Logaritmik denklemlerin logaritmasının kuvveti. Logaritmik denklemler

Logaritmik denklem bilinmeyenin (x) ve onunla birlikte ifadelerin logaritmik fonksiyonun işareti altında olduğu bir denklemdir. Çözüm logaritmik denklemler ve'ye zaten aşina olduğunuzu varsayar.
Logaritmik denklemler nasıl çözülür?

En basit denklem log a x = b a ve b bazı sayılar olmak üzere x bir bilinmeyendir.
Logaritmik bir denklemi çözme x = a b'dir: a > 0, a 1.

Eğer x, logaritmanın dışında bir yerdeyse, örneğin log 2 x = x-2, o zaman böyle bir denklemin zaten karma olarak adlandırıldığı ve onu çözmek için özel bir yaklaşıma ihtiyaç duyulduğu unutulmamalıdır.

İdeal durum, yalnızca sayıların logaritma işareti altında olduğu bir denklemle karşılaşmanızdır, örneğin x+2 = log 2 2. Burada bunu çözmek için logaritmanın özelliklerini bilmek yeterlidir. Ancak böyle bir şans çok sık olmaz, bu yüzden daha zor şeylere hazır olun.

Ama önce şununla başlayalım basit denklemler. Bunları çözmek için en fazlasına sahip olmak arzu edilir. genel fikir Logaritma hakkında.

Basit logaritmik denklemleri çözme

Bunlar log 2 x = log 2 16 tipindeki denklemleri içerir. Çıplak göz, logaritmanın işaretini atlayarak x = 16 elde ettiğimizi görebilir.

Daha karmaşık bir logaritmik denklemi çözmek için genellikle olağan çözümü çözmeye indirgenir. cebirsel denklem veya en basit logaritmik denklemin çözümü log a x = b. En basit denklemlerde bu durum tek bir harekette gerçekleşir, bu yüzden bunlara en basit denir.

Yukarıdaki logaritmaları düşürme yöntemi, logaritmik denklemleri ve eşitsizlikleri çözmenin ana yollarından biridir. Matematikte bu işleme potansiyelleştirme denir. Var belirli kurallar veya bu tür işlemlere ilişkin kısıtlamalar:

  • logaritmalar aynı sayısal tabanlara sahiptir
  • Denklemin her iki tarafındaki logaritmalar serbesttir, yani. herhangi bir katsayı ve diğer şeyler olmadan çeşitli türler ifadeler.

Diyelim ki denklemde log 2 x = 2log 2 (1 - x) güçlendirme uygulanamaz - sağdaki katsayı 2 buna izin vermiyor. İÇİNDE aşağıdaki örnek log 2 x+log 2 (1 - x) = log 2 (1+x) kısıtlamalardan biri de karşılanmıyor - solda iki logaritma var. Sadece bir tane olsaydı, tamamen farklı bir konu olurdu!

Genel olarak logaritmaları ancak denklem şu şekildeyse kaldırabilirsiniz:

log a (...) = log a (...)

Kesinlikle herhangi bir ifade parantez içine yerleştirilebilir; bunun potansiyelleştirme işlemi üzerinde kesinlikle hiçbir etkisi yoktur. Ve logaritmalar ortadan kaldırıldıktan sonra, daha basit bir denklem kalacaktır - doğrusal, ikinci dereceden, üstel vb., umarım bunu nasıl çözeceğinizi zaten biliyorsunuzdur.

Başka bir örnek verelim:

log 3 (2x-5) = log 3 x

Potansiyelleştirme uygularsak şunu elde ederiz:

log 3 (2x-1) = 2

Logaritmanın tanımına dayanarak, yani logaritma, logaritma işaretinin altındaki bir ifadeyi elde etmek için tabanın yükseltilmesi gereken bir sayıdır; (4x-1), şunu elde ederiz:

Yine güzel bir cevap aldık. Burada logaritmaları ortadan kaldırmadan yaptık, ancak potansiyelleştirme burada da uygulanabilir, çünkü herhangi bir sayıdan ve tam olarak ihtiyacımız olan sayıdan bir logaritma yapılabilir. Bu yöntem logaritmik denklemlerin ve özellikle eşitsizliklerin çözümünde çok faydalıdır.

Logaritmik denklem log 3 (2x-1) = 2'yi potansiyasyon kullanarak çözelim:

2 sayısını logaritma olarak düşünelim, örneğin bu log 3 9, çünkü 3 2 =9.

Sonra log 3 (2x-1) = log 3 9 ve yine aynı denklemi 2x-1 = 9 elde ediyoruz. Umarım her şey açıktır.

