Aynı üslere sahip logaritmaların toplanması. Logaritmalar: örnekler ve çözümler

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak doğru olmadığından normal sayılar, burada kurallar var, bunlara ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen=günlük A (X · sen);
  2. kayıt A X- günlük A sen=günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen aklınızda bulundurun: kilit nokta Burada - aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır ("Logaritma nedir" dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçoğu bu gerçek üzerine inşa edilmiştir testler. Peki ya kontroller? benzer ifadeler Birleşik Devlet Sınavında tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Bunu fark etmek kolaydır son kural ilk ikisini takip ediyor. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

sanırım son örnek açıklama gerekli. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için CÖyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar uygun olduklarını ancak karar vererek değerlendirmek mümkündür. logaritmik denklemler ve eşitsizlikler.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Artık kurtulalım ondalık logaritma, yeni bir üsse taşınıyor:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı artsa ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Güçleri çarpma kurallarını göz önünde bulundurarak aynı temel, şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. kayıt A A= 1 logaritmik birim. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfırdır. Temel A herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa - logaritma sıfıra eşit! Çünkü A 0 = 1 doğrudan sonuç tanımından.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmik ifadeler, çözüm örnekleri. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, denklemleri çözerken logaritma kullanılır. uygulamalı problemler, ayrıca fonksiyonların incelenmesiyle ilgili görevlerde.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Ürünün logaritması toplamına eşit Faktörlerin logaritmaları.

* * *

*Bölümün logaritması (kesir) farka eşit Faktörlerin logaritmaları.

* * *

* Derecenin logaritması ürüne eşitüssünün logaritmasına göre üs.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Öz bu mülkün payı paydaya ve tersini aktarırken üssün işaretinin tersine değişmesi gerçeğinde yatmaktadır. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan ihtiyaç duyulan şey iyi uygulama, bu da belli bir beceri kazandırır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmemişse, çözerken basit görevler Hata yapmak kolaydır.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında görünmeyecek ama ilgi çekici, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Bildiğiniz gibi ifadeleri kuvvetlerle çarparken üsleri daima toplanır (a b *a c = a b+c). Bu matematik kanunu Arşimed tarafından türetildi ve daha sonra 8. yüzyılda matematikçi Virasen tamsayı üslerinden oluşan bir tablo oluşturdu. Logaritmanın daha fazla keşfedilmesine hizmet edenler onlardı. Bu işlevin kullanımına ilişkin örnekler, zahmetli çarpma işlemini basit toplama yoluyla basitleştirmenin gerekli olduğu hemen hemen her yerde bulunabilir. Bu makaleyi okumaya 10 dakikanızı ayırırsanız size logaritmanın ne olduğunu ve onlarla nasıl çalışılacağını anlatacağız. Basit ve erişilebilir bir dille.

Matematikte tanım

Logaritma aşağıdaki formun bir ifadesidir: log a b=c, yani herhangi bir sayının logaritması negatif olmayan sayı(yani herhangi bir pozitif) “b”, “a” tabanına göre “c”nin kuvveti olarak kabul edilir ve sonuçta “b” değerini elde etmek için “a” tabanının yükseltilmesi gerekir. Logaritmayı örneklerle inceleyelim, diyelim ki log 2 8 ifadesi var. Cevap nasıl bulunur? Çok basit, öyle bir güç bulmanız gerekiyor ki 2'den gerekli güce 8 ulaşacaksınız. Kafanızda bazı hesaplamalar yaptıktan sonra 3 sayısını elde ediyoruz! Ve bu doğru çünkü 2 üssü 3 cevabı 8 olarak veriyor.

Logaritma türleri

Birçok öğrenci ve öğrenci için bu konu karmaşık ve anlaşılmaz görünüyor, ancak aslında logaritmalar o kadar da korkutucu değil, asıl önemli olan genel anlamlarını anlamak ve özelliklerini ve bazı kurallarını hatırlamaktır. Üç tane var bireysel türler logaritmik ifadeler:

  1. Doğal logaritma ln a, burada taban Euler sayısıdır (e = 2,7).
  2. Tabanı 10 olan ondalık a.
  3. Herhangi bir b sayısının a>1 tabanına göre logaritması.

