Figūros, apribotos nurodytomis linijomis, ploto apskaičiavimas. Figūros, apribotos tiesėmis y=f(x), x=g(y) ploto radimas

Tiesą sakant, norint rasti figūros plotą, jums nereikia tiek daug žinių apie neapibrėžtą ir apibrėžtą integralą. Užduotis „apskaičiuoti plotą naudojant apibrėžtąjį integralą“ visada apima brėžinio sudarymą, daug daugiau aktuali problema bus jūsų žinios ir gebėjimai piešti. Šiuo atžvilgiu naudinga atnaujinti atmintį apie pagrindinių diagramas elementarios funkcijos, ir bent jau sugebėti sukurti tiesę ir hiperbolę.

Kreiva trapecija vadinama plokščia figūra, apribotas ašimi, tiesėmis ir atkarpoje ištisinės funkcijos grafikas, kuris nekeičia ženklo šiame intervale. Leisti ši figūra esančios ne mažiau x ašis:

Tada kreivinės trapecijos plotas skaitine prasme lygus apibrėžtajam integralui. Bet koks apibrėžtas integralas (egzistuojantis) turi labai gerą geometrinę reikšmę.

Geometrijos požiūriu apibrėžtasis integralas- tai SRITIS.

Tai yra, tam tikras integralas (jei jis yra) geometriškai atitinka tam tikros figūros plotą. Pavyzdžiui, apsvarstykite apibrėžtąjį integralą. Integralas apibrėžia kreivę plokštumoje, esančioje virš ašies (norintieji gali piešti), o pats apibrėžtasis integralas yra skaitinis lygus plotui atitinkama lenkta trapecija.

1 pavyzdys

Tai yra tipiškas priskyrimo pareiškimas. Pirmiausia ir svarbiausias momentas sprendimai – brėžinio konstrukcija. Be to, brėžinys turi būti sukonstruotas TEISINGAI.

Kuriant brėžinį rekomenduoju tokią tvarką: iš pradžių geriau statyti visas tieses (jei jos yra) ir tik Tada- parabolės, hiperbolės, kitų funkcijų grafikai. Pelningiau kurti funkcijų grafikus taškas po taško.

Šios problemos sprendimas gali atrodyti taip.
Užbaikime brėžinį (atkreipkite dėmesį, kad lygtis apibrėžia ašį):


Segmente yra funkcijos grafikas virš ašies, Štai kodėl:

Atsakymas:

Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. IN tokiu atveju„iš akies“ suskaičiuojame langelių skaičių brėžinyje - na, jų bus apie 9, atrodo, kad tai tiesa. Visiškai aišku, kad jei gautume, tarkime, atsakymą: 20 kvadratinių vienetų, tada akivaizdu, kad kažkur buvo padaryta klaida - 20 langelių aiškiai netelpa į nagrinėjamą figūrą, daugiausia keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

3 pavyzdys

Apskaičiuokite figūros plotą, apribotas linijomis, Ir koordinačių ašys.

Sprendimas: Padarykime piešinį:


Jeigu lenkta trapecija esančios po ašimi(ar bent jau ne aukščiau nurodyta ašis), tada jos plotą galima rasti naudojant formulę:


Tokiu atveju:

Dėmesio! Nereikėtų painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokių geometrine prasme, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusiau plokštumoje, taigi, nuo paprasčiausio mokyklos problemos Pereikime prie prasmingesnių pavyzdžių.

4 pavyzdys

Raskite plokštumos figūros, apribotos linijomis , plotą.

Sprendimas: Pirmiausia turite užbaigti piešinį. Paprastai tariant, brėžinį konstruojant plotų uždaviniuose mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės ir tiesės susikirtimo taškus. Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis. Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba yra viršutinis limitas integracija

Jei įmanoma, šio metodo geriau nenaudoti..

Kur kas pelningiau ir greičiau tiesti linijas taškas po taško, o integracijos ribos išryškėja „savaime“. Nepaisant to, analitinis metodas vis tiek kartais tenka naudoti ribas, jei, pavyzdžiui, grafikas yra gana didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios). Ir mes taip pat apsvarstysime tokį pavyzdį.

Grįžkime prie savo užduoties: racionaliau pirmiausia konstruoti tiesę, o tik tada parabolę. Padarykime piešinį:

O dabar darbo formulė: Jei segmente yra kokia nors ištisinė funkcija didesnis arba lygus kai kurie nuolatinė funkcija, tada figūros plotas, apribotas tvarkaraščiais nurodytas funkcijas ir tieses , galima rasti naudojant formulę:

Čia jums nebereikia galvoti apie tai, kur yra figūra - virš ašies ar žemiau ašies, ir, grubiai tariant, svarbu, kuris grafikas yra AUKŠČESNIS(kito grafiko atžvilgiu), ir kuris iš jų yra ŽEMIAUS.

Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl reikia atimti iš

Užbaigtas sprendimas gali atrodyti taip:

Norimą figūrą riboja parabolė viršuje ir tiesi linija apačioje.
Segmente, pasak atitinkama formulė:

Atsakymas:

4 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos , , , .

Sprendimas: Pirmiausia nupieškime:

Figūra, kurios sritį turime rasti, yra nuspalvinta mėlynai(atidžiai pažiūrėkite į būklę – kaip figūra ribota!). Tačiau praktikoje dėl neatidumo dažnai iškyla „gedimas“, kai reikia rasti užtamsintos figūros plotą. žalias!

Šis pavyzdys taip pat naudingas tuo, kad apskaičiuoja figūros plotą naudojant du apibrėžtuosius integralus.

Tikrai:

1) Atkarpoje virš ašies yra tiesės grafikas;

2) Atkarpoje virš ašies yra hiperbolės grafikas.

Visiškai akivaizdu, kad sritis galima (ir reikia) pridėti, todėl:

Pereikime prie programų integralinis skaičiavimas. Šioje pamokoje analizuosime tipišką ir dažniausiai pasitaikančią užduotį plokštumos figūros ploto apskaičiavimas naudojant apibrėžtąjį integralą. Pagaliau visi ieško prasmės aukštoji matematika- Tegul jie jį suranda. Niekada nežinai. Realiame gyvenime turėsite apytiksliai apskaičiuoti vasarnamio sklypą naudodami elementarias funkcijas ir rasti jo plotą naudodami apibrėžtą integralą.

Norėdami sėkmingai įsisavinti medžiagą, turite:

1) Suprask neapibrėžtas integralas bent jau vidutinio lygio. Taigi, manekenai pirmiausia turėtų perskaityti pamoką Ne.

2) Mokėti taikyti Niutono-Leibnizo formulę ir apskaičiuoti apibrėžtąjį integralą. Puslapyje galite užmegzti šiltus draugiškus santykius su tam tikrais integralais Apibrėžtasis integralas. Sprendimų pavyzdžiai. Užduotis „apskaičiuoti plotą naudojant apibrėžtąjį integralą“ visada apima brėžinio sudarymą, todėl jūsų žinios ir piešimo įgūdžiai taip pat bus aktualus klausimas. Bent jau turite mokėti sukurti tiesią liniją, parabolę ir hiperbolę.

Pradėkime nuo lenktos trapecijos. Išlenkta trapecija yra plokščia figūra, apribota kokios nors funkcijos grafiku y = f(x), ašis JAUTIS ir linijos x = a; x = b.

Kreivinės trapecijos plotas skaitine prasme lygus apibrėžtajam integralui

Bet koks apibrėžtas integralas (egzistuojantis) turi labai gerą geometrinę reikšmę. Pamokoje Apibrėžtasis integralas. Sprendimų pavyzdžiai sakėme, kad apibrėžtasis integralas yra skaičius. O dabar laikas pasakyti dar vieną naudingas faktas. Geometrijos požiūriu apibrėžtasis integralas yra PLOTAS. Tai yra, apibrėžtasis integralas (jei jis yra) geometriškai atitinka tam tikros figūros plotą. Apsvarstykite apibrėžtąjį integralą

Integrand

apibrėžia kreivę plokštumoje (jei pageidaujama, ją galima nubrėžti), o pats apibrėžtasis integralas yra skaitiniu būdu lygus atitinkamos kreivinės trapecijos plotui.



1 pavyzdys

, , , .

Tai yra tipiškas priskyrimo pareiškimas. Svarbiausias sprendimo momentas yra brėžinio konstrukcija. Be to, brėžinys turi būti sukonstruotas TEISINGAI.

Kuriant brėžinį rekomenduoju tokią tvarką: iš pradžių geriau statyti visas tieses (jei jos yra) ir tik Tada– parabolės, hiperbolės, kitų funkcijų grafikai. Su technologijomis taškas po taško statyba galima rasti etaloninė medžiaga Elementariųjų funkcijų grafikai ir savybės. Ten taip pat galite rasti labai naudingos medžiagos mūsų pamokai – kaip greitai sukonstruoti parabolę.

Šios problemos sprendimas gali atrodyti taip.

Padarykime piešinį (atkreipkite dėmesį, kad lygtis y= 0 nurodo ašį JAUTIS):

Išlenktos trapecijos neužtemdysime, čia aišku kokia sritis mes kalbame apie. Sprendimas tęsiasi taip:

Atkarpoje [-2; 1] funkcijų grafikas y = x 2 + 2 yra virš ašiesJAUTIS, Štai kodėl:

Atsakymas: .