Aslında çok önemli olan en basit logaritmik denklemlerin nasıl çözüleceğine baktık çünkü logaritmik denklemleri çözme En korkunç ve çarpık olanlar bile, sonunda her zaman en basit denklemleri çözmeye gelir.

Yukarıda yaptığımız her şeyde bir tanesini çok kaçırdık önemli nokta daha sonra sahip olacak olan belirleyici rol. Gerçek şu ki, herhangi bir logaritmik denklemin çözümü, en temel olanı bile, iki eşit parçadan oluşur. Birincisi denklemin çözümü, ikincisi ise alanla çalışmak kabul edilebilir değerler(ODZ). Bu tam olarak ustalaştığımız ilk kısım. Yukarıda DL örnekleri cevabı hiçbir şekilde etkilemediğinden dikkate almadık.

Başka bir örnek verelim:

günlük 3 (x 2 -3) = günlük 3 (2x)

Dıştan bakıldığında bu denklem, çok başarılı bir şekilde çözülebilen temel denklemden farklı değildir. Ancak bu tamamen doğru değil. Hayır, elbette çözeceğiz, ancak büyük olasılıkla yanlış çünkü hem C sınıfı öğrencilerin hem de mükemmel öğrencilerin hemen içine düştüğü küçük bir pusu içeriyor. Daha yakından bakalım.

Diyelim ki, eğer birkaç tane varsa, denklemin kökünü veya köklerin toplamını bulmanız gerekiyor:

günlük 3 (x 2 -3) = günlük 3 (2x)

Güçlendirme kullanıyoruz, burada kabul edilebilir. Sonuç olarak, her zamanki gibi elde ediyoruz ikinci dereceden denklem.

Denklemin köklerini bulma:

İki kök ortaya çıktı.

Cevap: 3 ve -1

İlk bakışta her şey doğru. Ama sonucu kontrol edip yerine koyalım orijinal denklem.

x 1 = 3 ile başlayalım:

günlük 3 6 = günlük 3 6

Kontrol başarılı oldu, artık sıra x 2 = -1:

günlük 3 (-2) = günlük 3 (-2)

Tamam, dur! Dışarıdan her şey mükemmel. Bir şey var ki, negatif sayıların logaritması yoktur! Bu, x = -1 kökünün denklemimizi çözmeye uygun olmadığı anlamına gelir. Dolayısıyla doğru cevap yazdığımız gibi 2 değil 3 olacaktır.

ODZ'nin unuttuğumuz ölümcül rolünü burada oynadı.

Kabul edilebilir değerler aralığının, izin verilen veya orijinal örnek için anlamlı olan x değerlerini içerdiğini hatırlatmama izin verin.

ODZ olmadan, herhangi bir denklemin herhangi bir çözümü, hatta kesinlikle doğru olanı bile piyangoya dönüşür - 50/50.

Ne gibi göründüğüne karar verirken yakalanmayı nasıl başardık? temel örnek? Ama tam olarak potansiyelleşme anında. Logaritmalar ve onlarla birlikte tüm kısıtlamalar ortadan kalktı.

Bu durumda ne yapmalı? Logaritmaları ortadan kaldırmayı reddediyor musunuz? Ve bu denklemi çözmeyi tamamen reddediyor musunuz?

Hayır, biz sadece ünlü bir şarkının gerçek kahramanları gibi dolambaçlı yoldan gideceğiz!

Herhangi bir logaritmik denklemi çözmeye başlamadan önce ODZ'yi yazacağız. Ama bundan sonra denklemimizle gönlünüz ne istiyorsa onu yapabilirsiniz. Cevabı aldıktan sonra, ODZ'mize dahil olmayan kökleri atıyoruz ve son versiyonu yazıyoruz.

Şimdi ODZ’yi nasıl kaydedeceğimize karar verelim. Bunu yapmak için orijinal denklemi dikkatlice inceliyoruz ve x'e bölme, hatta kök vb. gibi şüpheli yerleri arıyoruz. Denklemi çözene kadar x'in neye eşit olduğunu bilmiyoruz, ancak ikame edildiğinde 0'a bölme veya çıkarma verecek x'lerin varlığından eminiz. karekök Negatif bir sayıdan gelen yanıtlar açıkça uygun değildir. Bu nedenle, bu tür x kabul edilemez, geri kalanı ise ODZ'yi oluşturacaktır.

Aynı denklemi tekrar kullanalım:

günlük 3 (x 2 -3) = günlük 3 (2x)

günlük 3 (x 2 -3) = günlük 3 (2x)

Gördüğünüz gibi 0'a bölme yok, karekök de yok ama logaritmanın gövdesinde x'li ifadeler var. Logaritmanın içindeki ifadenin her zaman >0 olması gerektiğini hemen hatırlayalım. Bu koşulu ODZ biçiminde yazıyoruz:

Onlar. Henüz hiçbir şeyi çözmedik ama sublogaritmik ifadenin tamamı için zorunlu bir koşulu zaten yazmıştık. Destek bu koşulların aynı anda yerine getirilmesi gerektiği anlamına gelir.