Her birine karar verildi standart bir şekilde Logaritmik teoremleri kullanarak basitleştirmeyi, indirgemeyi ve ardından bir logaritmaya indirgemeyi içerir. Logaritmaların doğru değerlerini elde etmek için, bunları çözerken özelliklerini ve eylem sırasını hatırlamanız gerekir.

Kurallar ve bazı kısıtlamalar

Matematikte aksiyom olarak kabul edilen, yani tartışmaya konu olmayan ve gerçek olan birçok kural-kısıtlama vardır. Örneğin sayıları sıfıra bölmek mümkün olmadığı gibi, sayıların çift kökünü çıkarmak da imkansızdır. negatif sayılar. Logaritmaların da kendi kuralları vardır; bunları takip ederek uzun ve kapsamlı logaritmik ifadelerle bile çalışmayı kolayca öğrenebilirsiniz:

  • "a" tabanı her zaman olmalıdır sıfırdan büyük ve aynı zamanda 1'e eşit olamaz, aksi takdirde ifade anlamını kaybeder, çünkü "1" ve "0" herhangi bir dereceye kadar her zaman değerlerine eşittir;
  • a > 0 ise a b >0 ise "c"nin de sıfırdan büyük olması gerektiği ortaya çıkar.

Logaritmalar nasıl çözülür?

Örneğin 10 x = 100 denkleminin cevabını bulma görevi veriliyor. Bu çok kolay, on sayısını artırarak 100'e ulaşacağımız bir kuvvet seçmeniz gerekiyor. Bu elbette 10 2 = 100.

Şimdi hayal edelim bu ifade logaritmik formda. Log 10 100 = 2 elde ederiz. Logaritmaları çözerken, belirli bir sayıyı elde etmek için logaritmanın tabanına girmenin gerekli olduğu gücü bulmak için tüm eylemler pratik olarak birleşir.

Bilinmeyen bir derecenin değerini doğru bir şekilde belirlemek için derece tablosuyla nasıl çalışılacağını öğrenmeniz gerekir. Şuna benziyor:

Gördüğünüz gibi, eğer teknik bir aklınız ve çarpım tablosu bilginiz varsa, bazı üsler sezgisel olarak tahmin edilebilir. Ancak için büyük değerler bir derece tablosuna ihtiyacınız olacak. Karmaşık konular hakkında hiçbir şey bilmeyenler tarafından bile kullanılabilir. matematik konuları. Sol sütun sayıları içerir (a tabanı), sayıların üst satırı a sayısının yükseltildiği c kuvvetinin değeridir. Kesişme noktasında hücreler cevap olan sayı değerlerini içerir (a c =b). Mesela 10 rakamının olduğu ilk hücreyi alıp karesini alalım, iki hücremizin kesişiminde gösterilen 100 değerini elde ederiz. Her şey o kadar basit ve kolaydır ki en gerçek hümanist bile anlayacaktır!

Denklemler ve eşitsizlikler

Belirli koşullar altında üssün logaritma olduğu ortaya çıktı. Bu nedenle herhangi bir matematiksel sayısal ifadeler logaritmik denklem olarak yazılabilir. Örneğin 3 4 =81, 81'in 3 tabanlı logaritması dörde eşit (log 3 81 = 4) olarak yazılabilir. İçin negatif güçler kurallar aynı: 2 -5 = 1/32 logaritma olarak yazıyoruz, log 2 (1/32) = -5 elde ediyoruz. Matematiğin en büyüleyici bölümlerinden biri “logaritmalar” konusudur. Özelliklerini inceledikten hemen sonra aşağıdaki denklem örneklerine ve çözümlerine bakacağız. Şimdi eşitsizliklerin neye benzediğine ve onları denklemlerden nasıl ayıracağımıza bakalım.

Aşağıdaki biçimde bir ifade verildiğinde: log 2 (x-1) > 3 - bu logaritmik eşitsizlikÇünkü bilinmeyen değer "x" logaritmanın işareti altındadır. Ayrıca ifadede iki nicelik karşılaştırılır: İstenilen sayının iki tabanına göre logaritması üç sayısından büyüktür.

Logaritmik denklemler ve eşitsizlikler arasındaki en önemli fark, logaritma içeren denklemlerin (örnek - logaritma 2 x = √9) bir veya daha fazla spesifik cevabı ima etmesidir. sayısal değerler eşitsizlikleri çözerken bölge olarak tanımlanırken kabul edilebilir değerler ve bu fonksiyonun kesme noktaları. Sonuç olarak cevap, bir denklemin cevabında olduğu gibi basit bir bireysel sayılar dizisi değil, sürekli bir dizi veya sayı dizisidir.