Kas turi sunkumų apskaičiuojant apibrėžtąjį integralą ir taikant Niutono-Leibnizo formulę

,

kreiptis į paskaitą Apibrėžtasis integralas. Sprendimų pavyzdžiai. Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. Šiuo atveju brėžinyje esančių langelių skaičių skaičiuojame „iš akies“ - gerai, jų bus apie 9, atrodo, kad tai tiesa. Visiškai aišku, kad jei gavome, tarkime, atsakymą: 20 kvadratinių vienetų, tai akivaizdu, kad kažkur buvo padaryta klaida – 20 langelių akivaizdžiai netelpa į nagrinėjamą figūrą, daugiausia keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

2 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą xy = 4, x = 2, x= 4 ir ašis JAUTIS.

Tai yra pavyzdys savarankiškas sprendimas. Pilnas sprendimas ir atsakymas pamokos pabaigoje.

Ką daryti, jei yra išlenkta trapecija po ašimiJAUTIS?

3 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą y = e-x, x= 1 ir koordinačių ašys.

Sprendimas: Padarykime piešinį:

Jei lenkta trapecija visiškai išsidėstę po ašimi JAUTIS , tada jo plotą galima rasti naudojant formulę:

Tokiu atveju:

.

Dėmesio! Negalima painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokios geometrinės reikšmės, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusplokštumoje, todėl nuo paprasčiausių mokyklinių uždavinių pereiname prie prasmingesnių pavyzdžių.

4 pavyzdys

Raskite plokštumos figūros, apribotos linijomis, plotą y = 2xx 2 , y = -x.

Sprendimas: Pirmiausia turite padaryti piešinį. Konstruojant brėžinį ploto uždaviniuose mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės susikirtimo taškus y = 2xx 2 ir tiesiai y = -x. Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis. Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba a= 0, viršutinė integravimo riba b= 3. Dažnai pelningiau ir greičiau konstruoti linijas taškas po taško, o integracijos ribos išryškėja „savaime“. Nepaisant to, analitinį ribų radimo metodą vis tiek kartais tenka naudoti, jei, pavyzdžiui, grafikas pakankamai didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios). Grįžkime prie savo užduoties: racionaliau pirmiausia konstruoti tiesę, o tik tada parabolę. Padarykime piešinį:

Pakartokime, kad konstruojant taškiškai integracijos ribos dažniausiai nustatomos „automatiškai“.

O dabar darbo formulė:

Jei segmente [ a; b] tam tikra nuolatinė funkcija f(x) didesnis arba lygus tam tikra nuolatinė funkcija g(x), tada atitinkamos figūros plotą galima rasti naudojant formulę:

Čia jums nebereikia galvoti apie tai, kur yra figūra - virš ašies ar žemiau ašies, bet svarbu, kuris grafikas yra AUKŠČESNIS(kito grafiko atžvilgiu), ir kuris iš jų yra ŽEMIAUS.

Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl nuo 2 xx 2 reikia atimti - x.

Užbaigtas sprendimas gali atrodyti taip:

Norimą figūrą riboja parabolė y = 2xx 2 viršuje ir tiesiai y = -x iš apačios.

2 segmente xx 2 ≥ -x. Pagal atitinkamą formulę:

Atsakymas: .

Faktiškai, mokyklos formulė lenktos trapecijos plotui apatinėje pusplokštumoje (žr. pavyzdį Nr. 3) – ypatinga byla formules

.

Kadangi ašis JAUTIS pateikta lygtimi y= 0, ir funkcijos grafikas g(x), esantis žemiau ašies JAUTIS, Tai

.

O dabar pora pavyzdžių jūsų sprendimui

5 pavyzdys

6 pavyzdys

Raskite figūros, apribotos linijomis, plotą

Sprendžiant problemas, susijusias su ploto apskaičiavimu naudojant apibrėžtąjį integralą, kartais nutinka juokingas įvykis. Brėžinys atliktas teisingai, skaičiavimai buvo teisingi, bet dėl ​​neatsargumo... Buvo rastas netinkamos figūros plotas.

7 pavyzdys

Pirmiausia padarykime piešinį:

Figūra, kurios sritį turime rasti, yra nuspalvinta mėlynai(įdėmiai pažiūrėkite į būklę – kaip figūra ribota!). Tačiau praktiškai dėl neatsargumo žmonės dažnai nusprendžia, kad reikia rasti figūros plotą, nuspalvintą žaliai!

Šis pavyzdys taip pat naudingas, nes jis apskaičiuoja figūros plotą naudojant du apibrėžtuosius integralus. Tikrai:

1) Atkarpoje [-1; 1] virš ašies JAUTIS grafikas yra tiesiai y = x+1;

2) Atkarpoje virš ašies JAUTIS yra hiperbolės grafikas y = (2/x).

Visiškai akivaizdu, kad sritis galima (ir reikia) pridėti, todėl:

Atsakymas:

8 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą

Pateikime lygtis „mokyklos“ forma

ir nupieškite tašką po taško:

Iš brėžinio aišku, kad mūsų viršutinė riba yra „gera“: b = 1.

Bet kokia yra apatinė riba?! Aišku, kad tai nėra sveikasis skaičius, bet kas tai yra?

