evet, kök de bir derecedir, yalnızca kesirlidir: .
    Bu, karekökümüzün sadece üssü olan bir kuvvet olduğu anlamına gelir:
    .
    Yakın zamanda öğrenilen formülü kullanarak türevi arıyoruz:

    Bu noktada yine belirsizleşirse “” konusunu tekrarlayın!!! (derece hakkında negatif gösterge)

  2. . Şimdi üs:

    Ve şimdi tanım üzerinden (henüz unuttunuz mu?):
    ;
    .
    Şimdi her zamanki gibi aşağıdakileri içeren terimi ihmal ediyoruz:
    .

  3. . Önceki vakaların kombinasyonu: .

Trigonometrik fonksiyonlar.

Burada yüksek matematikten bir olguyu kullanacağız:

İfade ile.

Kanıtı enstitünün ilk yılında öğreneceksiniz (ve oraya ulaşmak için Birleşik Devlet Sınavını iyi bir şekilde geçmeniz gerekir). Şimdi bunu grafiksel olarak göstereceğim:

Fonksiyon mevcut olmadığında grafikteki noktanın kesildiğini görüyoruz. Ama değere ne kadar yakınsa fonksiyon da o kadar yakın demektir.

Ek olarak, bir hesap makinesi kullanarak bu kuralı kontrol edebilirsiniz. Evet, evet, utanmayın, bir hesap makinesi alın, henüz Birleşik Devlet Sınavında değiliz.

O halde deneyelim: ;

Hesap makinenizi Radyan moduna geçirmeyi unutmayın!

vesaire. Ne kadar az olursa o kadar çok olduğunu görüyoruz. daha yakın değer ile ilişki

a) Fonksiyonu düşünün. Her zamanki gibi, artışını bulalım:

Sinüs farkını çarpıma dönüştürelim. Bunu yapmak için şu formülü kullanıyoruz (“” konusunu hatırlayın): .

Şimdi türev:

Bir değişiklik yapalım: . O halde sonsuz küçük için aynı zamanda sonsuz küçüktür: . için ifade şu şekli alır:

Şimdi de bunu şu ifadeyle hatırlıyoruz. Ve ayrıca, toplamda sonsuz küçük bir miktar (yani, at) ihmal edilebilirse ne olur?

Yani anlıyoruz sonraki kural:sinüsün türevi kosinüse eşittir:

Bunlar temel (“tablo”) türevlerdir. İşte tek bir listedeler:

Daha sonra bunlara birkaç tane daha ekleyeceğiz, ancak bunlar en sık kullanıldıkları için en önemlileridir.

Pratik:

  1. Fonksiyonun bir noktadaki türevini bulun;
  2. Fonksiyonun türevini bulun.

Çözümler:

  1. Öncelikle türevini bulalım genel görünüm ve ardından değerini değiştirin:
    ;
    .
  2. Burada buna benzer bir şeyimiz var güç fonksiyonu. Onu kendine getirmeye çalışalım
    normal görünümlü:
    .
    Harika, artık formülü kullanabilirsiniz:
    .
    .
  3. . Eeeeee….. Bu nedir????

Tamam haklısın, bu tür türevleri nasıl bulacağımızı henüz bilmiyoruz. Burada çeşitli fonksiyon türlerinin bir kombinasyonu var. Onlarla çalışmak için birkaç kural daha öğrenmeniz gerekir:

Üs ve doğal logaritma.

Matematikte herhangi bir değer için türevi aynı zamanda fonksiyonun kendi değerine eşit olan bir fonksiyon vardır. Buna "üs" denir ve üstel bir fonksiyondur

Bu fonksiyonun temeli bir sabittir; sonsuzdur ondalık yani irrasyonel bir sayı (gibi). Buna “Euler sayısı” denir, bu nedenle harfle gösterilir.

Yani kural:

Hatırlanması çok kolay.

Neyse fazla uzağa gitmeyelim, hemen ters fonksiyonu ele alalım. Üstel fonksiyonun tersi hangi fonksiyondur? Logaritma:

Bizim durumumuzda taban sayıdır:

Böyle bir logaritma (yani tabanlı bir logaritma) "doğal" olarak adlandırılır ve bunun için özel bir gösterim kullanırız: onun yerine yazarız.