ODZ yazılıdır ancak ortaya çıkan eşitsizlik sistemini de çözmek gerekir ki biz de bunu yapacağız. x > v3 cevabını alıyoruz. Artık hangi x'in bize uymayacağını kesin olarak biliyoruz. Daha sonra yukarıda yaptığımız gibi logaritmik denklemi çözmeye başlıyoruz.

X 1 = 3 ve x 2 = -1 cevaplarını aldıktan sonra, yalnızca x1 = 3'ün bize uygun olduğunu görmek kolaydır ve bunu son cevap olarak yazıyoruz.

Gelecek için şunu hatırlamak çok önemlidir: herhangi bir logaritmik denklemi 2 aşamada çözeriz. Birincisi denklemin kendisini çözmek, ikincisi ise ODZ koşulunu çözmek. Her iki aşama da birbirinden bağımsız olarak gerçekleştirilir ve yalnızca cevap yazarken karşılaştırılır. gereksiz her şeyi atın ve doğru cevabı yazın.

Materyali güçlendirmek için videoyu izlemenizi şiddetle öneririz:

Video, günlüğü çözmenin diğer örneklerini gösterir. Denklemler ve aralık yönteminin pratikte uygulanması.

Bu soruya, logaritmik denklemler nasıl çözülürŞimdilik bu kadar. Günlük tarafından bir şeye karar verilirse. Denklemler belirsiz veya anlaşılmaz kalıyorsa sorularınızı yorumlara yazın.

Not: Sosyal Eğitim Akademisi (ASE) yeni öğrenci kabulüne hazır.

Talimatlar

Verilen logaritmik ifadeyi yazınız. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın tabanında e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Eğer verilirse karmaşık fonksiyon o zaman türevini çarpmak gerekir dahili fonksiyon ve dıştakinin türevi. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Fonksiyonun değerini hesaplayın verilen nokta y"(1)=8*e^0=8

Konuyla ilgili video

Faydalı tavsiyeler

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman tasarrufu sağlayacaktır.

Kaynaklar:

  • bir sabitin türevi

Peki fark nedir? IR rasyonel denklem rasyonelden mi? Bilinmeyen değişken karekök işaretinin altındaysa denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alarak 2x-5=4x-7 elde edersiniz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir koyarsak sağ ve sol taraflarda anlamsız ifadeler yer alır. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle bu denklemin kökleri yoktur.

Yani irrasyonel bir denklem her iki tarafının karesi alma yöntemi kullanılarak çözülür. Ve denklemi çözdükten sonra kesmek gerekiyor yabancı kökler. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler karekökü olmayan , sağ taraf ve sonra kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani sıradan bir ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; birinciden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için yapmanız gerekenler kimlik dönüşümleri hedefe ulaşılana kadar. Böylece, en basitinin yardımıyla aritmetik işlemler eldeki görev çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca çok sayıda var ve trigonometrik formüller Bunlar aslında aynı kimliklerdir.

Aslında iki terimin toplamının karesi kareye eşit birinci artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesi, yani (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab +b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Ders kitabına göre tekrarlayın matematiksel analiz veya yüksek matematik belirli bir integraldir. Bilindiği üzere çözüm belirli integral türevi veren bir fonksiyon var integrand. Bu işlev antiderivatif denir. İle bu prensip ve ana integralleri oluşturur.
İntegral formuna göre tablo integrallerinden hangisinin uyduğunu belirleyin bu durumda. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman tablo biçimi ancak integrandın basitleştirilmesi için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral fonksiyonu ise trigonometrik fonksiyon Argümanı bazı polinomlar içeren değişkeni değiştirme yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Farklılaşma verilen ifade içinde yeni bir fark bulun. Yani alacaksın yeni görünümönceki integralin herhangi bir tablodaki integrale yakın veya hatta karşılık gelen.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, vektör görünümüİntegral fonksiyonunu kullanıyorsanız, bu integrallerden skaler integrallere geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa bazı vektör fonksiyonlarının rotor akısından şuna gitmenizi sağlar: üçlü integral belirli bir vektör alanının diverjansı ile.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk önce değeri değiştirin üst sınır terstürev için bir ifadeye dönüştürün. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegral limitlerinden biri sonsuzluk ise, bunu yerine koyarken antiderivatif fonksiyon sınıra gitmek ve ifadenin neyi hedeflediğini bulmak gerekiyor.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

