Mevsimler

Ev Dünya ülkeleriÖncelikle vektör kavramını anlamamız gerekiyor. Tanımı tanıtmak için

geometrik vektör

Segmentin ne olduğunu hatırlayalım. Aşağıdaki tanımı tanıtalım.

Tanım 1

Segment, nokta şeklinde iki sınırı olan düz bir çizginin parçasıdır.

Bir segmentin 2 yönü olabilir. Yönü belirtmek için parçanın sınırlarından birine başlangıcı, diğer sınırına da sonu diyeceğiz. Yön, segmentin başlangıcından sonuna kadar gösterilir.

Tanım 2

Bir vektöre veya yönlendirilmiş bir parçaya, parçanın sınırlarının hangisinin başlangıç, hangisinin son olarak kabul edildiği bilinen bir parçayı adlandıracağız.

Tanım: İki harfle: $\overline(AB)$ – (burada $A$ başlangıcı ve $B$ sonudur).

Küçük bir harfle: $\overline(a)$ (Şekil 1).

Şimdi doğrudan vektör uzunlukları kavramını tanıtalım.

Tanım 3

$\overline(a)$ vektörünün uzunluğu, $a$ segmentinin uzunluğu olacaktır.

Gösterim: $|\overline(a)|$

Vektör uzunluğu kavramı, örneğin iki vektörün eşitliği gibi bir kavramla ilişkilidir.

Tanım 4 İki koşulu karşılıyorlarsa iki vektöre eşit diyeceğiz: 1. Eş yönlüdürler; 1. Uzunlukları eşittir (Şek. 2). Vektörleri tanımlamak için bir koordinat sistemi girin ve girilen sistemdeki vektörün koordinatlarını belirleyin. Bildiğimiz gibi, herhangi bir vektör $\overline(c)=m\overline(i)+n\overline(j)$ biçiminde ayrıştırılabilir; burada $m$ ve $n$

gerçek sayılar

ve $\overline(i)$ ve $\overline(j)$ sırasıyla $Ox$ ve $Oy$ eksenindeki birim vektörlerdir.

Tanım 5

$\overline(c)=m\overline(i)+n\overline(j)$ vektörünün genişleme katsayılarına, tanıtılan koordinat sistemindeki bu vektörün koordinatları adını vereceğiz. Matematiksel olarak:

$\overline(c)=(m,n)$

Bir vektörün uzunluğu nasıl bulunur?

Koordinatları verilen rastgele bir vektörün uzunluğunu hesaplamaya yönelik bir formül türetmek için aşağıdaki problemi göz önünde bulundurun:

Örnek 1

Oluşturduğumuz $\overline(OA)$ vektörü $A$ noktasının yarıçap vektörü olacaktır, dolayısıyla $(x,y)$ koordinatlarına sahip olacaktır, yani

$=x$, $[OA_2]=y$

Artık gerekli uzunluğu Pisagor teoremini kullanarak kolayca bulabiliriz.

$|\overline(α)|^2=^2+^2$

$|\overline(α)|^2=x^2+y^2$

$|\overline(α)|=\sqrt(x^2+y^2)$

Cevap: $\sqrt(x^2+y^2)$.

Çözüm: Koordinatları verilen bir vektörün uzunluğunu bulmak için bu koordinatların toplamının karesinin kökünü bulmak gerekir.

Örnek görevler

Örnek 2

Aşağıdaki koordinatlara sahip $X$ ve $Y$ noktaları arasındaki mesafeyi bulun: sırasıyla $(-1.5)$ ve $(7.3)$.

Herhangi iki nokta kolaylıkla bir vektör kavramıyla ilişkilendirilebilir. Örneğin $\overline(XY)$ vektörünü düşünün. Zaten bildiğimiz gibi, böyle bir vektörün koordinatları koordinatlardan çıkarılarak bulunabilir. bitiş noktası($Y$) karşılık gelen koordinatlar başlangıç ​​noktası($X$). Bunu anlıyoruz

Sonunda bu kapsamlı ve uzun zamandır beklenen konuya kavuştum. analitik geometri . İlk önce biraz hakkında bu bölüm yüksek matematik…. Artık sayısız teorem, bunların kanıtları, çizimleri vb. içeren bir okul geometri dersini hatırlıyorsunuzdur. Öğrencilerin önemli bir kısmı için sevilmeyen ve çoğunlukla anlaşılması güç bir konu olan ne saklanmalı? Garip bir şekilde analitik geometri daha ilginç ve erişilebilir görünebilir. “Analitik” sıfatı ne anlama geliyor? Hemen aklıma iki klişe matematik tabiri geliyor: “grafiksel çözüm yöntemi” ve “ analitik yöntemçözümler." Grafik yöntemi elbette grafiklerin ve çizimlerin yapımıyla ilişkilidir. Analitik veya yöntem sorunları çözmeyi içerir daha çok başından sonuna kadar cebirsel işlemler. Bu bağlamda, analitik geometrinin neredeyse tüm problemlerini çözmeye yönelik algoritma basit ve şeffaftır; genellikle dikkatli bir şekilde uygulanması yeterlidir; gerekli formüller- ve cevap hazır! Hayır elbette çizim olmadan bunu yapamayacağız, ayrıca malzemenin daha iyi anlaşılması için gereksiz yere alıntı yapmaya çalışacağım.

Yeni açılan geometri dersleri teorik olarak tamamlanmış gibi görünmüyor; pratik problemlerin çözümüne odaklanıyor. Derslerime yalnızca benim bakış açıma göre pratik açıdan önemli olan şeyleri dahil edeceğim. Herhangi bir alt bölüm hakkında daha kapsamlı yardıma ihtiyacınız varsa, aşağıdaki oldukça erişilebilir literatürü öneririm:

1) Şaka değil, birkaç neslin aşina olduğu bir şey: Geometri üzerine okul ders kitabı, yazarlar – L.S. Atanasyan ve Şirketi. Bu okul soyunma odası askısı zaten 20 (!) yeniden basımdan geçti ve bu elbette sınır değil.

