Farklı paydalara sahip kesirli bir denklem nasıl çözülür? Çevrimiçi denklemler


hakkında konuşmaya devam edelim denklem çözme. Bu yazımızda bu konuyu detaylı olarak ele alacağız. rasyonel denklemler ve çözüm ilkeleri rasyonel denklemler tek değişkenle. Öncelikle hangi tür denklemlere rasyonel denildiğini bulalım, tam rasyonel ve kesirli rasyonel denklemlerin tanımını verelim ve örnekler verelim. Daha sonra rasyonel denklemleri çözmek için algoritmalar elde edeceğiz ve elbette çözümleri ele alacağız tipik örnekler gerekli tüm açıklamalarla.

Sayfada gezinme.

Belirtilen tanımlara dayanarak, birkaç rasyonel denklem örneği veriyoruz. Örneğin, x=1, 2·x−12·x 2 ·y·z 3 =0, ,'nin tümü rasyonel denklemlerdir.

Gösterilen örneklerden, rasyonel denklemlerin ve diğer türdeki denklemlerin tek değişkenli veya iki, üç vb. olabileceği açıktır. değişkenler. Aşağıdaki paragraflarda tek değişkenli rasyonel denklemlerin çözümünden bahsedeceğiz. İki değişkenli denklemleri çözme ve onlar çok sayıdaözel ilgiyi hak ediyor.

Rasyonel denklemler bilinmeyen değişken sayısına bölünmenin yanı sıra tamsayı ve kesirli olarak da ayrılırlar. İlgili tanımları verelim.

Tanım.

Rasyonel denklem denir tüm, eğer hem sol hem de sağ tarafları tamsayı rasyonel ifadeler ise.

Tanım.

Rasyonel bir denklemin parçalarından en az biri kesirli bir ifade ise, böyle bir denklem denir. kesirli rasyonel(veya kesirli rasyonel).

Tam denklemlerin bir değişkene göre bölmeyi içermediği açıktır; aksine, kesirli rasyonel denklemler zorunlu olarak bir değişkene (veya paydadaki bir değişkene) bölmeyi içerir. Yani 3 x+2=0 ve (x+y)·(3·x 2 −1)+x=−y+0,5– bunlar tam rasyonel denklemlerdir, her iki parçası da tam ifadelerdir. A ve x:(5 x 3 +y 2)=3:(x−1):5 kesirli rasyonel denklem örnekleridir.

Bu noktayı bitirirken, şu ana kadar bilinen lineer denklemlerin ve ikinci dereceden denklemlerin tamamen rasyonel denklemler olduğuna dikkat edelim.

Denklemlerin tamamını çözme

Denklemlerin tamamını çözmenin temel yaklaşımlarından biri onları eşdeğer denklemlere indirgemektir. cebirsel denklemler. Bu her zaman denklemin aşağıdaki eşdeğer dönüşümleri gerçekleştirilerek yapılabilir:

Sonuç: cebirsel denklem orijinal tamsayı denklemine eşdeğerdir. Yani en çok basit vakalar denklemlerin tamamının çözülmesi, doğrusal veya ikinci dereceden denklemlerin çözülmesine indirgenir ve genel durum– n dereceli bir cebirsel denklemi çözmek. Açıklık sağlamak için, örneğin çözümüne bakalım.

Örnek.

Tüm denklemin köklerini bulun 3·(x+1)·(x−3)=x·(2·x−1)−3.

Çözüm.

Tüm bu denklemin çözümünü eşdeğer bir cebirsel denklemin çözümüne indirgeyelim. Bunun için öncelikle ifadeyi sağ taraftan sola aktarıyoruz ve bunun sonucunda denkleme ulaşıyoruz. 3·(x+1)·(x−3)−x·(2·x−1)+3=0. İkinci olarak, sol tarafta oluşan ifadeyi gerekli işlemleri tamamlayarak standart formda bir polinom haline dönüştürüyoruz: 3·(x+1)·(x−3)−x·(2·x−1)+3= (3 x+3) (x−3)−2 x 2 +x+3= 3 x 2 −9 x+3 x−9−2 x 2 +x+3=x 2 −5 x−6. Böylece orijinal tamsayı denkleminin çözümü çözüme indirgenir. ikinci dereceden denklem x 2 −5 x−6=0 .

Diskriminantını hesaplıyoruz D=(−5) 2 −4·1·(−6)=25+24=49 pozitiftir, bu da denklemin iki gerçek kökü olduğu anlamına gelir; bunu ikinci dereceden bir denklemin kökleri formülünü kullanarak buluruz:

Tamamen emin olmak için hadi yapalım Denklemin bulunan köklerinin kontrol edilmesi. İlk önce kök 6'yı kontrol ederiz, orijinal tamsayı denkleminde x değişkeni yerine onu kullanırız: 3·(6+1)·(6−3)=6·(2·6−1)−3 63=63 aynıdır. Bu geçerli bir sayısal denklemdir, dolayısıyla x=6 aslında denklemin köküdür. Şimdi −1 kökünü kontrol edersek, elimizde 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3, buradan, 0=0 . x=−1'de orijinal denklem aynı zamanda gerçek bir sayısal eşitliğe dönüştüğünden x=−1 aynı zamanda denklemin köküdür.

Cevap:

6 , −1 .

Burada ayrıca "tüm denklemin derecesi" teriminin, bir denklemin tamamının cebirsel bir denklem biçiminde temsil edilmesiyle ilişkili olduğuna da dikkat edilmelidir. İlgili tanımı verelim:

Tanım.