giriiş

Logaritmalar hesaplamaları hızlandırmak ve basitleştirmek için icat edildi. Logaritma fikri yani sayıları aynı tabanın kuvvetleri olarak ifade etme fikri Mikhail Stiefel'e aittir. Ancak Stiefel'in zamanında matematik bu kadar gelişmemişti ve logaritma fikri de gelişmemişti. Logaritmalar daha sonra İskoç bilim adamı John Napier (1550-1617) ve İsviçreli Jobst Burgi (1552-1632) tarafından aynı anda ve birbirinden bağımsız olarak icat edildi ve bu çalışmayı 1614'te yayınlayan ilk kişi Napier oldu. “Muhteşem bir logaritma tablosunun açıklaması” başlığı altında, Napier'in logaritma teorisi oldukça eksiksiz bir ciltte verildi, logaritma hesaplama yöntemi en basit olarak verildi, bu nedenle Napier'in logaritmanın icadındaki değeri Bürgi'ninkinden daha büyüktü . Bürgi, Napier'le aynı zamanda masalarda çalışıyordu ama uzun zamandır bunları gizli tuttu ve ancak 1620'de yayınladı. Napier, 1594 civarında logaritma fikrinde ustalaştı. tablolar 20 yıl sonra yayınlanmış olmasına rağmen. İlk başta logaritmalarına "yapay sayılar" adını verdi ve ancak daha sonra bunları önerdi: yapay sayılar“Yunancadan çevrildiğinde “ilişkili sayılar” anlamına gelen, biri aritmetik ilerlemeden, diğeri ise bunun için özel olarak seçilmiş geometrik ilerlemeden alınan “logaritma” kelimesini tek kelimeyle adlandırmak. Rusça'daki ilk tablolar 1703'te yayınlandı. 18. yüzyılın harika bir öğretmeninin katılımıyla. L. F. Magnitsky. Logaritma teorisinin geliştirilmesinde büyük değer Petersburglu akademisyen Leonhard Euler'in çalışmaları vardı. Logaritmayı bir kuvvete yükseltmenin tersi olarak düşünen ilk kişi oydu; "logaritma tabanı" ve "mantis" terimlerini tanıttı. Briggs, 10 tabanlı logaritma tabloları derledi. Ondalık tablolar pratik kullanım için daha uygundur, onların teorisi Napier'in logaritmasından daha basittir. Bu yüzden ondalık logaritmalar bazen brig denir. "Karakterizasyon" terimi Briggs tarafından tanıtıldı.

Bilgelerin bilinmeyen miktarlar içeren eşitlikler hakkında ilk kez düşünmeye başladıkları o uzak zamanlarda, muhtemelen madeni para veya cüzdan yoktu. Ancak bilinmeyen sayıda öğeyi tutabilecek depolama önbelleklerinin rolü için mükemmel olan yığınların yanı sıra tencere ve sepetler de vardı. Antik çağlarda matematik problemleri Mezopotamya, Hindistan, Çin, Yunanistan, bilinmeyen miktarlar bahçedeki tavus kuşlarının sayısını, sürüdeki boğa sayısını, mal paylaşımında dikkate alınan şeylerin bütünlüğünü ifade ediyordu. Hesap bilimi konusunda iyi eğitim almış katipler, yetkililer ve inisiyeler gizli bilgi Rahipler bu tür görevlerle oldukça başarılı bir şekilde başa çıktılar.

Bize ulaşan kaynaklar, eski bilim adamlarının bazı genel teknikler Bilinmeyen miktarlarla ilgili problemleri çözme. Ancak tek bir papirüs değil, tek bir tane bile kil tablet bu tekniklere ilişkin herhangi bir açıklama verilmemiştir. Yazarlar sadece ara sıra sayısal hesaplamalarına "Bak!", "Bunu yap!", "Doğru olanı buldun" gibi kısa yorumlarda bulundular. Bu anlamda istisna, Yunan matematikçi İskenderiyeli Diophantus'un (III. Yüzyıl) “Aritmetiği”dir - çözümlerinin sistematik bir sunumuyla denklem oluşturmaya yönelik bir problemler koleksiyonu.

Ancak sorunları çözmeye yönelik yaygın olarak bilinen ilk el kitabı, 9. yüzyıldaki Bağdatlı bilim adamının çalışmasıydı. Muhammed bin Musa el-Harezmi. Bu risalenin Arapça ismi olan "Kitab al-jaber wal-mukabala" ("Restorasyon ve muhalefet kitabı") olan "el-cebr" kelimesi zamanla çok iyi bilinen "cebir" kelimesine dönüştü ve el- Khwarizmi'nin çalışması denklem çözme biliminin gelişiminde başlangıç ​​noktasını oluşturdu.