2) 2 ciltte geometri. Yazarlar L.S. Atanasyan, Bazylev V.T.. Bu edebiyat için lise, ihtiyacın olacak ilk cilt. Nadiren karşılaşılan görevler gözümün önünden kaybolabilir ve eğitim kılavuzu paha biçilmez yardım sağlayacaktır.

Her iki kitap da çevrimiçi olarak ücretsiz olarak indirilebilir. Ayrıca arşivimi de kullanabilirsiniz. hazır çözümler sayfasında bulabilirsiniz. Yüksek matematikteki örnekleri indirin.

Araçlar arasında yine kendi gelişimimi öneriyorum - yazılım paketi Analitik geometride hayatı büyük ölçüde kolaylaştıracak ve çok zaman kazandıracak.

Okuyucunun temel bilgilere aşina olduğu varsayılmaktadır. geometrik kavramlar ve şekiller: nokta, çizgi, düzlem, üçgen, paralelkenar, paralelyüz, küp vb. Bazı teoremleri, en azından Pisagor teoremini hatırlamanız tavsiye edilir, tekrarlayıcılara merhaba)

Şimdi sırasıyla ele alacağız: vektör kavramı, vektörlerle eylemler, vektör koordinatları. Devamını okumanızı tavsiye ederim en önemli makale Vektörlerin nokta çarpımı ve ayrıca Vektör ve vektörlerin karışık çarpımı. Gereksiz olmayacak yerel sorun– Bir segmentin belirli bir oranda bölünmesi. Yukarıdaki bilgilere dayanarak ustalaşabilirsiniz. düzlemdeki bir doğrunun denklemiİle en basit çözüm örnekleri, izin verecek geometri problemlerini çözmeyi öğrenin. Aşağıdaki makaleler de faydalıdır: Uzaydaki bir düzlemin denklemi, Uzayda bir çizginin denklemleri, Düz bir çizgi ve düzlemde temel problemler, analitik geometrinin diğer bölümleri. Doğal olarak yol boyunca standart görevler dikkate alınacaktır.

Vektör kavramı. Ücretsiz vektör

Öncelikle bir vektörün okuldaki tanımını tekrarlayalım. Vektör isminde yönlendirilmiş başlangıcı ve bitişinin belirtildiği bir bölüm:

İÇİNDE bu durumda parçanın başlangıcı nokta, parçanın sonu ise noktadır. Vektörün kendisi ile gösterilir. Yönçok önemli, eğer oku parçanın diğer ucuna hareket ettirirseniz bir vektör elde edersiniz ve bu zaten tamamen farklı vektör. Vektör kavramını fiziksel bir bedenin hareketiyle özdeşleştirmek uygundur: Kabul etmelisiniz ki bir enstitünün kapısından girmek veya bir enstitünün kapısından çıkmak tamamen farklı şeylerdir.

Bir düzlemin veya uzayın bireysel noktalarını sözde olarak düşünmek uygundur. sıfır vektör. Böyle bir vektör için son ve başlangıç ​​çakışır.

!!! Not: Burada ve ayrıca vektörlerin aynı düzlemde bulunduğunu veya uzayda yer aldıklarını varsayabilirsiniz - sunulan malzemenin özü hem düzlem hem de uzay için geçerlidir.

Tanımlar: Birçoğu, adında ok bulunmayan çubuğu hemen fark etti ve üstte de bir ok olduğunu söyledi! Doğru, bunu bir okla yazabilirsiniz: , ancak bu da mümkündür gelecekte kullanacağım giriş. Neden? Görünüşe göre bu alışkanlık pratik nedenlerden dolayı gelişti; okuldaki ve üniversitedeki atıcılarımın çok farklı boyutlarda ve tüylü olduğu ortaya çıktı. Eğitim literatüründe bazen çivi yazısıyla hiç uğraşmazlar, ancak harfleri kalın harflerle vurgularlar: , böylece bunun bir vektör olduğunu ima ederler.

Bu stilistikti ve şimdi vektör yazmanın yolları hakkında:

1) Vektörler iki büyük Latin harfiyle yazılabilir:
ve benzeri. Bu durumda ilk harf mutlaka vektörün başlangıç ​​noktasını, ikinci harf ise vektörün bitiş noktasını belirtir.

2) Vektörler ayrıca küçük Latin harfleriyle de yazılır:
Özellikle, kısaltmak için vektörümüz küçük olarak yeniden tasarlanabilir. Latince harf.

Uzunluk veya modül Olumsuz sıfır vektör doğru parçasının uzunluğu denir. Sıfır vektörünün uzunluğu sıfırdır. Mantıksal.

Vektörün uzunluğu modül işaretiyle gösterilir: ,

Biraz sonra bir vektörün uzunluğunu nasıl bulacağımızı öğreneceğiz (ya da kime bağlı olarak tekrarlayacağız).

Bu, tüm okul çocuklarının aşina olduğu, vektörler hakkında temel bilgilerdi. Analitik geometride, sözde bedava vektör.

Basitçe söylemek gerekirse - vektör herhangi bir noktadan çizilebilir:

Bu tür vektörleri eşit olarak adlandırmaya alışkınız (eşit vektörlerin tanımı aşağıda verilecektir), ancak tamamen matematiksel nokta görünüm AYNI VEKTÖR veya bedava vektör. Neden ücretsiz? Çünkü problemleri çözerken, şunu veya bu vektörü ihtiyacınız olan düzlemin veya uzayın HERHANGİ bir noktasına "bağlayabilirsiniz". Bu çok harika bir özellik! İsteğe bağlı uzunlukta ve yönde bir vektör düşünün; “klonlanabilir” sonsuz sayı her zaman ve uzayın herhangi bir noktasında, aslında HER YERDE vardır. Şöyle bir öğrenci söylüyor: Her hoca vektöre önem verir. Sonuçta, bu sadece esprili bir kafiye değil, her şey matematiksel olarak doğru - vektör de oraya eklenebilir. Ama sevinmek için acele etmeyin, çoğu zaman acı çekenler öğrencilerin kendisidir =)

Bu yüzden, bedava vektör- Bu birçok aynı yönlendirilmiş bölümler. Paragrafın başında verilen bir vektörün okul tanımı: "Yönlendirilmiş bir parçaya vektör denir..." özel belirli bir kümeden alınan ve düzlemde veya uzayda belirli bir noktaya bağlanan yönlendirilmiş bir bölüm.