Logaritmalarla ilgili temel teoremler

Logaritmanın değerlerini bulma gibi ilkel görevleri çözerken özellikleri bilinmeyebilir. Ancak konu logaritmik denklemler veya eşitsizlikler olduğunda öncelikle logaritmanın tüm temel özelliklerini net bir şekilde anlamak ve pratikte uygulamak gerekir. Daha sonra denklem örneklerine bakacağız; önce her özelliğe daha ayrıntılı olarak bakalım.

  1. Ana kimlik şuna benzer: a logaB =B. Bu yalnızca a'nın 0'dan büyük olması, bire eşit olmaması ve B'nin sıfırdan büyük olması durumunda geçerlidir.
  2. Ürünün logaritması şu şekilde temsil edilebilir: aşağıdaki formül: log d (s 1 *s 2) = log d s 1 + log d s 2. Bu durumda zorunlu koşul: d, s 1 ve s 2 > 0; a≠1. Bu logaritmik formülün ispatını örneklerle ve çözümle yapabilirsiniz. Log a s 1 = f 1 ve log a s 2 = f 2 olsun, sonra a f1 = s 1, a f2 = s 2 olsun. s 1 * s 2 = a f1 *a f2 = a f1+f2 sonucunu elde ederiz (özellikleri derece ) ve ardından tanım gereği: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, bunun kanıtlanması gerekiyordu.
  3. Bölümün logaritması şuna benzer: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Formül biçimindeki teorem şu biçimi alır: log a q b n = n/q log a b.

Bu formüle “logaritma derecesinin özelliği” denir. Sıradan derecelerin özelliklerine benzer ve bu şaşırtıcı değildir çünkü tüm matematik doğal önermelere dayanmaktadır. Kanıta bakalım.

Log a b = t olsun, a t =b olur. Her iki parçayı da m kuvvetine çıkarırsak: a tn = b n ;

ancak a tn = (a q) nt/q = b n olduğundan, log a q b n = (n*t)/t olduğundan, log a q b n = n/q log a b olur. Teorem kanıtlandı.

Sorun ve eşitsizlik örnekleri

Logaritmalarla ilgili en yaygın problem türleri denklem ve eşitsizlik örnekleridir. Neredeyse tüm problem kitaplarında bulunurlar ve ayrıca zorunlu kısım matematik sınavları. Üniversiteye kabul veya geçme için giriş sınavları matematikte bu tür problemlerin nasıl doğru şekilde çözüleceğini bilmeniz gerekir.

Ne yazık ki logaritmanın bilinmeyen değerini çözmek ve belirlemek için tek bir plan veya şema yoktur. matematiksel eşitsizlik veya logaritmik denklem uygulanabilir belirli kurallar. Her şeyden önce, ifadenin basitleştirilip basitleştirilemeyeceğini veya sonuçlanabileceğini öğrenmelisiniz. genel görünüm. Uzun olanları basitleştirin logaritmik ifadelerözelliklerini doğru kullanırsanız mümkündür. Onları hızlıca tanıyalım.

Logaritmik denklemleri çözerken, ne tür bir logaritmaya sahip olduğumuzu belirlememiz gerekir: örnek bir ifade, doğal bir logaritma veya ondalık bir logaritma içerebilir.

İşte ln100, ln1026 örnekleri. Çözümleri, 10 tabanının sırasıyla 100 ve 1026'ya eşit olacağı gücü belirlemeleri gerektiği gerçeğine dayanıyor. Çözümler için doğal logaritmalar başvurulması gerekiyor logaritmik özdeşlikler veya bunların özellikleri. Çözüme örneklerle bakalım logaritmik problemler farklı türleri.

Logaritma Formülleri Nasıl Kullanılır: Örnekler ve Çözümlerle

Logaritmalarla ilgili temel teoremlerin kullanımına ilişkin örneklere bakalım.