Gal būt, a=(-1/3)? Bet kur garantija, kad piešinys padarytas tobulai tiksliai, gali taip pasirodyti a=(-1/4). Ką daryti, jei grafiką sudarėme neteisingai?

Tokiais atvejais jūs turite išleisti Papildomas laikas ir analitiškai išsiaiškinti integracijos ribas.

Raskime grafikų susikirtimo taškus

Norėdami tai padaryti, išsprendžiame lygtį:

.

Vadinasi, a=(-1/3).

Tolesnis sprendimas yra trivialus. Svarbiausia nepainioti keitimų ir ženklų. Čia atlikti skaičiavimai nėra patys paprasčiausi. Ant segmento

, ,

pagal atitinkamą formulę:

Atsakymas:

Pamokos pabaigoje pažvelkime į dvi sudėtingesnes užduotis.

9 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą

Sprendimas: pavaizduokime šią figūrą brėžinyje.

Norėdami piešti tašką po taško, turite žinoti išvaizda sinusoidės. Apskritai pravartu žinoti visų elementariųjų funkcijų grafikus, taip pat kai kurias sinusines reikšmes. Juos galima rasti verčių lentelėje trigonometrinės funkcijos . Kai kuriais atvejais (pavyzdžiui, šiuo atveju) galima sukonstruoti scheminį brėžinį, kuriame turėtų būti iš esmės teisingai atvaizduoti integracijos grafikai ir ribos.

Čia nėra problemų dėl integracijos ribų, jos tiesiogiai išplaukia iš sąlygos:

– „x“ keičiasi iš nulio į „pi“. Priimkime kitą sprendimą:

Atkarpoje – funkcijos grafikas y= nuodėmė 3 x esantis virš ašies JAUTIS, Štai kodėl:

(1) Pamokoje galite pamatyti, kaip sinusai ir kosinusai integruojami į nelygines galias Trigonometrinių funkcijų integralai. Nuskabome vieną sinusą.

(2) Formoje naudojame pagrindinę trigonometrinę tapatybę

(3) Pakeiskime kintamąjį t= cos x, tada: yra virš ašies, todėl:

.

.

Pastaba: atkreipkite dėmesį, kaip čia imamas kubo liestinės integralas; trigonometrinė tapatybė

.

A)

Sprendimas.

Pirmas ir svarbiausias sprendimo punktas yra brėžinio konstrukcija.

Padarykime piešinį:

Lygtis y=0 nustato „x“ ašį;

- x=-2 Ir x=1 - tiesus, lygiagretus ašiai OU;

- y = x 2 + 2 - parabolė, kurios šakos nukreiptos į viršų, kurios viršūnė yra taške (0;2).

komentuoti. Parabolei sukonstruoti pakanka rasti jos susikirtimo su koordinačių ašimis taškus, t.y. dėjimas x=0 rasti sankirtą su ašimi OU ir atitinkamai nuspręsdamas kvadratinė lygtis, suraskite sankirtą su ašimi Oi .

Parabolės viršūnę galima rasti naudojant formules:

Taip pat galite kurti linijas taškas po taško.

Intervale [-2;1] funkcijos grafikas y=x 2 +2 esančios virš ašies Jautis , Štai kodėl:

Atsakymas: S =9 kv.vnt

Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. Tokiu atveju „iš akies“ skaičiuojame langelių skaičių brėžinyje - gerai, jų bus apie 9, atrodo, kad tai tiesa. Visiškai aišku, jei gavome, tarkime, atsakymą: 20 kvadratinių vienetų, tai akivaizdu, kad kažkur buvo padaryta klaida – 20 langelių akivaizdžiai netelpa į nagrinėjamą figūrą, daugiausiai keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

Ką daryti, jei yra išlenkta trapecija po ašimi Oi?

b) Apskaičiuokite figūros, apribotos linijomis, plotą y=-e x , x=1 ir koordinačių ašys.

Sprendimas.

Padarykime piešinį.

Jei lenkta trapecija visiškai išsidėstę po ašimi Oi , tada jo plotą galima rasti naudojant formulę:

Atsakymas: S=(e-1) kv.vnt.“ 1,72 kv.vnt

Dėmesio! Nereikėtų painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokios geometrinės reikšmės, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusiau plokštumoje.

Su) Raskite plokštumos figūros, apribotos linijomis, plotą y = 2x-x 2, y = -x.

Sprendimas.

Pirmiausia reikia užbaigti piešinį. Paprastai tariant, statant brėžinį ploto uždaviniuose, mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės susikirtimo taškus ir tiesiai Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis.

Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba a=0 , viršutinė integracijos riba b=3 .

Mes statome duotomis eilutėmis: 1. Parabolė – viršūnė taške (1;1); ašies susikirtimo Oi - taškais (0;0) ir (0;2). 2. Tiesė – 2-ojo ir 4-ojo pusiaukraštis koordinačių kampai. O dabar Dėmesio! Jei segmente [ a;b] tam tikra nuolatinė funkcija f(x) didesnis arba lygus kokiai nors ištisinei funkcijai g(x), tada atitinkamos figūros plotą galima rasti naudojant formulę: .