Fizik açısından bakıldığında, serbest vektör kavramının genel durum yanlıştır ve vektörün uygulama noktası önemlidir. Aslında, benim aptal örneğimi geliştirmeye yetecek kadar aynı kuvvetin buruna veya alnına doğrudan darbesi farklı sonuçlara yol açar. Fakat, özgür olmayan vektörler ayrıca vyshmat sürecinde de bulunur (oraya gitmeyin :)).

Vektörlerle yapılan eylemler. Vektörlerin doğrusallığı

İÇİNDE okul kursu geometri, vektörlerle birlikte bir dizi eylem ve kural dikkate alınır: Üçgen kuralına göre toplama, paralelkenar kuralına göre toplama, vektör farkı kuralı, bir vektörün bir sayı ile çarpılması, vektörlerin skaler çarpımı vb. Başlangıç ​​noktası olarak analitik geometri problemlerinin çözümüyle özellikle ilgili olan iki kuralı tekrarlayalım.

Üçgen kuralını kullanarak vektörleri ekleme kuralı

Sıfır olmayan iki rastgele vektörü düşünün ve:

Bu vektörlerin toplamını bulmanız gerekiyor. Tüm vektörlerin serbest olduğu düşünüldüğünden, vektörü bir kenara koyacağız. son vektör:

Vektörlerin toplamı vektördür. Kuralın daha iyi anlaşılması için aşağıdakilerin eklenmesi tavsiye edilir: fiziksel anlam: Bir cismin önce bir vektör boyunca, sonra da bir vektör boyunca hareket etmesine izin verin. O zaman vektörlerin toplamı, başlangıcı kalkış noktasında ve sonu varış noktasında olmak üzere ortaya çıkan yolun vektörüdür. Herhangi bir sayıda vektörün toplamı için benzer bir kural formüle edilmiştir. Dedikleri gibi, vücut, toplamın ortaya çıkan vektörü boyunca bir zikzak boyunca veya belki de otopilotta çok eğilerek yoluna gidebilir.

Bu arada, eğer vektör ertelenirse başladı vektör, o zaman eşdeğerini elde ederiz paralelkenar kuralı vektörlerin eklenmesi.

İlk olarak vektörlerin eşdoğrusallığı hakkında. İki vektör denir eşdoğrusal, eğer aynı doğru üzerinde veya paralel doğrular üzerinde yer alıyorlarsa. Kabaca söylemek gerekirse paralel vektörlerden bahsediyoruz. Ancak bunlarla ilgili olarak her zaman "doğrusal" sıfatı kullanılır.

İki eşdoğrusal vektör düşünün. Bu vektörlerin okları aynı yöne yönlendirilirse, bu tür vektörlere denir. ortak yönetmen. Oklar yönü gösteriyorsa farklı taraflar, o zaman vektörler şöyle olacaktır: zıt yönler.

Tanımlar: Vektörlerin doğrusallığı olağan paralellik sembolüyle yazılır: , detaylandırma mümkündür: (vektörler birlikte yönlendirilir) veya (vektörler zıt yönlendirilir).

bir sayı üzerindeki sıfır olmayan bir vektör, uzunluğu eşit olan bir vektördür ve ve vektörleri, ile birlikte ve zıt olarak yönlendirilir.

Bir vektörü bir sayıyla çarpma kuralını bir resim yardımıyla anlamak daha kolaydır:

Daha ayrıntılı olarak bakalım:

1) Yön. Çarpan negatifse, vektör yön değiştirir tam tersine.

2) Uzunluk. Çarpan veya içinde yer alıyorsa, vektörün uzunluğu azalır. Yani vektörün uzunluğu, vektörün uzunluğunun yarısı kadardır. Çarpan modülü birden büyükse vektörün uzunluğu artar bazen.

3) Lütfen şunu unutmayın tüm vektörler eşdoğrusaldır, bir vektör diğeri aracılığıyla ifade edilirken, örneğin . Bunun tersi de doğrudur: Eğer bir vektör bir diğeri aracılığıyla ifade edilebiliyorsa, bu tür vektörler zorunlu olarak eşdoğrusaldır. Böylece: bir vektörü bir sayıyla çarparsak eşdoğrusal hale geliriz(orijinaline göre) vektör.

4) Vektörler birlikte yönlendirilir. Vektörler ve aynı zamanda ortak yönlendirilirler. Birinci grubun herhangi bir vektörü, ikinci grubun herhangi bir vektörüne göre zıt yönlüdür.

Hangi vektörler eşittir?

İki vektör aynı yöndeyse ve aynı uzunluğa sahipse eşittir. Eş yönlülüğün, vektörlerin eşdoğrusallığını ima ettiğini unutmayın. Eğer şöyle dersek tanım hatalı (gereksiz) olacaktır: "İki vektör eğer aynı doğru üzerindeyse, eş yönlüyse ve aynı uzunluğa sahipse eşittir."

Serbest vektör kavramı açısından bakıldığında, önceki paragrafta tartışıldığı gibi eşit vektörler aynı vektördür.

Düzlemde ve uzayda vektör koordinatları

İlk nokta düzlemdeki vektörleri dikkate almaktır. Kartezyeni temsil edelim dikdörtgen sistem koordinatlar ve ertelediğimiz koordinatların başlangıç ​​noktasından Bekar vektörler ve:

Vektörler ve ortogonal. Ortogonal = Dik. Terimlere yavaş yavaş alışmanızı öneririm: paralellik ve diklik yerine sırasıyla kelimeleri kullanıyoruz eşdoğrusallık Ve diklik.

Tanım: Vektörlerin ortogonalliği olağan diklik sembolüyle yazılır, örneğin: .

Göz önünde bulundurulan vektörlere denir koordinat vektörleri veya ort. Bu vektörler oluşur temel bir uçakta. Temelin ne olduğu sanırım pek çok kişi için sezgisel olarak açıktır. detaylı bilgi makalede bulunabilir Vektörlerin doğrusal (bağımsız) bağımlılığı. Vektörlerin temeli Basit bir deyişle, koordinatların temeli ve kökeni tüm sistemi tanımlar - bu, üzerinde tam ve zengin bir geometrik yaşamın kaynadığı bir tür temeldir.