Tüm denklemin gücü eşdeğer cebirsel denklemin derecesi denir.

Bu tanıma göre önceki örnekteki denklemin tamamı ikinci dereceye sahiptir.

Bu, tek bir şey olmasa bile, tüm rasyonel denklemleri çözmenin sonu olabilirdi…. Bilindiği gibi derecesi ikinciden yüksek olan cebirsel denklemlerin çözümü önemli zorluklarla ilişkilidir ve derecesi dördüncüden yüksek olan denklemler için herhangi bir çözüm söz konusu değildir. genel formüller kökler. Bu nedenle üçüncü, dördüncü ve daha fazla denklemin tamamını çözmek için yüksek derecelerÇoğu zaman başka çözüm yöntemlerine başvurmak zorunda kalırsınız.

Bu gibi durumlarda rasyonel denklemlerin tamamının çözümüne dayalı bir yaklaşım çarpanlara ayırma yöntemi. Bu durumda aşağıdaki algoritmaya uyulur:

  • öncelikle denklemin sağ tarafında bir sıfır olmasını sağlarlar; bunun için denklemin tamamının sağ tarafındaki ifadeyi sola aktarırlar;
  • daha sonra sol tarafta ortaya çıkan ifade, birkaç faktörün çarpımı olarak sunulur ve bu da birkaç basit denklem dizisine geçmemize olanak tanır.

Bir denklemin tamamını çarpanlara ayırma yoluyla çözmek için verilen algoritma, bir örnek kullanılarak ayrıntılı bir açıklama gerektirir.

Örnek.

Denklemin tamamını çöz (x 2 −1)·(x 2 −10·x+13)= 2 x (x 2 −10 x+13) .

Çözüm.

Öncelikle her zamanki gibi ifadeyi denklemin sağ tarafından sol tarafına aktarıyoruz, işareti değiştirmeyi unutmadan, şunu elde ediyoruz: (x 2 −1)·(x 2 −10·x+13)− 2 x (x 2 −10 x+13)=0 . Burada, ortaya çıkan denklemin sol tarafını standart formda bir polinom haline dönüştürmenin tavsiye edilmeyeceği oldukça açıktır, çünkü bu, formun dördüncü derecesinin cebirsel bir denklemini verecektir. x 4 −12 x 3 +32 x 2 −16 x−13=0 bunun çözümü zordur.

Öte yandan, ortaya çıkan denklemin sol tarafında x 2 −10 x+13'ü bir çarpım olarak sunabileceğimiz açıktır. Sahibiz (x 2 −10 x+13) (x 2 −2 x−1)=0. Ortaya çıkan denklem orijinal denklemin tamamına eşdeğerdir ve bu da iki ikinci dereceden denklem x 2 −10·x+13=0 ve x 2 −2·x−1=0 ile değiştirilebilir. Köklerini bulmak bilinen formüller Köklerin diskriminanttan geçmesi zor değildir, kökler eşittir. Bunlar orijinal denklemin istenen kökleridir.

Cevap:

Ayrıca rasyonel denklemlerin tamamını çözmek için de faydalıdır yeni bir değişken ekleme yöntemi. Bazı durumlarda derecesi orijinal denklemin tamamının derecesinden daha düşük olan denklemlere geçmenize olanak tanır.

Örnek.

Rasyonel bir denklemin gerçek köklerini bulun (x 2 +3 x+1) 2 +10=−2 (x 2 +3 x−4).

Çözüm.

En hafif deyimle, bu rasyonel denklemin tamamını cebirsel bir denkleme indirgemek pek iyi bir fikir değildir, çünkü bu durumda dördüncü dereceden denklemi çözme ihtiyacı duyacağız. rasyonel kökler. Bu nedenle başka bir çözüm aramanız gerekecek.

Burada yeni bir y değişkeni tanıtabileceğinizi ve x 2 +3·x ifadesini bununla değiştirebileceğinizi görmek kolaydır. Bu değiştirme bizi tüm (y+1) 2 +10=−2·(y−4) denklemine götürür; bu, −2·(y−4) ifadesini sol tarafa taşıdıktan ve ardından ifadeyi dönüştürdükten sonra burada oluşan ikinci derece denklem y 2 +4·y+3=0'a indirgenir. Bu denklemin y=−1 ve y=−3 köklerini bulmak kolaydır, örneğin Vieta teoreminin tersi olan teoreme göre seçilebilirler.

Şimdi yeni bir değişken ekleme yönteminin ikinci kısmına, yani ters değiştirme işlemine geçiyoruz. Ters değiştirme işlemini gerçekleştirdikten sonra, x 2 +3 x=−1 ve x 2 +3 x=−3 olmak üzere iki denklem elde ederiz; bunlar x 2 +3 x+1=0 ve x 2 +3 x+3 olarak yeniden yazılabilir. =0 . İkinci dereceden bir denklemin kökleri formülünü kullanarak ilk denklemin köklerini buluruz. Ve ikinci ikinci dereceden denklemin diskriminantı negatif olduğundan gerçek kökleri yoktur (D=3 2 −4·3=9−12=−3 ).

Cevap:

Genel olarak, yüksek dereceli denklemlerin tamamıyla uğraşırken her zaman araştırmaya hazır olmalıyız. standart dışı yöntem veya bunları çözmek için yapay bir yöntem.