  1. Bir ürünün logaritmasının özelliği, genişletilmesi gereken görevlerde kullanılabilir. büyük değer b sayılarını daha basit çarpanlara ayırın. Örneğin, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Cevap 9'dur.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - görebileceğiniz gibi, logaritmanın kuvvetinin dördüncü özelliğini kullanarak, görünüşte karmaşık ve çözülemez bir ifadeyi çözmeyi başardık. Tabanı çarpanlara ayırmanız ve ardından üs değerlerini logaritmanın işaretinden çıkarmanız yeterlidir.

Birleşik Devlet Sınavından Ödevler

Logaritmalar sıklıkla bulunur giriş sınavları, özellikle Birleşik Devlet Sınavında birçok logaritmik problem ( devlet sınavı tüm okuldan ayrılanlar için). Genellikle bu görevler yalnızca A bölümünde mevcut değildir (en kolayı) test bölümü sınav), ancak aynı zamanda C bölümünde (en karmaşık ve hacimli görevler). Sınav doğru ve doğru gerektirir mükemmel bilgi konular "Doğal logaritmalar".

Sorunlara ilişkin örnekler ve çözümler resmi kaynaklardan alınmıştır. Birleşik Devlet Sınavı seçenekleri. Bu tür görevlerin nasıl çözüldüğünü görelim.

Log 2 (2x-1) = 4 verildiğinde. Çözüm:
ifadeyi biraz basitleştirerek yeniden yazalım log 2 (2x-1) = 2 2, logaritmanın tanımından 2x-1 = 2 4, dolayısıyla 2x = 17 elde ederiz; x = 8,5.

  • Çözümün hantal ve kafa karıştırıcı olmaması için tüm logaritmaların aynı tabana indirilmesi en iyisidir.
  • Logaritmanın işaretinin altındaki tüm ifadeler pozitif olarak gösterilir, dolayısıyla logaritmanın işaretinin altında olan bir ifadenin tabanı çarpan olarak üssü çıkarıldığında logaritmanın altında kalan ifadenin pozitif olması gerekir.

Toplum geliştikçe ve üretim karmaşıklaştıkça matematik de gelişti. Basitten karmaşığa doğru hareket. Toplama ve çıkarma yöntemini kullanan sıradan muhasebeden, tekrar tekrar tekrarlanarak çarpma ve bölme kavramına geldik. Tekrarlanan çarpma işleminin azaltılması, üstel alma kavramı haline geldi. Sayıların tabana bağımlılığı ve üstel sayılarla ilgili ilk tablolar 8. yüzyılda Hintli matematikçi Varasena tarafından derlendi. Onlardan logaritmanın oluşma zamanını sayabilirsiniz.

Tarihsel eskiz

16. yüzyılda Avrupa'nın yeniden canlanması mekaniğin gelişimini de teşvik etti. T büyük miktarda hesaplama gerektiriyorduçarpma ve bölme ile ilgili çok basamaklı sayılar. Antik masalar büyük hizmet veriyordu. Karmaşık işlemleri daha basit olanlarla (toplama ve çıkarma) değiştirmeyi mümkün kıldılar. İleriye doğru büyük bir adım, matematikçi Michael Stiefel'in 1544'te yayınlanan ve birçok matematikçinin fikrini hayata geçirdiği çalışmasıydı. Bu, tabloların yalnızca formdaki dereceler için kullanılmasını mümkün kılmadı asal sayılar ama aynı zamanda keyfi rasyonel olanlar için de.

Bu fikirleri geliştiren İskoçyalı John Napier, 1614 yılında ilk kez yeni "bir sayının logaritması" terimini tanıttı. Yeni karmaşık tablolar sinüs ve kosinüslerin logaritmasının yanı sıra teğetlerin hesaplanması için. Bu, gökbilimcilerin çalışmalarını büyük ölçüde azalttı.

Bilim adamları tarafından başarıyla kullanılan yeni tablolar ortaya çıkmaya başladı. üç yüzyıl. Cebirdeki yeni işlemin bitmiş halini alması için çok zaman geçti. Logaritmanın tanımı verilmiş ve özellikleri incelenmiştir.

Ancak 20. yüzyılda hesap makinesinin ve bilgisayarın ortaya çıkışıyla insanlık, 13. yüzyıl boyunca başarılı bir şekilde işleyen eski tabloları terk etti.

Bugün a'nın b'yi oluşturma kuvveti olan b'nin logaritmasını a sayısına x diyoruz. Bu bir formül olarak yazılır: x = log a(b).