Bazen inşa edilmiş temel denir ortonormal düzlemin temeli: "orto" - koordinat vektörleri dik olduğundan, "normalleştirilmiş" sıfatı birim anlamına gelir, yani. temel vektörlerin uzunlukları bire eşittir.

Tanım: temel genellikle şöyle yazılır parantez, içinde V katı sıra temel vektörler listelenmiştir, örneğin: . Koordinat vektörleri yasak yeniden düzenleyin.

Herhangi düzlem vektör tek yolşu şekilde ifade edilir:
, Nerede - sayılar bunlara denir vektör koordinatları V bu temelde. Ve ifadenin kendisi isminde vektör ayrışmasıtemelde .

Servis edilen akşam yemeği:

Alfabenin ilk harfiyle başlayalım: . Çizim, bir vektörü tabana ayrıştırırken az önce tartışılanların kullanıldığını açıkça göstermektedir:
1) bir vektörü bir sayıyla çarpma kuralı: ve;
2) Üçgen kuralına göre vektörlerin toplanması: .

Şimdi düzlemdeki herhangi bir noktadan vektörü zihinsel olarak çizin. Çürümesinin “amansızca onu takip edeceği” çok açık. İşte, vektörün özgürlüğü - vektör "her şeyi kendisiyle birlikte taşır." Bu özellik elbette her vektör için geçerlidir. Temel (serbest) vektörlerin başlangıç ​​noktasından itibaren çizilmesine gerek olmaması komiktir; örneğin biri sol altta, diğeri sağ üstte çizilebilir ve hiçbir şey değişmez! Doğru, bunu yapmanıza gerek yok, çünkü öğretmen de özgünlük gösterecek ve beklenmedik bir yerde size bir "kredi" çekecektir.

Vektörler, bir vektörü bir sayıyla çarpma kuralını tam olarak gösterir; vektör, temel vektörle eş yönlüdür, vektör, temel vektörün tersi yöndedir. Bu vektörler için koordinatlardan biri sıfıra eşitse bunu şu şekilde titizlikle yazabilirsiniz:


Ve bu arada temel vektörler şöyle: (aslında kendileri aracılığıyla ifade ediliyorlar).

Ve son olarak: , . Bu arada, vektör çıkarma nedir ve neden çıkarma kuralından bahsetmedim? İçinde bir yerde doğrusal cebir, nerede olduğunu hatırlamıyorum, çıkarma işleminin yapıldığını not ettim özel durum ek. Böylece “de” ve “e” vektörlerinin açılımları kolaylıkla toplam olarak yazılabilir: , . Terimleri yeniden düzenleyin ve çizimde vektörlerin üçgen kuralına göre eski güzel toplamının bu durumlarda ne kadar işe yaradığını görün.

Formun dikkate alınan ayrıştırması bazen vektör ayrıştırması denir ort sisteminde(yani birim vektörlerden oluşan bir sistemde). Ancak bir vektör yazmanın tek yolu bu değildir; aşağıdaki seçenek yaygındır:

Veya eşittir işaretiyle:

Temel vektörlerin kendisi şu şekilde yazılır: ve

Yani vektörün koordinatları parantez içinde gösterilmiştir. Pratik problemlerde her üç gösterim seçeneği de kullanılır.

Konuşup konuşmamak konusunda tereddüt ettim ama yine de söyleyeyim: vektör koordinatları yeniden düzenlenemez. Kesinlikle ilk sırada karşılık gelen koordinatı yazın birim vektör , kesinlikle ikinci sırada birim vektöre karşılık gelen koordinatı yazıyoruz. Aslında ve iki farklı vektördür.

Uçağın koordinatlarını bulduk. Şimdi üç boyutlu uzayda vektörlere bakalım, burada hemen hemen her şey aynı! Sadece bir koordinat daha ekleyecek. Üç boyutlu çizimler yapmak zordur, bu yüzden kendimi bir vektörle sınırlayacağım ve basitlik açısından onu orijinden ayıracağım:

Herhangi vektör üç boyutlu uzay Olabilmek tek yol ortonormal bir temele göre genişletin:
, bu temelde vektörün (sayı) koordinatları nerededir.

Resimden örnek: . Burada vektör kurallarının nasıl çalıştığını görelim. Öncelikle vektörü şu sayıyla çarpın: (kırmızı ok), (yeşil ok) ve (ahududu oku). İkinci olarak, burada birkaç, bu durumda üç vektörün eklenmesine ilişkin bir örnek verilmiştir: . Toplam vektör başlangıç ​​noktasından (vektörün başlangıcı) başlar ve son varış noktasında (vektörün sonu) biter.

Üç boyutlu uzayın tüm vektörleri de doğal olarak özgürdür; vektörü zihinsel olarak başka herhangi bir noktadan ayırmaya çalışın ve onun ayrışmasının "onunla kalacağını" anlayacaksınız.

Düz kasaya benzer, yazıya ek olarak parantezli versiyonlar yaygın olarak kullanılmaktadır: ya .

Genişletmede bir (veya iki) eksik varsa koordinat vektörleri sonra yerlerine sıfırlar konulur. Örnekler:
vektör (titizlikle ) – hadi yazalım;
vektör (titizlikle ) – hadi yazalım;
vektör (titizlikle ) – hadi yazalım.

Temel vektörler aşağıdaki gibi yazılır:

Belki de analitik geometri problemlerini çözmek için gereken minimum teorik bilginin tamamı budur. Çok fazla terim ve tanım olabilir, bu yüzden aptalların tekrar okuyup anlamasını öneririm bu bilgi Tekrar. Ve herhangi bir okuyucunun başvurması yararlı olacaktır. temel ders Malzemenin daha iyi asimilasyonu için. Eşdoğrusallık, ortogonallik, ortonormal temel, vektör ayrıştırması - bunlar ve diğer kavramlar gelecekte sıklıkla kullanılacaktır. Tüm teoremleri dikkatlice (ve kanıt olmadan) şifrelediğim için sitedeki materyallerin teorik bir testi veya geometri üzerine bir konferansı geçmek için yeterli olmadığını belirtmek isterim. bilimsel tarz Sunum, ancak konuyu anlamanıza bir artı. Detaylı teorik bilgi almak için lütfen Profesör Atanasyan'ın önünde eğilin.