Ir nesvarbu, kur yra figūra - virš ašies ar žemiau ašies, bet svarbu tai, kuris grafikas yra AUKŠTESNIS (kito grafiko atžvilgiu), o kuris yra ZEMI. Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl reikia atimti iš

Galite statyti linijas taškas po taško, o integracijos ribos tampa aiškios „pačios“. Nepaisant to, analitinį ribų radimo metodą vis tiek kartais tenka naudoti, jei, pavyzdžiui, grafikas pakankamai didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios).

Norimą figūrą riboja parabolė viršuje ir tiesi linija apačioje.

Ant segmento , pagal atitinkamą formulę:

Atsakymas: S =4,5 kv

Apibrėžtasis integralas. Kaip apskaičiuoti figūros plotą

Pereikime prie integralinio skaičiavimo taikymo. Šioje pamokoje analizuosime tipišką ir dažniausiai pasitaikančią užduotį – kaip naudoti apibrėžtąjį integralą plokštumos figūros plotui apskaičiuoti. Pagaliau tie, kurie ieško prasmės aukštojoje matematikoje – tegul ją randa. Niekada nežinai. Realiame gyvenime turėsite apytiksliai apskaičiuoti vasarnamio sklypą naudodami elementarias funkcijas ir rasti jo plotą naudodami apibrėžtą integralą.

Norėdami sėkmingai įsisavinti medžiagą, turite:

1) Suprasti neapibrėžtąjį integralą bent jau tarpiniu lygiu. Taigi, manekenai pirmiausia turėtų perskaityti pamoką Ne.

2) Mokėti taikyti Niutono-Leibnizo formulę ir apskaičiuoti apibrėžtąjį integralą. Puslapyje galite užmegzti šiltus draugiškus santykius su tam tikrais integralais Apibrėžtasis integralas. Sprendimų pavyzdžiai.

Tiesą sakant, norint rasti figūros plotą, jums nereikia tiek daug žinių apie neapibrėžtą ir apibrėžtą integralą. Užduotis „apskaičiuoti plotą naudojant apibrėžtąjį integralą“ visada apima brėžinio sudarymą, todėl jūsų žinios ir piešimo įgūdžiai bus daug aktualesnis klausimas. Šiuo atžvilgiu naudinga atnaujinti atmintį apie pagrindinių elementariųjų funkcijų grafikus ir bent jau turėti galimybę sukurti tiesę, parabolę ir hiperbolę. Tai galima padaryti (daugeliui tai būtina) naudojant metodinė medžiaga ir straipsniai apie geometrines grafų transformacijas.

Tiesą sakant, visi yra susipažinę su užduotimi rasti sritį naudojant apibrėžtąjį integralą nuo mokyklos laikų, ir mes daug toliau neisime. mokyklos mokymo programa. Šio straipsnio galėjo ir nebūti, bet faktas yra tas, kad problema iškyla 99 atvejais iš 100, kai studentas kenčia nuo nekenčiamos mokyklos ir entuziastingai įvaldo aukštosios matematikos kursą.

Medžiagos šio seminaro pateikti paprastai, išsamiai ir turint minimalų teoriją.

Pradėkime nuo lenktos trapecijos.

Kreivinė trapecija yra plokščia figūra, kurią riboja ašis, tiesės ir funkcijos grafikas, ištisinis intervale, kuris nekeičia ženklo šiame intervale. Tegul ši figūra yra išdėstyta ne mažiau x ašis:

Tada kreivinės trapecijos plotas skaitine prasme lygus apibrėžtajam integralui. Bet koks apibrėžtas integralas (egzistuojantis) turi labai gerą geometrinę reikšmę. Pamokoje Apibrėžtasis integralas. Sprendimų pavyzdžiai Sakiau, kad apibrėžtasis integralas yra skaičius. O dabar laikas pasakyti dar vieną naudingą faktą. Geometrijos požiūriu apibrėžtasis integralas yra PLOTAS.

Tai yra, apibrėžtasis integralas (jei jis yra) geometriškai atitinka tam tikros figūros plotą. Pavyzdžiui, apsvarstykite apibrėžtąjį integralą. Integrandas apibrėžia kreivę plokštumoje, esančioje virš ašies (norintieji gali piešti), o pats apibrėžtasis integralas yra skaitiniu būdu lygus atitinkamos kreivinės trapecijos plotui.

1 pavyzdys

Tai yra tipiškas priskyrimo pareiškimas. Pirmas ir svarbiausias sprendimo momentas yra brėžinio konstravimas. Be to, brėžinys turi būti sukonstruotas TEISINGAI.