Örneğin log 3(9) 2'ye eşit olacaktır. Tanımı takip ederseniz bu açıkça görülür. 3'ün 2'inci üssünü çıkarırsak 9 elde ederiz.

Dolayısıyla, formüle edilen tanım yalnızca bir kısıtlama getirmektedir: a ve b sayıları gerçek olmalıdır.

Logaritma türleri

Klasik tanıma gerçek logaritma denir ve aslında a x = b denkleminin çözümüdür. Seçenek a = 1 sınırdadır ve ilgi çekici değildir. Dikkat: 1'in herhangi bir kuvveti 1'e eşittir.

Logaritmanın gerçek değeri yalnızca taban ve argüman 0'dan büyük olduğunda tanımlanır ve taban 1'e eşit olmamalıdır.

Matematik alanında özel yeri tabanlarının boyutuna göre adlandırılacak olan logaritmalarla oynayın:

Kurallar ve kısıtlamalar

Logaritmanın temel özelliği kuraldır: Bir ürünün logaritması, logaritmik toplama eşittir. log abp = log a(b) + log a(p).

Bu ifadenin bir çeşidi olarak şöyle olacaktır: log c(b/p) = log c(b) - log c(p), bölüm fonksiyonu, fonksiyonların farkına eşittir.

Önceki iki kuraldan şunu görmek kolaydır: log a(b p) = p * log a(b).

Diğer özellikler şunları içerir:

Yorum. Yaygın bir hataya düşmeye gerek yok; bir toplamın logaritması, logaritmaların toplamına eşit değildir.

Yüzyıllar boyunca logaritma bulma işlemi oldukça zaman alıcı bir işti. Matematikçiler kullanıldı bilinen formül Polinom genişlemesinin logaritmik teorisi:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), burada n - doğal sayı 1'den büyük olması hesaplamanın doğruluğunu belirler.

Diğer bazlarla logaritmalar, bir bazdan diğerine geçiş teoremi ve çarpımın logaritmasının özelliği kullanılarak hesaplandı.

Bu yöntem çok emek yoğun olduğundan karar verirken pratik problemler uygulanması zor olduğundan, tüm işi önemli ölçüde hızlandıran önceden derlenmiş logaritma tabloları kullandık.

Bazı durumlarda, daha az doğruluk sağlayan ancak aramayı önemli ölçüde hızlandıran özel olarak tasarlanmış logaritma grafikleri kullanıldı. istenen değer. Y = log a(x) fonksiyonunun birkaç nokta üzerinden oluşturulan eğrisi, fonksiyonun değerini başka herhangi bir noktada bulmak için normal bir cetvel kullanmanıza olanak tanır. Mühendisler uzun zaman Bu amaçlar için grafik kağıdı adı verilen kağıt kullanıldı.

17. yüzyılda ilk yardımcı analog hesaplama koşulları ortaya çıktı. 19. yüzyıl bitmiş bir görünüm kazandı. En başarılı cihaz seçildi sürgülü hesap cetveli. Cihazın sadeliğine rağmen, görünümü tüm mühendislik hesaplamalarının sürecini önemli ölçüde hızlandırdı ve bunu abartmak zor. Şu anda çok az kişi bu cihaza aşinadır.

Hesap makinelerinin ve bilgisayarların ortaya çıkışı, diğer cihazların kullanımını anlamsız hale getirdi.

Denklemler ve eşitsizlikler

Çözmek için farklı denklemler Logaritma kullanılarak eşitsizlikler ve eşitsizlikler için aşağıdaki formüller kullanılır:

  • Bir tabandan diğerine geçiş: log a(b) = log c(b) / log c(a);
  • Önceki seçeneğin bir sonucu olarak: log a(b) = 1 / log b(a).

Eşitsizlikleri çözmek için şunları bilmek faydalıdır:

  • Logaritmanın değeri yalnızca taban ve argümanın her ikisinin de birden büyük veya küçük olması durumunda pozitif olacaktır; en az bir koşulun ihlal edilmesi durumunda logaritma değeri negatif olacaktır.
  • Bir eşitsizliğin sağ ve sol taraflarına logaritma fonksiyonu uygulanırsa ve logaritmanın tabanı birden büyükse eşitsizliğin işareti korunur; aksi takdirde değişir.