Kesirli rasyonel denklemleri çözme

İlk olarak, p(x) ve q(x)'in tamsayı rasyonel ifadeler olduğu kesirli rasyonel denklemlerin nasıl çözüleceğini anlamak faydalı olacaktır. Daha sonra diğer kesirli rasyonel denklemlerin çözümünün belirtilen türdeki denklemlerin çözümüne nasıl indirgeneceğini göstereceğiz.

Denklemin çözümüne yönelik yaklaşımlardan biri, sonraki ifade: sayısal kesir v'nin sıfır olmayan bir sayı olduğu u/v (aksi takdirde tanımsız olan ile karşılaşırız), ancak ve ancak payının sıfır olması durumunda sıfıra eşittir sıfıra eşit, yani ancak ve ancak u=0 ise. Bu ifade sayesinde denklemin çözümü, p(x)=0 ve q(x)≠0 olmak üzere iki koşulun yerine getirilmesine indirgenir.

Bu sonuç aşağıdakilere karşılık gelir kesirli rasyonel denklemi çözmek için algoritma. Formun kesirli rasyonel denklemini çözmek için ihtiyacınız olan şey

  • p(x)=0 rasyonel denkleminin tamamını çözün;
  • ve bulunan her kök için q(x)≠0 koşulunun karşılanıp karşılanmadığını kontrol edin;
    • eğer doğruysa bu kök orijinal denklemin köküdür;
    • eğer karşılanmazsa bu kök yabancıdır, yani orijinal denklemin kökü değildir.

Kesirli bir rasyonel denklemi çözerken duyurulan algoritmayı kullanmanın bir örneğine bakalım.

Örnek.

Denklemin köklerini bulun.

Çözüm.

Bu kesirli rasyonel bir denklemdir ve şu şekildedir: p(x)=3·x−2, q(x)=5·x 2 −2=0.

Bu tür kesirli rasyonel denklemlerin çözümüne yönelik algoritmaya göre, öncelikle 3 x−2=0 denklemini çözmemiz gerekir. Bu doğrusal denklem, kökü x=2/3'tür.

Geriye bu kökü kontrol etmek kalıyor, yani 5 x 2 −2≠0 koşulunu karşılayıp karşılamadığını kontrol etmek. 5 x 2 −2 ifadesinde x yerine 2/3 sayısını koyarsak ve elde ederiz. Koşul karşılanmıştır, dolayısıyla x=2/3 orijinal denklemin köküdür.

Cevap:

2/3 .

Kesirli bir rasyonel denklemin çözümüne biraz farklı bir açıdan yaklaşabilirsiniz. Bu denklem, orijinal denklemin x değişkeni üzerindeki p(x)=0 tamsayı denklemine eşdeğerdir. Yani buna bağlı kalabilirsiniz kesirli rasyonel denklemi çözmek için algoritma :

  • p(x)=0 denklemini çözün;
  • x değişkeninin ODZ'sini bulun;
  • bölgeye ait kökleri almak kabul edilebilir değerler, - bunlar orijinal kesirli rasyonel denklemin istenen kökleridir.

Örneğin bu algoritmayı kullanarak kesirli bir rasyonel denklemi çözelim.

Örnek.

Denklemi çözün.

Çözüm.

Öncelikle ikinci dereceden x 2 −2·x−11=0 denklemini çözüyoruz. Kökleri çift ikinci katsayı için kök formülü kullanılarak hesaplanabilir, elimizdeki D 1 =(−1) 2 −1·(−11)=12, Ve .

İkinci olarak, orijinal denklem için x değişkeninin ODZ'sini buluyoruz. x 2 +3·x≠0 olan ve x·(x+3)≠0 ile aynı olan tüm sayılardan oluşur; dolayısıyla x≠0, x≠−3.

Geriye ilk adımda bulunan köklerin ODZ'ye dahil edilip edilmediğini kontrol etmek kalıyor. Açıkçası evet. Bu nedenle, orijinal kesirli rasyonel denklemin iki kökü vardır.

Cevap:

ODZ'nin bulunması kolaysa bu yaklaşımın ilkinden daha karlı olduğunu ve özellikle p(x) = 0 denkleminin köklerinin irrasyonel veya rasyonel olması ancak oldukça büyük bir paya sahip olması durumunda özellikle faydalı olduğunu unutmayın. /veya payda, örneğin, 127/1101 ve −31/59. Bunun nedeni, bu tür durumlarda q(x)≠0 koşulunun kontrol edilmesinin önemli miktarda hesaplama çabası gerektirmesi ve ODZ kullanılarak yabancı köklerin hariç tutulmasının daha kolay olmasıdır.

Diğer durumlarda, denklemi çözerken, özellikle p(x) = 0 denkleminin kökleri tamsayı olduğunda, verilen algoritmalardan ilkini kullanmak daha karlı olur. Yani, p(x)=0 denkleminin tamamının köklerini hemen bulmak ve ardından ODZ'yi bulup denklemi çözmek yerine q(x)≠0 koşulunun onlar için karşılanıp karşılanmadığını kontrol etmek tavsiye edilir. Bu ODZ'de p(x)=0. Bunun nedeni, bu gibi durumlarda kontrol etmenin genellikle DZ'yi bulmaktan daha kolay olmasıdır.

Belirtilen nüansları göstermek için iki örneğin çözümünü ele alalım.

Örnek.

Denklemin köklerini bulun.

Çözüm.