Ve pratik kısma geçiyoruz:

Analitik geometrinin en basit problemleri.
Koordinatlardaki vektörlerle yapılan işlemler

Tamamen otomatik olarak değerlendirilecek görevlerin ve formüllerin nasıl çözüleceğini öğrenmeniz önemle tavsiye edilir. ezberlemek, özellikle hatırlamıyorum bile, kendilerini hatırlayacaklar =) Bu çok önemli, çünkü en basitinde temel örnekler Analitik geometrinin diğer problemleri temel alınır ve harcamak can sıkıcı olacaktır. ekstra zaman piyon yemek için. Gömleğinizin üst düğmelerini iliklemenize gerek yok; okuldan aşina olduğunuz birçok şey var.

Materyalin sunumu hem uçak hem de uzay açısından paralel bir seyir izleyecek. Çünkü tüm formülleri... kendiniz göreceksiniz.

İki noktadan bir vektör nasıl bulunur?

Düzlemin iki noktası verilirse, vektör aşağıdaki koordinatlara sahiptir:

Uzayda iki nokta verilirse, vektör aşağıdaki koordinatlara sahiptir:

Yani, vektörün sonunun koordinatlarından karşılık gelen koordinatları çıkarmanız gerekir vektörün başlangıcı.

Egzersiz yapmak: Aynı noktalar için vektörün koordinatlarını bulma formüllerini yazın. Dersin sonunda formüller.

Bir vektörün uzunluğu nasıl bulunur?

Düzlemin iki noktası verildiğinde ve . Vektör koordinatlarını bulun

Çözüm: uygun formüle göre:

Alternatif olarak aşağıdaki giriş kullanılabilir:

Buna estetik karar verecek:

Şahsen ben kaydın ilk versiyonuna alışkınım.

Cevap:

Koşula göre, bir çizim oluşturmak gerekli değildi (ki bu analitik geometri problemleri için tipiktir), ancak kuklalar için bazı noktaları açıklığa kavuşturmak için tembel olmayacağım:

Kesinlikle anlamalısın nokta koordinatları ve vektör koordinatları arasındaki fark:

Nokta koordinatları– bunlar dikdörtgen koordinat sistemindeki sıradan koordinatlardır. Puanları koy koordinat düzlemi 5-6. sınıftan itibaren herkesin yapabileceğini düşünüyorum. Her noktanın düzlemde kesin bir yeri vardır ve hiçbir yere taşınamazlar.

Vektörün koordinatları– bu, bu durumda temele göre genişlemesidir. Herhangi bir vektör serbesttir, dolayısıyla gerekirse onu düzlemdeki başka bir noktadan kolaylıkla uzaklaştırabiliriz. İlginçtir ki vektörler için eksen veya dikdörtgen koordinat sistemi oluşturmanıza gerek yoktur; sadece bir tabana, bu durumda düzlemin ortonormal tabanına ihtiyacınız vardır.

Noktaların koordinatları ile vektörlerin koordinatlarının kayıtları benzer görünmektedir: , ve koordinatların anlamı kesinlikle farklı ve bu farkın çok iyi farkında olmalısınız. Bu fark elbette uzay için de geçerlidir.

Bayanlar ve baylar, ellerimizi dolduralım:

Örnek 2

a) Puan ve verilir. Vektörleri bulun ve .
b) Puan verilir Ve . Vektörleri bulun ve .
c) Puan ve verilir. Vektörleri bulun ve .
d) Puan verilir. Vektörleri bulun .

Belki bu yeterlidir. Bunlar için örnekler bağımsız karar, onları ihmal etmemeye çalışın, karşılığını alacaktır ;-). Çizim yapmaya gerek yoktur. Dersin sonunda çözümler ve cevaplar.

Analitik geometri problemlerini çözerken önemli olan nedir? Ustaca yapılan “iki artı iki eşittir sıfır” hatasını yapmamak için SON DERECE DİKKATLİ olmak önemlidir. Bir yerde hata yaptıysam hemen özür dilerim =)

Bir segmentin uzunluğu nasıl bulunur?

Uzunluk, daha önce belirtildiği gibi modül işaretiyle gösterilir.

Düzlemin iki noktası verilirse ve o zaman parçanın uzunluğu formül kullanılarak hesaplanabilir.

Uzayda iki nokta verilirse, parçanın uzunluğu aşağıdaki formül kullanılarak hesaplanabilir.

Not: Karşılık gelen koordinatlar değiştirilirse formüller doğru kalacaktır: ve , ancak ilk seçenek daha standarttır

Örnek 3

Çözüm: uygun formüle göre:

Cevap:

Netlik sağlamak için bir çizim yapacağım

Segment – bu bir vektör değil ve tabii ki onu hiçbir yere taşıyamazsınız. Ayrıca ölçekli çizim yaparsanız: 1 birim. = 1 cm (iki dizüstü bilgisayar hücresi), o zaman ortaya çıkan cevap, parçanın uzunluğu doğrudan ölçülerek normal bir cetvelle kontrol edilebilir.

Evet çözüm kısa ama içinde birkaç tane daha var önemli noktalarşunu açıklığa kavuşturmak isterim:

İlk olarak cevaba boyutu koyuyoruz: “birimler”. Koşul ne olduğunu söylemiyor; milimetre, santimetre, metre veya kilometre. Bu nedenle, matematiksel olarak doğru bir çözüm, genel formülasyon olacaktır: "birimler" - "birimler" olarak kısaltılır.