Örnek problemler

Logaritmaları ve özelliklerini kullanmak için çeşitli seçenekleri ele alalım. Denklem çözme örnekleri:

Logaritmayı bir kuvvete yerleştirme seçeneğini düşünün:

  • Problem 3. 25^log 5(3)'ü hesaplayın. Çözüm: Sorunun koşullarında, giriş aşağıdaki (5^2)^log5(3) veya 5^(2 * log 5(3))'e benzer. Farklı yazalım: 5^log 5(3*2) veya fonksiyon argümanı olarak bir sayının karesi, fonksiyonun kendisinin karesi (5^log 5(3))^2 olarak yazılabilir. Logaritmanın özelliklerini kullanarak bu ifade 3^2'ye eşittir. Cevap: Hesaplama sonucunda 9 elde ederiz.

Pratik Uygulama

Tamamen matematiksel bir araç olduğundan, gerçek hayat Logaritmanın birdenbire nesneleri tanımlamada büyük önem kazandığını gerçek dünya. Kullanılmayan bilim bulmak zordur. Bu tamamen yalnızca doğal değil, aynı zamanda insani bilgi alanları için de geçerlidir.

Logaritmik bağımlılıklar

Sayısal bağımlılıklara bazı örnekler:

Mekanik ve fizik

Tarihsel olarak mekanik ve fizik her zaman kullanılarak gelişmiştir. matematiksel yöntemler araştırma ve aynı zamanda logaritmalar da dahil olmak üzere matematiğin gelişimi için bir teşvik görevi gördü. Çoğu fizik kanununun teorisi matematik dilinde yazılmıştır. Açıklamalara sadece iki örnek verelim fiziksel yasalar logaritma kullanarak.

Bir roketin hızı gibi karmaşık bir miktarın hesaplanması sorunu, uzay araştırmaları teorisinin temelini oluşturan Tsiolkovsky formülü kullanılarak çözülebilir:

V = I * ln (M1/M2), burada

  • V- son hız uçak.
  • I – motorun spesifik dürtüsü.
  • M 1 – roketin başlangıç ​​kütlesi.
  • M 2 – son kütle.

Bir diğer önemli örnek - bu, başka bir büyük bilim adamı Max Planck'ın tahmin etmeye yarayan formülünde kullanılır. denge durumu termodinamikte.

S = k * ln (Ω), burada

  • S – termodinamik özellik.
  • k – Boltzmann sabiti.
  • Ω farklı durumların istatistiksel ağırlığıdır.

Kimya

Kimyada logaritma oranını içeren formüllerin kullanılması daha az belirgindir. Sadece iki örnek verelim:

  • Nernst denklemi, maddelerin aktivitesine ve denge sabitine bağlı olarak ortamın redoks potansiyelinin durumu.
  • Otoliz indeksi ve çözeltinin asitliği gibi sabitlerin hesaplanması da fonksiyonumuz olmadan yapılamaz.

Psikoloji ve biyoloji

Ve psikolojinin bununla ne ilgisi olduğu hiç de açık değil. Duyusal gücün, uyaran yoğunluk değerinin düşük yoğunluk değerine ters oranı olarak bu fonksiyon tarafından iyi tanımlandığı ortaya çıktı.

Yukarıdaki örneklerden sonra logaritma konusunun biyolojide yaygın olarak kullanılması artık şaşırtıcı değil. Logaritmik spirallere karşılık gelen biyolojik formlar hakkında ciltler dolusu yazı yazılabilir.

Diğer alanlar

Öyle görünüyor ki, bu fonksiyonla bağlantısı olmadan dünyanın varlığı imkânsızdır ve o, tüm kanunları yönetmektedir. Özellikle doğa kanunları ile ilgili olduğunda geometrik ilerleme. MatProfi web sitesine dönmeye değer ve aşağıdaki faaliyet alanlarında buna benzer birçok örnek var:

Liste sonsuz olabilir. Bu işlevin temel ilkelerine hakim olduktan sonra sonsuz bilgelik dünyasına dalabilirsiniz.

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Sitede bir talep gönderdiğinizde toplayabiliriz çeşitli bilgiler adınız, telefon numaranız ve adresiniz dahil e-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Tarafımızdan toplandı kişisel bilgiler sizinle iletişim kurmamıza ve benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler hakkında sizi bilgilendirmemize olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri ayrıca denetim, veri analizi ve çeşitli çalışmalar sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak için.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit etmemiz halinde, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!