Neye eşittir? Elbette.

Doğal logaritmanın türevi de çok basittir:

Örnekler:

  1. Fonksiyonun türevini bulun.
  2. Fonksiyonun türevi nedir?

Cevaplar: Katılımcı ve doğal logaritma- fonksiyonlar türev açısından benzersiz derecede basittir. Başka herhangi bir tabana sahip üstel ve logaritmik fonksiyonların farklı bir türevi olacaktır ve bunu daha sonra analiz edeceğiz. hadi kuralları gözden geçirelim farklılaşma.

Farklılaşma kuralları

Neyin kuralları? Yine yeni bir dönem mi, yine mi?!...

Farklılaşma türevi bulma işlemidir.

Hepsi bu. Bu sürece tek kelimeyle başka ne diyebilirsiniz? Türev değil... Matematikçilerin diferansiyeli, bir fonksiyonun aynı artışıdır. Bu terim Latince diferansiyelden gelir - fark. Burada.

Tüm bu kuralları türetirken iki işlevi kullanacağız, örneğin ve. Ayrıca artışları için formüllere de ihtiyacımız olacak:

Toplamda 5 kural bulunmaktadır.

Sabit türev işaretinden çıkarılır.

Eğer - bazı sabit sayı(sabit), o zaman.

Açıkçası, bu kural aynı zamanda şu fark için de işe yarar: .

Hadi kanıtlayalım. Bırakın ya da daha basit.

Örnekler.

Fonksiyonların türevlerini bulun:

  1. bir noktada;
  2. bir noktada;
  3. bir noktada;
  4. noktada.

Çözümler:

  1. (türev her noktada aynıdır, çünkü bu doğrusal fonksiyon, Unutma?);

Ürünün türevi

Burada her şey benzer: hadi girelim yeni özellik ve artışını bulun:

Türev:

Örnekler:

  1. Fonksiyonların türevlerini bulun ve;
  2. Fonksiyonun bir noktadaki türevini bulun.

Çözümler:

Üstel bir fonksiyonun türevi

Artık bilginiz, yalnızca üstel sayıları değil, herhangi bir üstel fonksiyonun türevini nasıl bulacağınızı öğrenmek için yeterlidir (bunun ne olduğunu henüz unuttunuz mu?).

Peki, bazı sayılar nerede?

Fonksiyonun türevini zaten biliyoruz, o halde fonksiyonumuzu yeni bir tabana indirgemeye çalışalım:

Bunun için kullanacağız basit kural: . Daha sonra:

İşe yaradı. Şimdi türevi bulmaya çalışın ve bu fonksiyonun karmaşık olduğunu unutmayın.

İşe yaradı mı?

İşte, kendinizi kontrol edin:

Formülün üssün türevine çok benzediği ortaya çıktı: olduğu gibi aynı kalıyor, yalnızca bir sayı olan ancak değişken olmayan bir faktör ortaya çıktı.

Örnekler:
Fonksiyonların türevlerini bulun:

Cevaplar:

Bu sadece hesap makinesi olmadan hesaplanamayan, yani artık yazılamayan bir sayıdır. basit biçimde. Bu nedenle cevapta bu formda bırakıyoruz.

Logaritmik bir fonksiyonun türevi

Burada da durum benzer: Doğal logaritmanın türevini zaten biliyorsunuz:

Bu nedenle, farklı bir tabana sahip keyfi bir logaritma bulmak için, örneğin:

Bu logaritmayı tabana indirmemiz gerekiyor. Logaritmanın tabanını nasıl değiştirirsiniz? Umarım bu formülü hatırlarsınız:

Ancak şimdi bunun yerine şunu yazacağız:

Payda basitçe bir sabittir (değişkeni olmayan sabit bir sayı). Türev çok basit bir şekilde elde edilir:

Üstel türevleri ve logaritmik fonksiyonlar Birleşik Devlet Sınavında neredeyse hiç görünmezler, ancak onları bilmekten zarar gelmez.

Karmaşık bir fonksiyonun türevi.