İlk önce tüm denklemin köklerini bulalım (2 x−1) (x−6) (x 2 −5 x+14) (x+1)=0, kesrin payı kullanılarak oluşturulur. Bu denklemin sol tarafı bir çarpım, sağ tarafı ise sıfırdır, dolayısıyla denklemleri çarpanlara ayırma yöntemine göre bu denklem dört denklemden oluşan bir sete eşdeğerdir 2 x−1=0 , x−6= 0 , x 2 −5 x+ 14=0 , x+1=0 . Bu denklemlerden üçü doğrusal, biri ikinci derecedendir; bunları çözebiliriz. İlk denklemden x=1/2, ikinciden - x=6, üçüncüden - x=7, x=−2, dördüncüden - x=−1 buluyoruz.

Kökler bulunduğunda, orijinal denklemin sol tarafındaki kesirin paydasının kaybolup kaybolmadığını kontrol etmek oldukça kolaydır, ancak tam tersine ODZ'yi belirlemek o kadar kolay değildir, çünkü bunun için çözmeniz gerekecek beşinci derecenin cebirsel denklemi. Bu nedenle, kökleri kontrol etmek adına ODZ'yi bulmayı bırakacağız. Bunu yapmak için ifadedeki x değişkeni yerine bunları birer birer değiştiriyoruz. x 5 −15 x 4 +57 x 3 −13 x 2 +26 x+112, değiştirmeden sonra elde edilenleri sıfırla karşılaştırın: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Dolayısıyla, 1/2, 6 ve −2 orijinal kesirli rasyonel denklemin istenen kökleridir ve 7 ve −1 ise yabancı köklerdir.

Cevap:

1/2 , 6 , −2 .

Örnek.

Kesirli bir rasyonel denklemin köklerini bulun.

Çözüm.

İlk önce denklemin köklerini bulalım (5 x 2 −7 x−1) (x−2)=0. Bu denklem iki denklemden oluşan bir diziye eşdeğerdir: kare 5·x 2 −7·x−1=0 ve doğrusal x−2=0. İkinci dereceden bir denklemin kökleri formülünü kullanarak iki kök buluruz ve ikinci denklemden x=2 elde ederiz.

X'in bulunan değerlerinde paydanın sıfıra gidip gitmediğini kontrol etmek oldukça tatsızdır. Ve orijinal denklemde x değişkeninin izin verilen değerlerinin aralığını belirlemek oldukça basittir. Bu nedenle ODZ üzerinden hareket edeceğiz.

Bizim durumumuzda, orijinal kesirli rasyonel denklemin x değişkeninin ODZ'si, x 2 +5·x−14=0 koşulunun karşılandığı sayılar dışındaki tüm sayılardan oluşur. Bu ikinci dereceden denklemin kökleri x=−7 ve x=2'dir ve bundan ODZ hakkında bir sonuç çıkarıyoruz: tüm x'lerden oluşur, öyle ki .

Geriye bulunan köklerin ve x=2'nin kabul edilebilir değerler aralığına ait olup olmadığını kontrol etmek kalır. Kökler aittir, dolayısıyla orijinal denklemin kökleridir ve x=2 ait değildir, dolayısıyla yabancı bir köktür.

Cevap:

Ayrıca, kesirli bir rasyonel denklemde payda bir sayının olduğu, yani p(x)'in bir sayı ile temsil edildiği durumlar üzerinde ayrı ayrı durmak faydalı olacaktır. Aynı zamanda

  • eğer bu sayı sıfır değilse, o zaman denklemin kökleri yoktur, çünkü bir kesir ancak ve ancak payı sıfıra eşitse sıfıra eşittir;
  • bu sayı sıfırsa denklemin kökü ODZ'den herhangi bir sayıdır.

Örnek.

Çözüm.

Denklemin sol tarafındaki kesrin payı sıfırdan farklı bir sayı içerdiğinden herhangi bir x için bu kesrin değeri sıfır olamaz. Buradan, verilen denklem kökleri yoktur.

Cevap:

kök yok.

Örnek.

Denklemi çözün.

Çözüm.

Bu kesirli rasyonel denklemin sol tarafındaki kesrin payı sıfır içerir, dolayısıyla bu kesrin değeri, anlamlı olduğu herhangi bir x için sıfırdır. Başka bir deyişle, bu denklemin çözümü bu değişkenin ODZ'sinden herhangi bir x değeridir.

Geriye bu kabul edilebilir değer aralığını belirlemek kalıyor. x 4 +5 x 3 ≠0 olan tüm x değerlerini içerir. x 4 +5 x 3 =0 denkleminin çözümleri 0 ve −5'tir, çünkü bu denklem x 3 (x+5)=0 denklemine eşdeğerdir ve bu da iki x denkleminin birleşimine eşdeğerdir 3 =0 ve x +5=0, bu köklerin görülebildiği yerden. Bu nedenle kabul edilebilir değerlerin istenen aralığı, x=0 ve x=−5 dışında herhangi bir x'tir.

Dolayısıyla, kesirli bir rasyonel denklemin sıfır ve eksi beş dışında herhangi bir sayıdan oluşan sonsuz sayıda çözümü vardır.

Cevap:

Son olarak kesirli rasyonel denklemlerin çözümü hakkında konuşmanın zamanı geldi keyfi tip. r(x)=s(x) şeklinde yazılabilirler; burada r(x) ve s(x) rasyonel ifadelerdir ve bunlardan en az biri kesirlidir. İleriye baktığımızda, çözümlerinin bize zaten tanıdık gelen formdaki denklemleri çözmeye bağlı olduğunu varsayalım.