Kuriant brėžinį rekomenduoju tokią tvarką: iš pradžių geriau statyti visas tieses (jei jos yra) ir tik Tada– parabolės, hiperbolės, kitų funkcijų grafikai. Pelningiau kurti funkcijų grafikus taškas po taško, taško po taško konstravimo techniką galima rasti pamatinėje medžiagoje Elementariųjų funkcijų grafikai ir savybės. Ten taip pat galite rasti labai naudingos medžiagos mūsų pamokai – kaip greitai sukonstruoti parabolę.

Šios problemos sprendimas gali atrodyti taip.
Nubraižykime brėžinį (atkreipkite dėmesį, kad lygtis apibrėžia ašį):


Neužtemdysiu lenktos trapecijos, čia akivaizdu, apie kokią sritį kalbame. Sprendimas tęsiasi taip:

Segmente yra funkcijos grafikas virš ašies, Štai kodėl:

Atsakymas:

Kas turi sunkumų apskaičiuojant apibrėžtąjį integralą ir taikant Niutono-Leibnizo formulę , skaitykite paskaitą Apibrėžtasis integralas. Sprendimų pavyzdžiai.

Atlikus užduotį visada naudinga pažvelgti į piešinį ir išsiaiškinti, ar atsakymas tikras. Šiuo atveju brėžinyje esančių langelių skaičių skaičiuojame „iš akies“ - gerai, jų bus apie 9, atrodo, kad tai tiesa. Visiškai aišku, kad jei gavome, tarkime, atsakymą: 20 kvadratinių vienetų, tai akivaizdu, kad kažkur buvo padaryta klaida – 20 langelių akivaizdžiai netelpa į nagrinėjamą figūrą, daugiausia keliolika. Jei atsakymas neigiamas, tada užduotis taip pat buvo išspręsta neteisingai.

2 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, , ir ašimi, plotą

Tai pavyzdys, kurį galite išspręsti patys. Visas sprendimas ir atsakymas pamokos pabaigoje.

Ką daryti, jei yra išlenkta trapecija po ašimi?

3 pavyzdys

Apskaičiuokite figūros plotą, apribotą linijomis ir koordinačių ašimis.

Sprendimas: Padarykime piešinį:

Jeigu išsidėsčiusi lenkta trapecija po ašimi(ar bent jau ne aukščiau nurodyta ašis), tada jos plotą galima rasti naudojant formulę:
Tokiu atveju:

Dėmesio! Nereikėtų painioti dviejų tipų užduočių:

1) Jei jūsų prašoma išspręsti tiesiog apibrėžtąjį integralą be jokios geometrinės reikšmės, tada jis gali būti neigiamas.

2) Jei jūsų prašoma rasti figūros plotą naudojant apibrėžtą integralą, tada plotas visada yra teigiamas! Štai kodėl ką tik aptartoje formulėje atsiranda minusas.

Praktikoje dažniausiai figūra yra tiek viršutinėje, tiek apatinėje pusplokštumoje, todėl nuo paprasčiausių mokyklinių uždavinių pereiname prie prasmingesnių pavyzdžių.

4 pavyzdys

Raskite plokštumos figūros, apribotos linijomis , plotą.

Sprendimas: Pirmiausia turite užbaigti piešinį. Paprastai tariant, brėžinį konstruojant plotų uždaviniuose mus labiausiai domina tiesių susikirtimo taškai. Raskime parabolės ir tiesės susikirtimo taškus. Tai galima padaryti dviem būdais. Pirmasis metodas yra analitinis. Išsprendžiame lygtį:

Tai reiškia, kad apatinė integracijos riba yra , viršutinė integracijos riba yra .
Jei įmanoma, šio metodo geriau nenaudoti..

Kur kas pelningiau ir greičiau tiesti linijas taškas po taško, o integracijos ribos išryškėja „savaime“. Įvairių grafikų taškinio konstravimo technika išsamiai aptariama žinyne Elementariųjų funkcijų grafikai ir savybės. Nepaisant to, analitinį ribų radimo metodą vis tiek kartais tenka naudoti, jei, pavyzdžiui, grafikas pakankamai didelis arba detali konstrukcija neatskleidė integravimo ribų (jos gali būti trupmeninės arba neracionalios). Ir mes taip pat apsvarstysime tokį pavyzdį.

Grįžkime prie savo užduoties: racionaliau pirmiausia konstruoti tiesę, o tik tada parabolę. Padarykime piešinį:

Kartoju, kad konstruojant taškiškai integracijos ribos dažniausiai išsiaiškinamos „automatiškai“.

O dabar darbo formulė: Jei segmente yra kokia nors ištisinė funkcija didesnis arba lygus tam tikrą ištisinę funkciją , tada figūros plotą, kurį riboja šių funkcijų grafikai ir linijos , galima rasti naudojant formulę:

Čia jums nebereikia galvoti apie tai, kur yra figūra - virš ašies ar žemiau ašies, ir, grubiai tariant, svarbu, kuris grafikas yra AUKŠČESNIS(kito grafiko atžvilgiu), ir kuris iš jų yra ŽEMIAUS.