Ne oldu " karmaşık fonksiyon"? Hayır, bu bir logaritma değil, arktanjant da değil. Bu fonksiyonların anlaşılması zor olabilir (gerçi logaritmayı zor buluyorsanız, "Logaritmalar" konusunu okuyun ve sorun yaşamazsınız), ancak matematiksel açıdan "karmaşık" kelimesi "zor" anlamına gelmez.

Küçük bir taşıma bandı hayal edin: iki kişi oturuyor ve bazı nesnelerle bazı eylemler yapıyor. Örneğin, ilki bir çikolatayı bir ambalaj kağıdına sarar, ikincisi ise onu bir kurdele ile bağlar. Sonuç, kompozit bir nesnedir: bir kurdele ile sarılmış ve bağlanmış bir çikolata çubuğu. Çikolata yemek için adımların tersini uygulamanız gerekir. ters sıra.

Benzer bir matematiksel işlem hattı oluşturalım: önce bir sayının kosinüsünü bulacağız, sonra da elde edilen sayının karesini alacağız. Yani bize bir sayı veriliyor (çikolata), ben onun kosinüsünü buluyorum (paketleyici) ve sonra elde ettiğimin karesini alıyorsunuz (bunu bir kurdele ile bağlıyorsunuz). Ne oldu? İşlev. Bu, karmaşık bir fonksiyonun bir örneğidir: değerini bulmak için, ilk eylemi doğrudan değişkenle gerçekleştirdiğimizde ve ardından ilk eylemin sonucuyla ikinci bir eylemi gerçekleştirdiğimizde.

Aynı adımları ters sırada da kolaylıkla yapabiliriz: önce bunun karesini alırsınız, sonra da ortaya çıkan sayının kosinüsünü ararım: . Sonucun neredeyse her zaman farklı olacağını tahmin etmek kolaydır. Önemli Özellik Karmaşık işlevler: Eylemlerin sırası değiştiğinde işlev de değişir.

Başka bir deyişle, karmaşık bir işlev, argümanı başka bir işlev olan bir işlevdir: .

İlk örnek için, .

İkinci örnek: (aynı şey). .

En son yaptığımız eylem çağrılacak "harici" işlev ve buna göre ilk gerçekleştirilen eylem "dahili" işlev(bunlar resmi olmayan isimlerdir, bunları yalnızca materyali basit bir dille açıklamak için kullanıyorum).

Hangi fonksiyonun harici ve hangisinin dahili olduğunu kendiniz belirlemeye çalışın:

Cevaplar:İç ve dış fonksiyonları ayırmak değişkenleri değiştirmeye çok benzer: örneğin bir fonksiyonda

  1. İlk önce hangi eylemi gerçekleştireceğiz? İlk önce sinüsü hesaplayalım ve ancak o zaman küpünü alalım. Bu, bunun dahili bir fonksiyon olduğu, ancak harici bir fonksiyon olduğu anlamına gelir.
    Ve asıl işlev bunların bileşimidir: .
  2. Dahili: ; harici: .
    Muayene: .
  3. Dahili: ; harici: .
    Muayene: .
  4. Dahili: ; harici: .
    Muayene: .
  5. Dahili: ; harici: .
    Muayene: .

Değişkenleri değiştirip bir fonksiyon elde ediyoruz.

Şimdi çikolatamızı çıkarıp türevini arayacağız. Prosedür her zaman tersidir: önce dış fonksiyonun türevini ararız, sonra sonucu iç fonksiyonun türeviyle çarparız. ile ilgili olarak orijinal örnekşuna benziyor:

Başka bir örnek:

O halde nihayet resmi kuralı formüle edelim:

Karmaşık bir fonksiyonun türevini bulma algoritması:

Basit görünüyor, değil mi?

Örneklerle kontrol edelim:

Çözümler:

1) Dahili: ;

Harici: ;

2) Dahili: ;

(şimdiye kadar kesmeye çalışmayın! Kosinüsün altından hiçbir şey çıkmaz, hatırladınız mı?)

3) Dahili: ;

Harici: ;

Bunun üç seviyeli karmaşık bir işlev olduğu hemen anlaşılıyor: sonuçta, bu zaten kendi içinde karmaşık bir işlev ve biz de ondan kökü çıkarıyoruz, yani üçüncü eylemi gerçekleştiriyoruz (çikolatayı bir ambalaja koyun) ve evrak çantasında bir kurdeleyle). Ancak korkmanıza gerek yok: Bu işlevi yine de her zamanki gibi aynı sırayla "paketinden çıkaracağız": sondan itibaren.