Logaritmik denklemler ve eşitsizlikler

1. Logaritmik denklemler

Logaritma işareti altında veya tabanında bir bilinmeyen içeren bir denkleme logaritmik denklem denir.

En basit logaritmik denklem, formun bir denklemidir

kayıt A X = B . (1)

Açıklama 1. Eğer A > 0, A≠ 1, herhangi bir gerçek için denklem (1) B sahip olmak tek çözüm X = bir b .

Örnek 1. Denklemleri çözün:

a)günlük 2 X= 3, b) log 3 X= -1, c)

Çözüm. İfade 1'i kullanarak şunu elde ederiz: a) X= 2 3 veya X= 8; B) X= 3 -1 veya X= 1/3; C)

veya X = 1.

Logaritmanın temel özelliklerini sunalım.

P1. Temel bilgiler logaritmik özdeşlik:

Nerede A > 0, A≠ 1 ve B > 0.

P2. Pozitif faktörlerin çarpımının logaritması toplamına eşit bu faktörlerin logaritmaları:

kayıt A N 1 · N 2 = günlük A N 1 + günlük A N 2 (A > 0, A ≠ 1, N 1 > 0, N 2 > 0).


Yorum. Eğer N 1 · N 2 > 0 ise P2 özelliği şu formu alır:

kayıt A N 1 · N 2 = günlük A |N 1 | + günlük A |N 2 | (A > 0, A ≠ 1, N 1 · N 2 > 0).

P3. İki bölümünün logaritması pozitif sayılar farka eşit bölünen ve bölenin logaritması

(A > 0, A ≠ 1, N 1 > 0, N 2 > 0).

Yorum. Eğer

, (bu eşdeğerdir N 1 N 2 > 0) o zaman P3 özelliği şu şekli alır (A > 0, A ≠ 1, N 1 N 2 > 0).

P4. Pozitif bir sayının kuvvetinin logaritması ürüne eşit bu sayının logaritması başına üssü:

kayıt A N k = k kayıt A N (A > 0, A ≠ 1, N > 0).

Yorum. Eğer k - çift ​​sayı (k = 2S), O

kayıt A N 2S = 2S kayıt A |N | (A > 0, A ≠ 1, N ≠ 0).

P5. Başka bir üsse geçmenin formülü:

(A > 0, A ≠ 1, B > 0, B ≠ 1, N > 0),

özellikle eğer N = B, alıyoruz

(A > 0, A ≠ 1, B > 0, B ≠ 1). (2)

P4 ve P5 özelliklerini kullanarak aşağıdaki özellikleri elde etmek kolaydır

(A > 0, A ≠ 1, B > 0, C ≠ 0), (3) (A > 0, A ≠ 1, B > 0, C ≠ 0), (4) (A > 0, A ≠ 1, B > 0, C ≠ 0), (5)

ve eğer (5)'te ise C- çift sayı ( C = 2N), gerçekleşir

(B > 0, A ≠ 0, |A | ≠ 1). (6)

Logaritmik fonksiyonun temel özelliklerini listeleyelim F (X) = günlük A X :

1. Logaritmik bir fonksiyonun tanım alanı pozitif sayılar kümesidir.

2. Logaritmik fonksiyonun değer aralığı gerçek sayılar kümesidir.

3. Ne zaman A > 1 logaritmik fonksiyon kesinlikle artan (0< X 1 < X 2 günlük A X 1 < logA X 2) ve 0'da< A < 1, - строго убывает (0 < X 1 < X 2 günlük A X 1 > günlük A X 2).

4.günlük A 1 = 0 ve log A A = 1 (A > 0, A ≠ 1).

5. Eğer A> 1 ise logaritmik fonksiyon negatiftir: X(0;1) ve pozitif X(1;+∞) ve eğer 0 ise< A < 1, то логарифмическая функция положительна при X (0;1) ve negatif X (1;+∞).

6. Eğer A> 1 ise logaritmik fonksiyon yukarıya doğru dışbükeydir ve eğer A(0;1) - aşağı doğru dışbükey.

Logaritmik denklemleri çözerken aşağıdaki ifadeler (örneğin bkz.) kullanılır.

Cebir 11. sınıf

Konu: “Logaritmik denklemleri çözme yöntemleri”

Ders hedefleri:

eğitici: hakkında bilgi oluşumu farklı şekillerde Logaritmik denklemleri çözme, bunları her denklemde uygulama becerisi özel durum ve çözmek için herhangi bir yöntemi seçin;

Gelişimsel: Gözlemleme, karşılaştırma ve bilgiyi uygulama becerilerinin geliştirilmesi. yeni durum, kalıpları tanımlayın, genelleyin; karşılıklı kontrol ve öz kontrol becerilerini geliştirmek;

eğitici: sorumlu bir tutumu teşvik etmek eğitim çalışması, dersteki materyalin dikkatli algılanması, dikkatli not alma.