Bir terimin denklemin bir kısmından ters işaretli diğer kısmına aktarılmasının eşdeğer bir denklem oluşturduğu bilinmektedir, dolayısıyla r(x)=s(x) denklemi r(x)−s(x) denklemine eşdeğerdir. )=0.

Ayrıca bu ifadeye eşit olan herhangi bir ifadenin mümkün olduğunu da biliyoruz. Böylece, rasyonel ifade r(x)−s(x)=0 denkleminin sol tarafında onu her zaman formun özdeş eşit rasyonel kesrine dönüştürebiliriz.

Böylece orijinal kesirli rasyonel denklem r(x)=s(x)'ten denkleme geçiyoruz ve yukarıda bulduğumuz gibi bunun çözümü, p(x)=0 denkleminin çözümüne indirgeniyor.

Ancak burada, r(x)−s(x)=0 ile ve ardından p(x)=0 ile değiştirilirken, x değişkeninin izin verilen değerlerinin aralığının genişleyebileceği gerçeğini hesaba katmak gerekir. .

Sonuç olarak, ulaştığımız orijinal r(x)=s(x) denklemi ile p(x)=0 denklemi eşit olmayabilir ve p(x)=0 denklemini çözerek kökleri elde edebiliriz. bunlar orijinal r(x)=s(x) denkleminin yabancı kökleri olacaktır. Bir kontrol yaparak veya bunların orijinal denklemin ODZ'sine ait olup olmadığını kontrol ederek yabancı kökleri tanımlayabilir ve cevaba dahil etmeyebilirsiniz.

Bu bilgileri şöyle özetleyelim r(x)=s(x) kesirli rasyonel denklemini çözmek için algoritma. Kesirli rasyonel denklem r(x)=s(x)'i çözmek için şunlara ihtiyacınız vardır:

  • İfadeyi sağ taraftan ters işaretle hareket ettirerek sağdaki sıfırı alın.
  • Denklemin sol tarafında kesirler ve polinomlarla işlemler gerçekleştirin, böylece onu formun rasyonel bir kesirine dönüştürün.
  • p(x)=0 denklemini çözün.
  • Yabancı kökleri orijinal denklemde değiştirerek veya orijinal denklemin ODZ'sine ait olduklarını kontrol ederek tanımlayın ve ortadan kaldırın.

Daha fazla netlik sağlamak için, kesirli rasyonel denklemlerin çözüm zincirinin tamamını göstereceğiz:
.

Verilen bilgi bloğunu açıklığa kavuşturmak için çözüm sürecinin ayrıntılı bir açıklamasıyla birlikte birkaç örneğin çözümlerine bakalım.

Örnek.

Kesirli bir rasyonel denklemi çözün.

Çözüm.

Az önce elde edilen çözüm algoritmasına göre hareket edeceğiz. Ve önce terimleri denklemin sağ tarafından sola kaydırıyoruz, sonuç olarak denkleme geçiyoruz.

İkinci adımda, ortaya çıkan denklemin sol tarafındaki kesirli rasyonel ifadeyi kesir formuna dönüştürmemiz gerekiyor. Bunu yapmak için bir döküm gerçekleştiriyoruz rasyonel kesirler ortak bir paydaya getirin ve elde edilen ifadeyi basitleştirin: . Böylece denkleme geliyoruz.

Bir sonraki adımda −2·x−1=0 denklemini çözmemiz gerekiyor. x=−1/2'yi buluyoruz.

Bulunan sayının −1/2 olup olmadığını kontrol etmeye devam ediyor yabancı kök orijinal denklem. Bunu yapmak için orijinal denklemdeki x değişkeninin VA'sını kontrol edebilir veya bulabilirsiniz. Her iki yaklaşımı da gösterelim.

Kontrol ederek başlayalım. Orijinal denklemde x değişkeni yerine −1/2 sayısını koyarsak aynı şeyi elde ederiz: −1=−1. Değiştirme doğru sayısal eşitliği verir, dolayısıyla x=−1/2 orijinal denklemin köküdür.

Şimdi algoritmanın son noktasının ODZ üzerinden nasıl gerçekleştirildiğini göstereceğiz. Orijinal denklemin kabul edilebilir değerleri aralığı -1 ve 0 dışındaki tüm sayılar kümesidir (x=−1 ve x=0'da kesirlerin paydaları sıfırdır). Önceki adımda bulunan x=−1/2 kökü ODZ'ye aittir, dolayısıyla x=−1/2 orijinal denklemin köküdür.

Cevap:

−1/2 .

Başka bir örneğe bakalım.

Örnek.

Denklemin köklerini bulun.

Çözüm.

Kesirli bir rasyonel denklemi çözmemiz gerekiyor, hadi algoritmanın tüm adımlarını izleyelim.

İlk önce terimi sağ taraftan sola kaydırırız, şunu elde ederiz.

İkinci olarak sol tarafta oluşan ifadeyi dönüştürüyoruz: . Sonuç olarak x=0 denklemine ulaşıyoruz.

Kökü bellidir; sıfırdır.

Dördüncü adımda, bulunan kökün orijinal kesirli rasyonel denkleme yabancı olup olmadığını bulmaya devam ediyor. Orijinal denklemde yerine konulduğunda ifade elde edilir. Açıkçası sıfıra bölmeyi içerdiği için mantıklı değil. Buradan 0'ın yabancı bir kök olduğu sonucuna vardık. Bu nedenle orijinal denklemin kökleri yoktur.