Yani, önce kökü, sonra kosinüsü ve ancak o zaman parantez içindeki ifadeyi farklılaştırıyoruz. Daha sonra hepsini çarpıyoruz.

Bu gibi durumlarda eylemlerin numaralandırılması uygundur. Yani, bildiklerimizi hayal edelim. Bu ifadenin değerini hesaplamak için işlemleri hangi sırayla gerçekleştireceğiz? Bir örneğe bakalım:

Eylem ne kadar geç gerçekleştirilirse, o kadar “harici” olacaktır. karşılık gelen fonksiyon. Eylem sırası öncekiyle aynıdır:

Burada yuvalama genellikle 4 seviyelidir. Hareket tarzını belirleyelim.

1. Radikal ifade. .

2. Kök. .

3. Sinüs. .

4. Kare. .

5. Hepsini bir araya getirmek:

TÜREV. ANA ŞEYLER HAKKINDA KISACA

Bir fonksiyonun türevi- argümanın sonsuz küçük bir artışı için fonksiyonun artışının argümanın artışına oranı:

Temel türevler:

Farklılaşma kuralları:

Sabit türev işaretinden çıkarılır:

Toplamın türevi:

Ürünün türevi:

Bölümün türevi:

Karmaşık bir fonksiyonun türevi:

Karmaşık bir fonksiyonun türevini bulma algoritması:

  1. “İç” fonksiyonu tanımlayıp türevini buluyoruz.
  2. “Harici” fonksiyonu tanımlayıp türevini buluyoruz.
  3. Birinci ve ikinci noktaların sonuçlarını çarpıyoruz.

Karar verirken çeşitli görevler Bu fonksiyondan aynı analitik sürecin kullanılmasıyla geometri, mekanik, fizik ve diğer bilgi dalları gerekli hale geldi y=f(x) adında yeni bir işlev edinin türev fonksiyonu(veya sadece verilen bir f(x) fonksiyonunun türevi) ve sembolüyle belirtilir

Belirli bir fonksiyondan elde edilen süreç f(x) yeni bir özellik edinin f"(x), isminde farklılaşma ve aşağıdaki üç adımdan oluşur: 1) argümanı verin X artış  X ve fonksiyonun karşılık gelen artışını belirleyin  y = f(x+ x) -f(x);

2) bir ilişki kurmak X 3) sayma  X sabit ve
0, buluruz f"(x) ile gösterdiğimiz X sanki ortaya çıkan işlevin yalnızca değere bağlı olduğunu vurguluyormuş gibi , bu noktada sınıra gidiyoruz.: Tanım Türev y " =f " (x) verilen fonksiyon y=f(x) belirli bir x için
bir fonksiyonun artışının argümanın artışına oranının limiti olarak adlandırılır, ancak argümanın artışının sıfıra yönelmesi koşuluyla, tabii ki bu limit mevcutsa, yani. sonlu.

Böylece, X, veya Bir miktar değer için ise şunu unutmayınörneğin ne zaman
x=a  X, davranış en0 eğilimi yok f(x) sonlu sınır Bir miktar değer için ise şunu unutmayın, o zaman bu durumda fonksiyonun olduğunu söylüyorlar Bir miktar değer için ise şunu unutmayın en Bir miktar değer için ise şunu unutmayın.

(veya bu noktada

) türevi yoktur veya bu noktada türevlenebilir değildir

f(x)

2. Türevin geometrik anlamı.

AC'den bu yana || Ox ise ALO = BAC = β (paralele karşılık gelen şekilde). Ancak ALO, AB sekantının Ox ekseninin pozitif yönüne olan eğim açısıdır. Bu, tanβ = k'nin AB düz çizgisinin açısal katsayısı olduğu anlamına gelir.