Ders türü: yeni materyalin tanıtılması dersi.

"Logaritmanın icadı gökbilimcinin işini azaltırken ömrünü uzattı."
Fransız matematikçi ve gökbilimci P.S. Laplace

Ders ilerlemesi

I. Dersin hedefini belirlemek

Logaritmanın incelenen tanımı, logaritmanın özellikleri ve logaritmik fonksiyon, logaritmik denklemleri çözmemize olanak sağlayacaktır. Tüm logaritmik denklemler, ne kadar karmaşık olursa olsun, tek tip algoritmalar kullanılarak çözülür. Bugünkü dersimizde bu algoritmalara bakacağız. Birçoğu yok. Eğer bunlara hakim olursanız, logaritmalı herhangi bir denklem her biriniz için mümkün olacaktır.

Dersin konusunu not defterinize yazın: “Logaritmik denklemleri çözme yöntemleri.” Herkesi işbirliğine davet ediyorum.

II. Güncelleme arka plan bilgisi

Dersin konusunu çalışmaya hazırlanalım. Her görevi çözersiniz ve cevabı yazarsınız; koşulu yazmanıza gerek yoktur. Çiftler halinde çalışın.

1) Fonksiyon hangi x değerleri için anlamlıdır:

(Cevaplar her slayt için kontrol edilir ve hatalar sıralanır)

2) Fonksiyonların grafikleri çakışıyor mu?

3) Eşitlikleri logaritmik eşitlikler olarak yeniden yazın:

4) Sayıları 2 tabanına göre logaritma olarak yazın:

5) Hesaplayın:

6) Bu eşitliklerdeki eksik unsurları tamamlamaya veya tamamlamaya çalışın.

III. Yeni malzemeye giriş

Ekranda aşağıdaki ifade görüntülenir:

“Denklem, tüm matematik susamlarını açan altın anahtardır.”
Modern Polonyalı matematikçi S. Kowal

Logaritmik bir denklemin tanımını formüle etmeye çalışın. ( Logaritma işareti altında bilinmeyeni içeren bir denklem).

düşünelim en basit logaritmik denklem:kayıtAx = b(burada a>0, a ≠ 1). Logaritmik fonksiyon pozitif sayılar kümesinde arttığından (veya azaldığından) ve tüm değerleri aldığından gerçek değerler o zaman kök teoremine göre, herhangi bir b için bu denklemin sadece bir çözümü vardır ve pozitif bir çözüme sahiptir.

Logaritmanın tanımını hatırlayın. (Bir x sayısının a tabanına göre logaritması, x sayısını elde etmek için a tabanının yükseltilmesi gereken kuvvetin bir göstergesidir). Logaritmanın tanımından hemen şu sonuç çıkar: AV böyle bir çözümdür.

Başlığı yazın: Logaritmik denklemleri çözme yöntemleri

1. Logaritmanın tanımı gereği.

Formun en basit denklemleri bu şekilde çözülür.

düşünelim 514(a) Sayısı): Denklemi çözün

Bunu nasıl çözmeyi öneriyorsunuz? (Logaritmanın tanımı gereği)

Çözüm. , Dolayısıyla 2x - 4 = 4; x = 4.

Bu görevde 2x - 4 > 0, > 0 olduğu için yabancı kökler görünemez ve kontrol etmeye gerek yoktur. Bu görevde 2x - 4 > 0 koşulunun yazılmasına gerek yoktur.

2. Potansiyelleştirme(belirli bir ifadenin logaritmasından bu ifadenin kendisine geçiş).

düşünelim 519(g): log5(x2+8)-log5(x+1)=3log5 2

Hangi özelliği fark ettiniz? (Tabanlar aynıdır ve iki ifadenin logaritmaları eşittir.) Ne yapılabilir? (Güçlendirin).

Logaritmik ifadelerin pozitif olduğu tüm x'ler arasında herhangi bir çözümün yer aldığı dikkate alınmalıdır.

Çözüm: ODZ:

X2+8>0 gereksiz bir eşitsizliktir

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Orijinal denklemin potansiyelini artıralım

x2+8= 8x+8 denklemini elde ederiz

Hadi çözelim: x2-8x=0

Cevap: 0; 8

İÇİNDE genel görünüm eşdeğer bir sisteme geçiş:

Denklem

(Sistem gereksiz bir koşul içeriyor - eşitsizliklerden birinin dikkate alınmasına gerek yok).