7, bu da Denklem'e yol açar. Buradan, sol taraftaki paydadaki ifadenin sağ taraftaki paydadaki ifadeye eşit olması gerektiği sonucuna varabiliriz. Şimdi üçlünün her iki tarafından da çıkarıyoruz: . Benzetme yoluyla, nereden ve daha ileri.

Kontrol, bulunan her iki kökün de orijinal kesirli rasyonel denklemin kökleri olduğunu gösterir.

Cevap:

Referanslar.

  • Cebir: ders kitabı 8. sınıf için. genel eğitim kurumlar / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; tarafından düzenlendi S. A. Telyakovsky. - 16. baskı. - M.: Eğitim, 2008. - 271 s. : hasta. - ISBN 978-5-09-019243-9.
  • Mordkoviç A.G. Cebir. 8. sınıf. Saat 14:00'te 1. Bölüm. Öğrenciler için ders kitabı eğitim kurumları/ A. G. Mordkovich. - 11. baskı, silindi. - M.: Mnemosyne, 2009. - 215 s.: hasta. ISBN 978-5-346-01155-2.
  • Cebir: 9. sınıf: eğitici. genel eğitim için kurumlar / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; tarafından düzenlendi S. A. Telyakovsky. - 16. baskı. - M.: Eğitim, 2009. - 271 s. : hasta. - ISBN 978-5-09-021134-5.

Paydasında değişken bulunan denklemler iki şekilde çözülebilir:

    Kesirleri ortak paydaya indirgemek

    Oranın temel özelliğini kullanma

Seçilen yöntem ne olursa olsun denklemin kökleri bulunduktan sonra bulunan geçerli değerlerden yani paydayı $0$'a çevirmeyen değerlerin seçilmesi gerekir.

1 yol. Kesirleri ortak paydaya indirgemek.

Örnek 1

$\frac(2x+3)(2x-1)=\frac(x-5)(x+3)$

Çözüm:

1. Denklemin sağ tarafındaki kesri sola aktaralım

\[\frac(2x+3)(2x-1)-\frac(x-5)(x+3)=0\]

Bunu doğru bir şekilde yapabilmek için elemanları denklemin başka bir yerine taşıdığınızda ifadelerin önündeki işaretin ters yönde değiştiğini unutmayın. Yani sağ tarafta kesrin önünde “+” işareti varsa sol tarafta da önünde “-” işareti olacaktır. kesirler.

2. Şimdi kesirlerin farklı paydalara sahip olduğuna dikkat edin; bu, farkı telafi etmek için kesirleri ortak bir paydaya getirmenin gerekli olduğu anlamına gelir. Ortak payda, orijinal kesirlerin paydalarındaki polinomların çarpımı olacaktır: $(2x-1)(x+3)$

Almak için özdeş ifade için, ilk kesrin payı ve paydası $(x+3)$ polinomuyla, ikincisi ise $(2x-1)$ polinomuyla çarpılmalıdır.

\[\frac((2x+3)(x+3))((2x-1)(x+3))-\frac((x-5)(2x-1))((x+3)( 2x-1))=0\]

İlk kesirin payında bir dönüşüm gerçekleştirelim - polinomları çarpın. Bunun için birinci polinomun ilk terimini ikinci polinomun her terimiyle çarpmak, ardından birinci polinomun ikinci terimini ikinci polinomun her terimiyle çarpmak ve sonuçları eklemek gerektiğini hatırlayalım.

\[\left(2x+3\right)\left(x+3\right)=2x\cdot x+2x\cdot 3+3\cdot x+3\cdot 3=(2x)^2+6x+3x +9\]

Hadi verelim benzer terimler ortaya çıkan ifadede

\[\left(2x+3\right)\left(x+3\right)=2x\cdot x+2x\cdot 3+3\cdot x+3\cdot 3=(2x)^2+6x+3x +9=\] \[(=2x)^2+9x+9\]

İkinci kesrin payında da benzer bir dönüşüm gerçekleştirelim - polinomları çarpın

$\left(x-5\right)\left(2x-1\right)=x\cdot 2x-x\cdot 1-5\cdot 2x+5\cdot 1=(2x)^2-x-10x+ 5 =(2x)^2-11x+5$

O zaman denklem şu şekli alacaktır:

\[\frac((2x)^2+9x+9)((2x-1)(x+3))-\frac((2x)^2-11x+5)((x+3)(2x- 1))=0\]

Şimdi kesirler aynı payda bu da çıkarabileceğiniz anlamına gelir. Paydası aynı olan kesirleri ilk kesrin payından çıkarırken, ikinci kesrin payını çıkararak paydayı aynı bırakmanız gerektiğini hatırlayın.

\[\frac((2x)^2+9x+9-((2x)^2-11x+5))((2x-1)(x+3))=0\]

İfadeyi paya dönüştürelim. Başına “-” işareti gelen parantezleri açmak için parantez içindeki terimlerin önündeki tüm işaretleri ters yönde değiştirmeniz gerekir.

\[(2x)^2+9x+9-\left((2x)^2-11x+5\right)=(2x)^2+9x+9-(2x)^2+11x-5\]

Benzer terimleri sunalım

$(2x)^2+9x+9-\left((2x)^2-11x+5\right)=(2x)^2+9x+9-(2x)^2+11x-5=20x+4 $

Daha sonra kesir şu şekli alacaktır:

\[\frac((\rm 20x+4))((2x-1)(x+3))=0\]

3. Bir kesrin payı 0 ise kesir $0$'a eşittir. Bu nedenle kesrin payını $0$'a eşitleriz.

\[(\rm 20х+4=0)\]

Doğrusal denklemi çözelim:

4. Köklerden örnek alalım. Bu, kökler bulunduğunda orijinal kesirlerin paydalarının $0$'a dönüp dönmediğinin kontrol edilmesi gerektiği anlamına gelir.