Şimdi ∆х'u azaltacağız, yani. ∆х→ 0. Bu durumda grafiğe göre B noktası A noktasına yaklaşacak ve AB sekantı dönecektir. AB keseninin ∆x→ 0'daki sınırlayıcı konumu, y = f(x) fonksiyonunun grafiğinin A noktasındaki teğeti olarak adlandırılan düz bir çizgi (a) olacaktır.

tgβ =∆y/∆x eşitliğinde ∆x → 0 limitine gidersek, şunu elde ederiz:
ortg =f "(x 0), çünkü
-teğetin Ox ekseninin pozitif yönüne eğim açısı
, bir türevin tanımı gereği. Ancak tg = k, tanjantın açısal katsayısıdır, bu da k = tg = f "(x 0) anlamına gelir.

Dolayısıyla türevin geometrik anlamı aşağıdaki gibidir:

Bir fonksiyonun x noktasındaki türevi 0 eşit eğim apsis x noktasında çizilen fonksiyonun grafiğine teğet 0 .

3. Türevin fiziksel anlamı.

Bir noktanın düz bir çizgi boyunca hareketini düşünün. Bir noktanın herhangi bir andaki koordinatı x(t) verilsin. Belirli bir zaman periyodundaki ortalama hızın, bu zaman periyodunda kat edilen mesafenin zamana oranına eşit olduğu (bir fizik dersinden) bilinmektedir;

Vav = ∆x/∆t. Son eşitlikteki ∆t → 0 limitine gidelim.

lim Vav (t) = (t 0) - anlık hız t 0 anında, ∆t → 0.

ve lim = ∆x/∆t = x"(t 0) (türev tanımı gereği).

Yani (t) =x"(t).

Türevin fiziksel anlamı şu şekildedir: Fonksiyonun türevisen = F(X) noktadaX 0 fonksiyonun değişim hızıdırF(x) noktasındaX 0

Türev fizikte hızı bulmak için kullanılır. bilinen fonksiyon zamana karşı koordinatlar, hızın zamana karşı bilinen bir fonksiyonuna göre ivme.

(t) = x"(t) - hız,

a(f) = "(t) - ivme veya

Bir daire içindeki maddi bir noktanın hareket kanunu biliniyorsa açısal hız bulunabilir ve açısal ivme dönme hareketi sırasında:

φ = φ(t) - zamanla açıdaki değişim,

ω = φ"(t) - açısal hız,

ε = φ"(t) - açısal ivme veya ε = φ"(t)

Homojen olmayan bir çubuğun kütle dağılımı yasası biliniyorsa, homojen olmayan çubuğun doğrusal yoğunluğu bulunabilir:

m = m(x) - kütle,

x  , l - çubuğun uzunluğu,

p = m"(x) - doğrusal yoğunluk.

Türev kullanılarak esneklik ve harmonik titreşim teorisinden kaynaklanan problemler çözülür. Yani Hooke kanununa göre

F = -kx, x – değişken koordinat, k – yay esneklik katsayısı. ω 2 =k/m koyarak yaylı sarkacın x"(t) + ω 2 x(t) = 0 diferansiyel denklemini elde ederiz,

burada ω = √k/√m salınım frekansı (l/c), k - yay sertliği (H/m).

y" + ω 2 y = 0 formundaki bir denkleme harmonik salınımların denklemi (mekanik, elektriksel, elektromanyetik) denir. Bu tür denklemlerin çözümü fonksiyondur.

y = Asin(ωt + φ 0) veya y = Acos(ωt + φ 0), burada

A - salınımların genliği, ω - döngüsel frekans,

φ 0 - başlangıç ​​aşaması.

Bir fonksiyonun türevini kullanarak incelenmesi. Bu yazıda bir fonksiyonun grafiğinin incelenmesiyle ilgili bazı görevleri analiz edeceğiz. Bu tür problemlerde, y = f (x) fonksiyonunun bir grafiği verilir ve fonksiyonun türevinin pozitif (veya negatif) olduğu noktaların sayısının belirlenmesi ve diğerleri ile ilgili sorular sorulur. Türevlerin fonksiyonların incelenmesine uygulanmasına ilişkin görevler olarak sınıflandırılırlar.

Bu tür problemleri ve genel olarak araştırmayla ilgili problemleri çözmek, ancak fonksiyonların ve türevin grafiklerini incelemek için türevin özelliklerinin tam olarak anlaşılmasıyla mümkündür. Bu nedenle ilgili teoriyi incelemenizi şiddetle tavsiye ederim. Hem çalışabilir hem de izleyebilirsiniz (ancak kısa bir özet içerir).