Sınıf için soru: Bu üç çözümden hangisini en çok beğendiniz? (Yöntemlerin tartışılması).

Her şekilde karar verme hakkına sahipsiniz.

3. Yeni bir değişkenin tanıtılması.

düşünelim 520(g). .

Ne fark ettin? (Bu log3x'e göre ikinci dereceden bir denklemdir) Herhangi bir öneriniz var mı? (Yeni bir değişken tanıtın)

Çözüm. ODZ: x > 0.

Diyelim ki denklem şu şekli alır:. Diskriminant D > 0. Vieta teoremine göre kökler:.

Değiştirme konusuna geri dönelim: veya.

En basit logaritmik denklemleri çözdükten sonra şunu elde ederiz:

Cevap: 27;

4. Denklemin her iki tarafının logaritması.

Denklemi çözün:.

Çözüm: ODZ: x>0, denklemin her iki tarafının 10 tabanındaki logaritmasını alın:

Bir kuvvetin logaritması özelliğini uygulayalım:

(logx + 3) logx = 4

logx = y olsun, o zaman (y + 3)y = 4

, (D > 0) kökleri Vieta teoremine göre: y1 = -4 ve y2 = 1.

Değiştirmeye geri dönelim, şunu elde ederiz: lgx = -4,; lgx = 1, .

Cevap: 0,0001; 10.

5. Tek tabana indirgeme.

523(c) sayılı. Denklemi çözün:

Çözüm: ODZ: x>0. 3. tabana geçelim.

6. Fonksiyonel-grafik yöntemi.

509(d). Denklemi grafiksel olarak çözün: = 3 - x.

Nasıl çözmeyi önerirsiniz? (Noktaları kullanarak y = log2x ve y = 3 - x olmak üzere iki fonksiyonun grafiklerini oluşturun ve grafiklerin kesişme noktalarının apsisini arayın).

Slayttaki çözümünüze bakın.

Grafik yapmaktan kaçınmanın bir yolu var . Aşağıdaki gibidir : işlevlerden biri ise y = f(x) artar, diğeri y = g(x) X aralığında azalırsa denklem f(x)=g(x) X aralığında en fazla bir kökü vardır.

Bir kök varsa tahmin edilebilir.

Bizim durumumuzda fonksiyon x>0 için artar ve y = 3 - x fonksiyonu x>0 da dahil olmak üzere x'in tüm değerleri için azalır, bu da denklemin birden fazla kökü olmadığı anlamına gelir. X = 2'de denklemin gerçek bir eşitliğe dönüştüğünü unutmayın, çünkü .

« Doğru kullanım yöntemler öğrenilebilir
yalnızca bunları uygulayarak çeşitli örnekler».
Danimarkalı matematik tarihçisi G. G. Zeiten

BENV. Ev ödevi

S. 39 örnek 3'ü ele alın, çözün No. 514(b), No. 529(b), No. 520(b), No. 523(b)

V. Dersin özetlenmesi

Derste logaritmik denklemleri çözmenin hangi yöntemlerine baktık?

Sonraki derslerde daha fazlasına bakacağız karmaşık denklemler. Bunları çözmek için çalışılan yöntemler faydalı olacaktır.

Gösterilen son slayt:

“Dünyada her şeyden daha fazla olan şey nedir?
Uzay.
En akıllıca şey nedir?
Zaman.
En iyi kısmı nedir?
İstediğine ulaş."
Thales

Herkesin istediğini elde etmesini diliyorum. İşbirliğiniz ve anlayışınız için teşekkür ederiz.

Logaritmik denklemler. Matematikte Birleşik Devlet Sınavının B Bölümündeki problemleri ele almaya devam ediyoruz. Bazı denklemlerin çözümlerini zaten “”, “” makalelerinde incelemiştik. Bu yazıda logaritmik denklemlere bakacağız. Birleşik Devlet Sınavında bu tür denklemleri çözerken karmaşık dönüşümler olmayacağını hemen söyleyeceğim. Bunlar basit.

Temel logaritmik özdeşliği bilmek ve anlamak, logaritmanın özelliklerini bilmek yeterlidir. Lütfen çözdükten sonra bir kontrol yapmanız GEREKTİĞİNİ unutmayın; elde edilen değeri orijinal denklemde değiştirin ve hesaplayın, sonunda doğru eşitliği elde etmelisiniz.

Tanım:

Bir sayının b tabanına göre logaritması üstür,a'yı elde etmek için b'nin yükseltilmesi gerekir.