Paydaların $0$'a eşit olmaması koşulunu koyalım

x$\ne 0,5$ x$\ne -3$

Bu, $-3$ ve $0,5$ dışındaki tüm değişken değerlerinin kabul edilebilir olduğu anlamına gelir.

Bulduğumuz kök kabul edilebilir bir değerdir, yani denklemin kökü olarak kabul edilebilir. Bulunan kök geçerli bir değer olmasaydı, böyle bir kök konu dışı olurdu ve elbette cevaba dahil edilmezdi.

Cevap:$-0,2.$

Artık paydasında bir değişken bulunan bir denklemi çözmek için bir algoritma oluşturabiliriz

Paydasında bir değişken içeren bir denklemi çözmek için algoritma

    Tüm elemanları denklemin sağ tarafından sola taşıyın. Almak için özdeş denklem sağ taraftaki ifadelerin önündeki tüm işaretleri ters yönde değiştirmek gerekir

    Sol tarafta şöyle bir ifade alırsak farklı paydalar sonra kesrin temel özelliğini kullanarak bunları ortak bir değere getiriyoruz. Kullanarak dönüşümler gerçekleştirin kimlik dönüşümleri ve $0$'a eşit son bir kesir elde edin.

    Payı $0$'a eşitleyin ve ortaya çıkan denklemin köklerini bulun.

    Kökleri örnekleyelim, yani. Paydayı $0$ yapmayan değişkenlerin geçerli değerlerini bulun.

Yöntem 2. Oranın temel özelliğini kullanıyoruz

Oranın temel özelliği, oranın uç terimlerinin çarpımının orta terimlerin çarpımına eşit olmasıdır.

Örnek 2

Kullanıyoruz bu mülk bu görevi çözmek için

\[\frac(2x+3)(2x-1)=\frac(x-5)(x+3)\]

1. Oranın aşırı ve orta terimlerinin çarpımını bulup eşitleyelim.

$\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

\[(2x)^2+3x+6x+9=(2x)^2-10x-x+5\]

Ortaya çıkan denklemi çözdükten sonra orijinalin köklerini bulacağız.

2. Değişkenin kabul edilebilir değerlerini bulalım.

Önceki çözümden (yöntem 1) zaten $-3$ ve $0,5$ dışındaki tüm değerlerin kabul edilebilir olduğunu bulduk.

Daha sonra bulunan kökün geçerli bir değer olduğunu belirledikten sonra $-0.2$ değerinin kök olacağını öğrendik.

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Sitede bir talep gönderdiğinizde toplayabiliriz çeşitli bilgiler adınız, telefon numaranız ve adresiniz dahil e-posta vesaire.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Tarafımızdan toplandı kişisel bilgiler sizinle iletişim kurmamıza ve benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler hakkında sizi bilgilendirmemize olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri ayrıca denetim, veri analizi ve çeşitli çalışmalar sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak için.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerektiğinde - yasaya, adli prosedüre, yasal işlemlere uygun olarak ve/veya kamunun talep veya taleplerine dayanarak devlet kurumları Rusya Federasyonu topraklarında - kişisel bilgilerinizi ifşa edin. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

Kesirli Denklem ÇözmeÖrneklere bakalım. Örnekler basit ve açıklayıcıdır. Onların yardımıyla en anlaşılır şekilde anlayabileceksiniz.
Örneğin basit x/b + c = d denklemini çözmeniz gerekir.

Bu tür bir denkleme doğrusal denir çünkü Payda yalnızca sayıları içerir.

Çözüm, denklemin her iki tarafının b ile çarpılmasıyla gerçekleştirilir, ardından denklem x = b*(d – c) formunu alır, yani. kesrin sol tarafındaki paydası birbirini götürür.

Mesela nasıl çözülür kesirli denklem:
x/5+4=9
Her iki tarafı da 5 ile çarparız. Şunu elde ederiz:
x+20=45
x=45-20=25

Bilinmeyenlerin paydada olduğu başka bir örnek:

Bu tür denklemlere kesirli-rasyonel veya basitçe kesirli denir.

Kesirli bir denklemi kesirlerden kurtularak çözeriz, bundan sonra bu denklem çoğu zaman olağan şekilde çözülen doğrusal veya ikinci dereceden bir denkleme dönüşür. Aşağıdaki noktaları dikkate almanız yeterlidir:

  • paydayı 0'a getiren değişkenin değeri kök olamaz;
  • Bir denklemi =0 ifadesine bölemez veya çarpamazsınız.

İzin verilen değerler bölgesi (ADV) kavramının yürürlüğe girdiği yer burasıdır - bunlar, denklemin anlamlı olduğu denklemin köklerinin değerleridir.

Bu nedenle denklemi çözerken kökleri bulmak ve ardından ODZ'ye uygunluklarını kontrol etmek gerekir. ODZ'mize uymayan kökler yanıtın dışında bırakılır.

Örneğin, kesirli bir denklemi çözmeniz gerekir:

Yukarıdaki kurala göre x = 0 olamaz, yani. ODZ girişi bu durumda: x – sıfır dışında herhangi bir değer.