İkinci olarak, yalnızca ele alınan görev için yararlı olmayan okul materyalini tekrarlayalım:

lütfen aklınızda bulundurun önemli teknikçarpanı kökün altından kaldırmak. Hesaplamalar sonucunda bir sonuç elde ediyoruz ve iyi bir matematik stili, faktörün (mümkünse) kökün altından çıkarılmasını içerir. Daha ayrıntılı olarak süreç şöyle görünür: . Elbette cevabı olduğu gibi bırakmak bir hata olmayacaktır - ancak bu kesinlikle bir eksiklik ve öğretmen açısından saçma sapan bir argüman olacaktır.

İşte diğer yaygın durumlar:

Çoğunlukla kökte yeterli miktarda bulunur büyük sayı, Örneğin . Bu gibi durumlarda ne yapmalı? Hesap makinesini kullanarak sayının 4'e bölünüp bölünmediğini kontrol ederiz: . Evet, tamamen bölünmüştü, dolayısıyla: . Ya da belki sayı tekrar 4'e bölünebilir? . Böylece: . numarada son rakam tuhaf, yani üçüncü kez 4'e bölmek elbette işe yaramayacak. Dokuza bölmeye çalışalım: . Sonuç olarak:
Hazır.

Çözüm: kökün altında bir bütün olarak çıkarılamayan bir sayı alırsak, o zaman faktörü kökün altından kaldırmaya çalışırız - bir hesap makinesi kullanarak sayının şu şekilde bölünebilir olup olmadığını kontrol ederiz: 4, 9, 16, 25, 36, 49 vb.

Karar sırasında çeşitli görevler Kökler yaygındır, öğretmenin yorumlarına göre çözümlerinizi sonuçlandırırken daha düşük not almaktan ve gereksiz sorunlardan kaçınmak için her zaman faktörleri kökün altından çıkarmaya çalışın.

Köklerin karesini almayı ve diğer kuvvetleri de tekrarlayalım:

Derecesi olan eylemler için kurallar genel görünüm Cebir üzerine bir okul ders kitabında bulunabilir, ancak verilen örneklerden her şeyin veya neredeyse her şeyin zaten açık olduğunu düşünüyorum.

Uzayda bir segmentle bağımsız çözüm görevi:

Örnek 4

Puanlar ve verilir. Segmentin uzunluğunu bulun.

Çözüm ve cevap dersin sonundadır.

Bir vektörün uzunluğu nasıl bulunur?

Bir düzlem vektörü verilirse uzunluğu formülle hesaplanır.

Bir uzay vektörü verilirse uzunluğu formülle hesaplanır. .

Vektörlerin toplamı. Vektör uzunluğu. Sevgili arkadaşlar Geriye dönük sınav türleri kapsamında vektörlerle ilgili bir grup problem bulunmaktadır. Görevler oldukça geniş kapsamlıdır (bilmek önemlidir) teorik temeller). Çoğu sözlü olarak çözülür. Sorular bir vektörün uzunluğunu, vektörlerin toplamını (farkını) ve skaler çarpımı bulmayla ilgilidir. Ayrıca vektör koordinatlarıyla eylemler gerçekleştirmeniz gereken birçok görev vardır.

Vektörler konusunu çevreleyen teori karmaşık değildir ve iyi anlaşılması gerekir. Bu yazıda bir vektörün uzunluğunun yanı sıra vektörlerin toplamını (farkını) bulmayla ilgili problemleri analiz edeceğiz. Bazı teorik noktalar:

Vektör kavramı

Bir vektör yönlendirilmiş bir bölümdür.

Yönleri aynı olan ve uzunlukları eşit olan tüm vektörler eşittir.


*Yukarıda sunulan dört vektörün tümü eşittir!

Yani eğer kullanırsak paralel aktarım Bize verilen vektörü hareket ettirirsek her zaman orijinaline eşit bir vektör elde ederiz. Böylece sonsuz sayıda eşit vektör olabilir.

Vektör gösterimi

Vektör Latince ile gösterilebilir büyük harflerle, Örneğin:


Bu gösterim biçiminde önce vektörün başlangıcını gösteren harf, ardından vektörün sonunu gösteren harf yazılır.

Başka bir vektör bir harfle gösterilir Latin alfabesi(başkent):

Oksuz tanımlama da mümkündür:

İki AB ve BC vektörünün toplamı AC vektörü olacaktır.

AB + BC = AC şeklinde yazılır.

Bu kural denir - üçgen kuralı.

Yani, eğer iki vektörümüz varsa - bunlara koşullu olarak (1) ve (2) diyelim ve vektörün (1) sonu, vektörün (2) başlangıcıyla çakışıyorsa, bu vektörlerin toplamı bir vektör olacaktır: başlangıç, vektör (1)'in başlangıcıyla çakışır ve son, vektör (2)'nin sonuyla çakışır.

Sonuç: Bir düzlemde iki vektörümüz varsa, bunların toplamını her zaman bulabiliriz. Paralel çeviriyi kullanarak bu vektörlerden herhangi birini hareket ettirebilir ve onun başlangıcını diğerinin sonuna bağlayabilirsiniz. Örneğin:

Vektörü hareket ettirelim B, veya başka bir deyişle, eşit bir tane oluşturalım:

Birkaç vektörün toplamı nasıl bulunur? Aynı prensiple:

* * *

Paralelkenar kuralı

Bu kural yukarıdakilerin bir sonucudur.

olan vektörler için ortak başlangıç bunların toplamı, bu vektörler üzerine oluşturulan bir paralelkenarın köşegeniyle temsil edilir.

Bir vektör oluşturalım vektöre eşit B başlangıcı vektörün sonu ile çakışacak şekilde A ve bunların toplamı olacak bir vektör oluşturabiliriz:

Biraz daha önemli bilgi sorunları çözmek için gereklidir.

Orijinaline eşit uzunlukta fakat zıt yönlü bir vektör de gösterilir ancak zıt işarete sahiptir:

Bu bilgi, vektörler arasındaki farkın bulunmasını içeren problemlerin çözümünde son derece faydalıdır. Gördüğünüz gibi vektör farkı değiştirilmiş biçimde aynı toplamdır.

İki vektör verilsin, farklarını bulun:

B vektörünün tersi bir vektör oluşturduk ve farkı bulduk.

Vektör koordinatları

Bir vektörün koordinatlarını bulmak için, başlangıç ​​koordinatlarını bitiş koordinatlarından çıkarmanız gerekir:

Yani vektör koordinatları bir çift sayıdır.