Örneğin:

Log 3 9 = 2, çünkü 3 2 = 9

Logaritmanın özellikleri:

Logaritmaların özel durumları:

Sorunları çözelim. İlk örnekte bir kontrol yapacağız. Gelecekte kendiniz kontrol edin.

Denklemin kökünü bulun: log 3 (4–x) = 4

log b a = x b x = a olduğuna göre, o zaman

3 4 = 4 – x

x = 4 – 81

x = – 77

Muayene:

günlük 3 (4–(–77)) = 4

günlük 3 81 = 4

3 4 = 81 Doğru.

Cevap: – 77

Kendiniz karar verin:

Denklemin kökünü bulun: log 2 (4 – x) = 7

Denklem günlüğü 5'in kökünü bulun(4 + x) = 2

Temel logaritmik özdeşliği kullanıyoruz.

log a b = x b x = a olduğuna göre, o zaman

5 2 = 4 + x

x =5 2 – 4

x = 21

Muayene:

log 5 (4 + 21) = 2

günlük 5 25 = 2

5 2 = 25 Doğru.

Cevap: 21

Log 3 (14 – x) = log 3 5 denkleminin kökünü bulun.

Gerçekleşir sonraki mülk, anlamı şu şekildedir: Denklemin sol ve sağ taraflarında logaritmalarımız varsa aynı temel, o zaman ifadeleri logaritma işaretleri altında eşitleyebiliriz.

14 – x = 5

x=9

Bir kontrol yapın.

Cevap: 9

Kendiniz karar verin:

Log 5 (5 – x) = log 5 3 denkleminin kökünü bulun.

Denklemin kökünü bulun: log 4 (x + 3) = log 4 (4x – 15).

Eğer log c a = log c b ise a = b

x + 3 = 4x – 15

3x = 18

x=6

Bir kontrol yapın.

Cevap: 6

Log 1/8 (13 – x) = – 2 denkleminin kökünü bulun.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Bir kontrol yapın.

Küçük bir ekleme - özellik burada kullanılıyor

derece ().

Cevap: – 51

Kendiniz karar verin:

Denklemin kökünü bulun: log 1/7 (7 – x) = – 2

Log 2 (4 – x) = 2 log 2 5 denkleminin kökünü bulun.

Sağ tarafı dönüştürelim. Özelliği kullanalım:

log a b m = m∙log a b

günlük 2 (4 – x) = günlük 2 5 2

Eğer log c a = log c b ise a = b

4 – x = 5 2

4 – x = 25

x = – 21

Bir kontrol yapın.

Cevap: – 21

Kendiniz karar verin:

Denklemin kökünü bulun: log 5 (5 – x) = 2 log 5 3

Log 5 (x 2 + 4x) = log 5 (x 2 + 11) denklemini çözün

Eğer log c a = log c b ise a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Bir kontrol yapın.

Cevap: 2,75

Kendiniz karar verin:

Log 5 (x 2 + x) = log 5 (x 2 + 10) denkleminin kökünü bulun.

Log 2 (2 – x) = log 2 (2 – 3x) +1 denklemini çözün.

ile gerekli sağ taraf denklemler formun bir ifadesini elde eder:

günlük 2 (......)

1'i 2 tabanlı logaritma olarak temsil ediyoruz:

1 = günlük 2 2

log c (ab) = log c a + log c b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Şunu elde ederiz:

günlük 2 (2 – x) = günlük 2 2 (2 – 3x)

Eğer log c a = log c b ise a = b, o zaman

2 – x = 4 – 6x

5x = 2

x = 0,4

Bir kontrol yapın.

Cevap: 0,4

Kendiniz karar verin: Daha sonra ikinci dereceden denklemi çözmeniz gerekir. Bu arada,

kökler 6 ve –4’tür.

Kök "-Logaritmanın tabanının 4" olması gerektiği için 4" bir çözüm değildir. sıfırdan büyük ve ne zaman " 4" eşittir" 5". Çözüm kök 6'dır.Bir kontrol yapın.

Cevap: 6.

R kendi başına yemek ye:

Log x –5 49 = 2 denklemini çözün. Denklemin birden fazla kökü varsa, daha küçük olanla cevap verin.

Gördüğünüz gibi logaritmik denklemlerle karmaşık dönüşümler yokHAYIR. Logaritmanın özelliklerini bilmek ve uygulayabilmek yeterlidir. İÇİNDE Birleşik Devlet Sınavı sorunları dönüşümle ilgili logaritmik ifadeler, daha ciddi dönüşümler yapılıyor ve daha derin çözüm becerileri gerekiyor. Bu tür örneklere bakacağız, kaçırmayın!Size iyi şanslar!!!

Saygılarımla, Alexander Krutitskikh.

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!