Nagrinėjamame pavyzdyje akivaizdu, kad atkarpoje parabolė yra virš tiesės, todėl reikia atimti iš

Užbaigtas sprendimas gali atrodyti taip:

Norimą figūrą riboja parabolė viršuje ir tiesi linija apačioje.
Segmente pagal atitinkamą formulę:

Atsakymas:

Tiesą sakant, mokyklos formulė kreivinės trapecijos apatinėje pusplokštumoje (žr. paprastą pavyzdį Nr. 3) yra specialus formulės atvejis. . Kadangi ašis nurodoma lygtimi, o funkcijos grafikas yra ne aukščiau tada kirvius

O dabar pora pavyzdžių jūsų sprendimui

5 pavyzdys

6 pavyzdys

Raskite figūros plotą, kurį riboja linijos , .

Sprendžiant problemas, susijusias su ploto apskaičiavimu naudojant apibrėžtąjį integralą, kartais nutinka juokingas įvykis. Brėžinys atliktas teisingai, skaičiavimai buvo teisingi, bet dėl ​​neatsargumo... rastas netinkamos figūros plotas, būtent taip jūsų nuolankus tarnas kelis kartus suklydo. Čia tikras atvejis iš gyvenimo:

7 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos , , , .

Sprendimas: Pirmiausia nupieškime:

...Ech, piešinys išėjo mėšlas, bet viskas lyg ir įskaitoma.

Figūra, kurios sritį turime rasti, yra nuspalvinta mėlynai(atidžiai pažiūrėkite į būklę – kaip figūra ribota!). Tačiau praktikoje dėl neatidumo dažnai nutinka „gedimas“, kai reikia rasti figūros plotą, nuspalvintą žaliai!

Šis pavyzdys taip pat naudingas tuo, kad apskaičiuoja figūros plotą naudojant du apibrėžtuosius integralus. Tikrai:

1) Atkarpoje virš ašies yra tiesės grafikas;

2) Atkarpoje virš ašies yra hiperbolės grafikas.

Visiškai akivaizdu, kad sritis galima (ir reikia) pridėti, todėl:

Atsakymas:

Pereikime prie kitos prasmingos užduoties.

8 pavyzdys

Apskaičiuokite figūros, apribotos linijomis, plotą,
Pateikime lygtis „mokykloje“ ir nubrėžkime tašką po taško:

Iš brėžinio aišku, kad mūsų viršutinė riba yra „gera“: .
Bet kokia yra apatinė riba?! Aišku, kad tai nėra sveikasis skaičius, bet kas tai yra? Gal būt ? Bet kur garantija, kad piešinys padarytas tobulai tiksliai, gali pasirodyti, kad... Arba šaknis. Ką daryti, jei grafiką sudarėme neteisingai?

Tokiais atvejais tenka skirti papildomo laiko ir analitiškai išsiaiškinti integracijos ribas.

Raskime tiesės ir parabolės susikirtimo taškus.
Norėdami tai padaryti, išsprendžiame lygtį:


,

Tikrai,.

Tolesnis sprendimas yra nereikšmingas, svarbiausia nesusipainioti su pakeitimais ir ženklais, skaičiavimai čia nėra patys paprasčiausi.

Ant segmento , pagal atitinkamą formulę:

Atsakymas:

Na, o pamokos pabaigoje pažvelkime į dvi sudėtingesnes užduotis.

9 pavyzdys

Apskaičiuokite figūros plotą, kurį riboja linijos , ,

Sprendimas: Pavaizduokime šią figūrą brėžinyje.

Po velnių, pamiršau pasirašyti tvarkaraštį ir, atsiprašau, nenorėjau perdaryti nuotraukos. Ne piešimo diena, trumpai tariant, šiandien tokia diena =)

Norint sukurti tašką po taško, būtina žinoti sinusoidės išvaizdą (ir apskritai naudinga žinoti visų elementariųjų funkcijų grafikai), taip pat kai kurias sinusines vertes, jas galima rasti trigonometrinė lentelė. Kai kuriais atvejais (kaip šiuo atveju) galima sukonstruoti scheminį brėžinį, kuriame turėtų būti iš esmės teisingai atvaizduoti integracijos grafikai ir ribos.

Čia nėra problemų dėl integravimo ribų, jos tiesiogiai išplaukia iš sąlygos: „x“ keičiasi iš nulio į „pi“. Priimkime kitą sprendimą:

Segmente funkcijos grafikas yra virš ašies, todėl:

Šiame straipsnyje sužinosite, kaip naudojant integralinius skaičiavimus rasti linijomis apribotos figūros plotą. Pirmą kartą su tokios problemos formulavimu susiduriame vidurinėje mokykloje, kai ką tik baigėme apibrėžtųjų integralų studijas ir laikas pradėti geometrinė interpretacijažinių įgijo praktikoje.