Gelecek yazılarımızda türev grafiğinin verildiği problemleri de ele alacağız, kaçırmayın! Yani görevler:

Şekilde (−6; 8) aralığında tanımlanan y = f(x) fonksiyonunun grafiği gösterilmektedir. Tanımlamak:

1. Fonksiyonun türevinin negatif olduğu tamsayı noktalarının sayısı;

2. Fonksiyonun grafiğine teğetinin y = 2 düz çizgisine paralel olduğu noktaların sayısı;

1. Bir fonksiyonun türevi, fonksiyonun azaldığı aralıklarda, yani (−6; –3), (0; 4.2), (6.9; 8) aralıklarında negatiftir. −5, −4, 1, 2, 3, 4 ve 7 tamsayı noktalarını içerirler. 7 puan alırız.

2. Doğrudan sen= 2 eksene paralelAhsen= 2 yalnızca uç noktalarda (grafiğin davranışını artandan azalana veya tersi yönde değiştirdiği noktalarda). Böyle dört nokta vardır: –3; 0; 4.2; 6.9

Kendiniz karar verin:

Fonksiyonun türevinin pozitif olduğu tamsayı noktalarının sayısını belirleyin.

Şekilde (−5; 5) aralığında tanımlanan y = f(x) fonksiyonunun grafiği gösterilmektedir. Tanımlamak:

2. Fonksiyonun grafiğine teğetinin y = 3 düz çizgisine paralel olduğu tamsayı noktalarının sayısı;

3. Türevin sıfır olduğu noktaların sayısı;

1. Bir fonksiyonun türevinin özelliklerinden, fonksiyonun arttığı aralıklarda, yani (1.4; 2.5) ve (4.4; 5) aralıklarında pozitif olduğu bilinmektedir. Yalnızca bir x = 2 tamsayı noktası içerirler.

2. Doğrudan sen= 3 eksene paralelAh. Teğet doğruya paralel olacaktırsen= 3 yalnızca uç noktalarda (grafiğin davranışını artandan azalana veya tersi yönde değiştirdiği noktalarda).

Bu tür dört nokta vardır: –4.3; 1.4; 2.5; 4.4

3. Türev sıfırdır dört puan(ekstrem noktalarda), bunları zaten belirtmiştik.

Kendiniz karar verin:

f(x) fonksiyonunun türevinin negatif olduğu tamsayı noktalarının sayısını belirleyin.

Şekilde (−2; 12) aralığında tanımlanan y = f(x) fonksiyonunun grafiği gösterilmektedir. Bulmak:

1. Fonksiyonun türevinin pozitif olduğu tamsayı noktalarının sayısı;

2. Fonksiyonun türevinin negatif olduğu tamsayı noktalarının sayısı;

3. Fonksiyonun grafiğine teğetinin y = 2 düz çizgisine paralel olduğu tamsayı noktalarının sayısı;

4. Türevin sıfır olduğu noktaların sayısı.

1. Bir fonksiyonun türevinin özelliklerinden, fonksiyonun arttığı aralıklarda, yani (–2; 1), (2; 4), (7; 9) ve ( aralıklarında pozitif olduğu bilinmektedir. 10; 11). Tamsayı noktaları içerirler: –1, 0, 3, 8. Toplamda dört tane vardır.

2. Bir fonksiyonun türevi, fonksiyonun azaldığı aralıklarda, yani (1; 2), (4; 7), (9; 10), (11; 12) aralıklarında negatiftir. 5 ve 6 tamsayı noktalarını içerirler. 2 puan alırız.

3. Doğrudan sen= 2 eksene paralelAh. Teğet doğruya paralel olacaktırsen= 2 yalnızca uç noktalarda (grafiğin davranışını artandan azalana veya tersi yönde değiştirdiği noktalarda). Bu tür yedi nokta vardır: 1; 2; 4; 7; 9; 10; 11.

4. Türev yedi noktada (ekstrem noktalarda) sıfıra eşittir, bunları daha önce belirtmiştik.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!