Eğer

Ve vektörlerin koordinatları şöyle görünür:

O zaman c 1 = a 1 + b 1 c 2 = a 2 + b 2

Eğer

O zaman c 1 = a 1 – b 1 c 2 = a 2 – b 2

Vektör modülü

Bir vektörün modülü, aşağıdaki formülle belirlenen uzunluğudur:

Başlangıç ​​ve bitiş koordinatları biliniyorsa, bir vektörün uzunluğunu belirleme formülü:

Görevleri ele alalım:

ABCD dikdörtgeninin iki kenarı 6 ve 8'e eşittir. Köşegenler O noktasında kesişir. AO ve BO vektörleri arasındaki farkın uzunluğunu bulun.

AO–VO sonucunu oluşturacak vektörü bulalım:

AO –VO =AO +(–VO )=AB

Yani, AO ve vektörleri arasındaki fark VO bir vektör olacak AB. Ve uzunluğu sekizdir.

Bir eşkenar dörtgenin köşegenleri ABCD 12 ve 16'ya eşittir. AB + AD vektörünün uzunluğunu bulun.

AD ve AB BC vektörlerinin toplamı AD vektörüne eşit olacak bir vektör bulalım. Yani AB +AD =AB +BC =AC

AC eşkenar dörtgenin köşegeninin uzunluğudur klima, 16'ya eşittir.

ABCD eşkenar dörtgeninin köşegenleri şu noktada kesişir: O ve 12 ve 16'ya eşittir. AO + BO vektörünün uzunluğunu bulun.

AO ve VO VO vektörlerinin toplamı OD vektörüne eşit olacak bir vektör bulalım, yani

AD eşkenar dörtgenin kenarının uzunluğudur. Sorun, AOD dik üçgenindeki hipotenüsün bulunmasından ibarettir. Bacakları hesaplayalım:

Pisagor teoremine göre:

ABCD eşkenar dörtgeninin köşegenleri O noktasında kesişir ve 12 ve 16'ya eşittir. AO – BO vektörünün uzunluğunu bulun.

AO–VO sonucunu oluşturacak vektörü bulalım:

AB eşkenar dörtgenin bir kenarının uzunluğudur. Sorun, AOB dik üçgeninde AB hipotenüsünü bulmakta yatıyor. Bacakları hesaplayalım:

Pisagor teoremine göre:

Taraflar doğru ABC üçgeni 3'e eşittir.

AB –AC vektörünün uzunluğunu bulun.

Vektör farkının sonucunu bulalım:

Koşul üçgenin eşkenar olduğunu ve kenarlarının 3'e eşit olduğunu söylediği için CB üçe eşittir.

27663. a (6;8) vektörünün uzunluğunu bulun.

27664. AB vektörünün uzunluğunun karesini bulun.

Vektörler. Vektörlerle yapılan eylemler. Bu yazımızda vektörün ne olduğu, uzunluğunun nasıl bulunacağı, bir vektörün bir sayı ile çarpılmasının yanı sıra iki vektörün toplamı, farkı ve skaler çarpımının nasıl bulunacağından bahsedeceğiz.

Her zamanki gibi, en gerekli teoriden biraz.

Bir vektör yönlendirilmiş bir bölümdür, yani başlangıcı ve sonu olan bir bölümdür:

Burada A noktası vektörün başlangıcı, B noktası ise sonudur.

Bir vektörün iki parametresi vardır: uzunluğu ve yönü.

Bir vektörün uzunluğu, vektörün başlangıcını ve sonunu birleştiren parçanın uzunluğudur. Vektör uzunluğu gösterilir

İki vektörün eşit olduğu söyleniyor, eğer aynı uzunluğa sahiplerse ve hizalanmışlarsa.

İki vektör denir ortak yönetmen, paralel çizgiler üzerinde uzanıyorlarsa ve aynı yönde yönlendiriliyorlarsa: vektörler ve eş yönlü:

İki vektör, paralel çizgiler üzerinde yer alıyorsa ve zıt yönlere yönlendiriliyorsa zıt yönlü olarak adlandırılır: vektörler ve ve ayrıca ve zıt yönlere yönlendirilir:

Paralel doğrular üzerinde bulunan vektörlere eşdoğrusal denir: vektörler ve eşdoğrusaldırlar.

Bir vektörün çarpımı title="k>0 ise sayıya vektörle eş yönlü bir vektör denir">, и направленный в противоположную сторону, если , и длина которого равна длине вектора , умноженной на :!}

İle iki vektör ekle ve vektörün başlangıcını vektörün sonuna bağlamanız gerekir. Toplam vektörü, vektörün başlangıcını vektörün sonuna bağlar:


Bu vektör toplama kuralına denir üçgen kuralı.

İki vektörü eklemek için paralelkenar kuralı, vektörleri bir noktadan ertelemeniz ve bunları bir paralelkenar haline getirmeniz gerekir. Toplam vektörü, vektörlerin başlangıç ​​noktasını şuna bağlar: ters açı paralelkenar:


İki vektörün farkı Toplamla belirlenir: vektörlerin farkı ve böyle bir vektör olarak adlandırılır, vektörün toplamı şu vektörü verir:

Bundan şu sonuç çıkıyor iki vektörün farkını bulma kuralı: Bir vektörü bir vektörden çıkarmak için bu vektörleri bir noktadan çizmeniz gerekir. Fark vektörü, vektörün ucunu vektörün sonuna bağlar (yani, çıkarmanın ucunu eksilemenin sonuna kadar):


Bulmak için vektör ve vektör arasındaki açı, bu vektörleri bir noktadan çizmeniz gerekir. Vektörlerin üzerinde bulunduğu ışınların oluşturduğu açıya vektörler arasındaki açı denir:


İki vektörün skaler çarpımı sayıdır ürüne eşit bu vektörlerin uzunlukları, aralarındaki açının kosinüsüne göre:

Sorunları çözmenizi öneririm Açık Banka için görevler ve ardından çözümünüzü VİDEO ÖĞRETİCİLERİ ile kontrol edin:

1. Görev 4 (No. 27709)

Bir dikdörtgenin iki kenarı ABCD 6 ve 8'e eşittir. ve vektörleri arasındaki farkın uzunluğunu bulun.