Taigi, ko reikia norint sėkmingai išspręsti figūros ploto, naudojant integralus, problemą:

  • Gebėjimas atlikti kompetentingus brėžinius;
  • Gebėjimas išspręsti apibrėžtą integralą naudojant garsioji formulė Niutonas-Leibnicas;
  • Galimybė „pamatyti“ pelningesnį sprendimo variantą – t.y. supranti, kaip vienu ar kitu atveju bus patogiau vykdyti integraciją? Išilgai x ašies (OX) ar y ašies (OY)?
  • Na, kur mes būtume be teisingų skaičiavimų?) Tai apima supratimą, kaip išspręsti kito tipo integralus, ir teisingus skaitinius skaičiavimus.

Figūros, apribotos linijomis, ploto skaičiavimo uždavinio sprendimo algoritmas:

1. Mes statome brėžinį. Patartina tai daryti ant languoto popieriaus lapo, su dideliu mastu. Šios funkcijos pavadinimą pažymime pieštuku virš kiekvieno grafiko. Grafikai pasirašomi tik tolesnių skaičiavimų patogumui. Gavus norimos figūros grafiką, daugeliu atvejų iš karto bus aišku, kokios integracijos ribos bus naudojamos. Taip mes išsprendžiame problemą grafinis metodas. Tačiau atsitinka taip, kad ribų reikšmės yra trupmeninės arba neracionalios. Todėl galite atlikti papildomus skaičiavimus, pereikite prie antrojo veiksmo.

2. Jei integravimo ribos nėra aiškiai nurodytos, randame grafikų susikirtimo taškus tarpusavyje ir pažiūrime, ar mūsų grafinis sprendimas su analitiniu.

3. Toliau reikia išanalizuoti piešinį. Priklausomai nuo to, kaip išdėstyti funkcijų grafikai, yra skirtingi požiūriai rasti figūros plotą. Pasvarstykime skirtingų pavyzdžių rasti figūros plotą naudojant integralus.

3.1. Klasikiškiausia ir paprasčiausia problemos versija yra tada, kai reikia rasti išlenktos trapecijos plotą. Kas yra lenkta trapecija? Tai plokščia figūra, kurią riboja x ašis (y = 0), tiesus x = a, x = b ir bet kuri kreivė, ištisinė intervale nuo a prieš b. Be to, šis skaičius nėra neigiamas ir yra ne žemiau x ašies. Šiuo atveju kreivinės trapecijos plotas yra skaitiniu būdu lygus tam tikram integralui, apskaičiuotam pagal Niutono-Leibnizo formulę:

1 pavyzdys y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Kokiomis linijomis riboja figūra? Mes turime parabolę y = x2 – 3x + 3, kuris yra virš ašies OI, tai neneigiama, nes turi visi šios parabolės taškai teigiamas vertes. Toliau pateiktos tiesios linijos x = 1 Ir x = 3, kurie eina lygiagrečiai ašiai OU, yra figūros ribinės linijos kairėje ir dešinėje. Na y = 0, tai taip pat yra x ašis, kuri riboja figūrą iš apačios. Gauta figūra yra užtamsinta, kaip matyti iš paveikslo kairėje. Tokiu atveju galite nedelsiant pradėti spręsti problemą. Prieš mus yra paprastas išlenktos trapecijos pavyzdys, kurį toliau sprendžiame naudodami Niutono-Leibnizo formulę.

3.2. Ankstesnėje 3.1 pastraipoje nagrinėjome atvejį, kai lenkta trapecija yra virš x ašies. Dabar apsvarstykite atvejį, kai problemos sąlygos yra tokios pačios, išskyrus tai, kad funkcija yra po x ašimi. KAM standartinė formulė Pridedamas Niutono-Leibnizo minusas. Kaip nuspręsti panaši užduotis Pažiūrėkime toliau.

2 pavyzdys . Apskaičiuokite figūros, apribotos linijomis, plotą y = x2 + 6x + 2, x = -4, x = -1, y = 0.

IN šiame pavyzdyje mes turime parabolę y = x2 + 6x + 2, kuris kilęs iš ašies OI, tiesus x = -4, x = -1, y = 0. Čia y = 0 riboja norimą figūrą iš viršaus. Tiesioginis x = -4 Ir x = -1 tai yra ribos, per kurias bus skaičiuojamas apibrėžtasis integralas. Figūros ploto nustatymo problemos sprendimo principas beveik visiškai sutampa su 1 pavyzdžiu. Vienintelis skirtumas yra tas, kad suteikta funkcija nėra teigiamas ir vis tiek tęsiasi intervale [-4; -1] . Ką reiškia ne teigiama? Kaip matyti iš paveikslo, figūra, esanti duotųjų x ribose, turi išskirtinai „neigiamas“ koordinates, kurias turime pamatyti ir atsiminti spręsdami problemą. Figūros ploto ieškome naudodami Niutono-Leibnizo formulę, tik su minuso ženklu pradžioje.

Straipsnis nebaigtas.



Ar jums patiko straipsnis? Pasidalinkite su draugais!