Denklemin tüm terimlerini x ile çarparak paydadan kurtuluruz

Ve olağan denklemi çözüyoruz

5x – 2x = 1
3x = 1
x = 1/3

Cevap: x = 1/3

Daha karmaşık bir denklemi çözelim:

ODZ burada da mevcuttur: x -2.

Bu denklemi çözerken her şeyi bir tarafa taşıyıp kesirleri ortak paydaya getirmeyeceğiz. Hemen denklemin her iki tarafını da tüm paydaları aynı anda iptal edecek bir ifadeyle çarpacağız.

Paydaları azaltmak için sol tarafı x+2 ile, sağ tarafı ise 2 ile çarpmanız gerekir. Bu, denklemin her iki tarafının da 2(x+2) ile çarpılması gerektiği anlamına gelir:

Bu en çok sıradan çarpma Yukarıda daha önce tartıştığımız kesirler

Aynı denklemi biraz farklı yazalım

Sol taraf (x+2) ve sağ taraf 2 azaltılır. İndirgemenin ardından olağan doğrusal denklemi elde ederiz:

x = 4 – 2 = 2, bu bizim ODZ'mize karşılık gelir

Cevap: x = 2.

Kesirli Denklem Çözme göründüğü kadar zor değil. Bu yazımızda bunu örneklerle gösterdik. Eğer herhangi bir zorlukla karşılaşırsanız kesirli denklemler nasıl çözülür, ardından yorumlarda aboneliğinizi iptal edin.

Kesirli denklemler. ODZ.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Denklemlere hakim olmaya devam ediyoruz. Doğrusal ve ikinci dereceden denklemlerle nasıl çalışılacağını zaten biliyoruz. Geriye kalan son görünüm - kesirli denklemler. Veya çok daha saygın bir şekilde çağrılırlar - kesirli rasyonel denklemler. Aynı şey.

Kesirli denklemler.

Adından da anlaşılacağı gibi bu denklemlerin mutlaka kesirler içermesi gerekir. Ama sadece kesirler değil, aynı zamanda sahip olan kesirler paydada bilinmiyor. En azından birinde. Örneğin:

Size şunu hatırlatmama izin verin, eğer paydalar sadece sayılar bunlar doğrusal denklemlerdir.

Nasıl karar verilir? kesirli denklemler? Öncelikle kesirlerden kurtulun! Bundan sonra denklem çoğunlukla doğrusal veya ikinci dereceden hale gelir. Sonra da ne yapacağımızı biliyoruz... Bazı durumlarda 5=5 gibi bir özdeşliğe veya 7=2 gibi yanlış bir ifadeye dönüşebiliyor. Ancak bu nadiren olur. Aşağıda buna değineceğim.

Ama kesirlerden nasıl kurtuluruz!? Çok basit. Aynı özdeş dönüşümlerin uygulanması.

Denklemin tamamını aynı ifadeyle çarpmamız gerekiyor. Böylece tüm paydalar azaltılır! Her şey hemen kolaylaşacak. Bir örnekle açıklayayım. Denklemi çözmemiz gerekiyor:

Öğretildiği gibi genç sınıfları? Her şeyi bir tarafa taşıyoruz, ortak bir paydaya getiriyoruz vb. Kötü bir rüya gibi unut gitsin! Ekleme veya çıkarma yaparken yapmanız gereken şey budur. kesirli ifadeler. Veya eşitsizliklerle çalışırsınız. Ve denklemlerde, hemen her iki tarafı da bize tüm paydaları azaltma fırsatı verecek bir ifadeyle çarpıyoruz (yani özünde, ortak payda). Peki bu ifade nedir?

Sol tarafta, paydayı azaltmak için şununla çarpılması gerekir: x+2. Sağda ise 2 ile çarpmak gerekiyor. Bu da denklemin ile çarpılması gerektiği anlamına geliyor. 2(x+2). Çarp:

Bu, kesirlerin yaygın bir çarpımıdır, ancak bunu ayrıntılı olarak açıklayacağım:

Braketi henüz açmadığımı lütfen unutmayın (x + 2)! O yüzden tamamını yazıyorum:

Sol tarafta tamamen kasılır (x+2), ve sağda 2. Gereken de buydu! İndirgemeden sonra elde ederiz doğrusal denklem:

Ve herkes bu denklemi çözebilir! x = 2.

Biraz daha karmaşık olan başka bir örneği çözelim:

3 = 3/1 olduğunu hatırlarsak ve 2x = 2x/ 1, şunu yazabiliriz:

Ve yine gerçekten sevmediğimiz şeylerden - kesirlerden - kurtuluyoruz.

Paydayı X ile azaltmak için kesri şununla çarpmamız gerektiğini görüyoruz: (x – 2). Ve birkaçı bizim için engel değil. Peki çarpalım. Tüm sol taraf ve Tümü sağ taraf:

Tekrar parantez (x – 2) Açıklamıyorum. Parantezle bir bütün olarak sanki tek bir sayıymış gibi çalışıyorum! Bu her zaman yapılmalıdır, aksi takdirde hiçbir şey azalmayacaktır.

Derin bir tatmin duygusuyla azaltıyoruz (x – 2) ve cetvelle kesir içermeyen bir denklem elde ediyoruz!

Şimdi parantezleri açalım:

Benzerlerini getiriyoruz, her şeyi sol tarafa taşıyoruz ve şunu elde ediyoruz:

Ancak ondan önce diğer sorunları çözmeyi öğreneceğiz. Faiz üzerine. Bu arada bu bir tırmık!

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!