2. Görev 4 (No. 27710)

Bir dikdörtgenin iki kenarı ABCD 6 ve 8'e eşittir. ve vektörlerinin skaler çarpımını bulun. (önceki görevden çizim).

3. Görev 4 (No. 27711)

Bir dikdörtgenin iki kenarı ABCD O. Ve vektörlerinin toplamının uzunluğunu bulun.

4. Görev 4 (No. 27712)

Bir dikdörtgenin iki kenarı ABCD 6 ve 8'e eşittir. Köşegenler bir noktada kesişir O. ve vektörleri arasındaki farkın uzunluğunu bulun. (önceki görevden çizim).

5. Görev 4 (No. 27713)

Bir eşkenar dörtgenin köşegenleri ABCD 12 ve 16'ya eşittir. Vektörün uzunluğunu bulun.

6. Görev 4 (No. 27714)

Bir eşkenar dörtgenin köşegenleri ABCD 12 ve 16'ya eşittir. + vektörünün uzunluğunu bulun.

7.Görev 4 (No. 27715)

Bir eşkenar dörtgenin köşegenleri ABCD 12 ve 16'ya eşittir. - vektörünün uzunluğunu bulun (önceki problemden çizim yaparak).

8.Görev 4 (No. 27716)

Bir eşkenar dörtgenin köşegenleri ABCD 12 ve 16'ya eşittir. - vektörünün uzunluğunu bulun.

9. Görev 4 (No. 27717)

Bir eşkenar dörtgenin köşegenleri ABCD bir noktada kesişmek O ve 12 ve 16'ya eşittir. + vektörünün uzunluğunu bulun.

10. Görev 4 (No. 27718)

Bir eşkenar dörtgenin köşegenleri ABCD bir noktada kesişmek O ve 12 ve 16'ya eşittir. - vektörünün uzunluğunu bulun (önceki problemden çizim yaparak).

11.Görev 4 (No. 27719)

Bir eşkenar dörtgenin köşegenleri ABCD bir noktada kesişmek O ve 12 ve 16'ya eşittir. ve vektörlerinin skaler çarpımını bulun (önceki problemden çizim).

12. Görev 4 (No. 27720)

ABC eşittir + vektörünün uzunluğunu bulun.

13. Görev 4 (No. 27721)

Düzenli bir üçgenin kenarları ABC 3'e eşittir. - vektörünün uzunluğunu bulun (önceki problemden çizim).

14. Görev 4 (No. 27722)

Düzenli bir üçgenin kenarları ABC 3'e eşittir. ve vektörlerinin skaler çarpımını bulun. (önceki görevden çizim).

Tarayıcınız muhtemelen desteklenmiyor. Eğiticiyi kullanmak için " Birleşik Devlet Sınav Saati", indirmeyi deneyin
Firefox

Giriş seviyesi

Koordinatlar ve vektörler. Kapsamlı rehber (2019)

Bu makalede, birçok geometri problemini basit aritmetiğe indirgemenizi sağlayacak bir "sihirli değnek"i tartışmaya başlayacağız. Bu "çubuk", özellikle mekansal figürler, bölümler vb. oluşturma konusunda kararsız kaldığınızda hayatınızı çok daha kolaylaştırabilir. Bütün bunlar, belirli bir hayal gücü ve pratik beceriler gerektirir. Burada ele almaya başlayacağımız yöntem, her türden neredeyse tamamen soyutlama yapmanızı sağlayacaktır. geometrik yapılar ve muhakeme. Yöntem denir "koordinat yöntemi". Bu yazıda aşağıdaki soruları ele alacağız:

  1. Koordinat düzlemi
  2. Düzlemdeki noktalar ve vektörler
  3. İki noktadan bir vektör oluşturma
  4. Vektör uzunluğu (iki nokta arasındaki mesafe)​
  5. Segmentin ortasının koordinatları
  6. Vektörlerin nokta çarpımı
  7. İki vektör arasındaki açı

Koordinat yöntemine neden böyle denildiğini zaten tahmin ettiğinizi düşünüyorum. Doğru, geometrik nesnelerle değil, onların cisimleriyle çalıştığı için bu ismi almıştır. sayısal özellikler(koordinatlar). Geometriden cebire geçmemizi sağlayan dönüşümün kendisi de bir koordinat sisteminin tanıtılmasından ibarettir. Orijinal şekil düzse koordinatlar iki boyutludur, şekil üç boyutluysa koordinatlar üç boyutludur. Bu yazıda sadece iki boyutlu durumu ele alacağız. Ve makalenin asıl amacı size bazılarının nasıl kullanılacağını öğretmektir. temel teknikler koordinat yöntemi (bazen Birleşik Devlet Sınavının B Bölümündeki planimetri ile ilgili problemleri çözerken yararlı oldukları ortaya çıkar). Bu konuyla ilgili sonraki iki bölüm, C2 problemlerini (stereometri problemi) çözme yöntemlerinin tartışılmasına ayrılmıştır.

Koordinat yöntemini tartışmaya nereden başlamak mantıklı olur? Muhtemelen koordinat sistemi kavramından. Onunla ilk karşılaştığınız zamanı hatırlayın. Bana öyle geliyor ki 7. sınıfta varoluşu öğrendiğinde doğrusal fonksiyon, Örneğin. Bunu nokta nokta inşa ettiğinizi hatırlatmama izin verin. Hatırlıyor musun? Rastgele bir sayı seçtiniz, bunu formülde yerine koydunuz ve bu şekilde hesapladınız. Örneğin, eğer, o zaman, eğer, o zaman vb. Sonunda ne elde ettiniz? Ve koordinatları olan puanlar aldınız: ve. Daha sonra bir “çapraz” (koordinat sistemi) çizdiniz, üzerinde bir ölçek seçtiniz (kaç hücreye sahip olacağınız) tek bölüm) ve üzerinde elde ettiğiniz noktaları işaretleyerek bunları düz bir çizgiyle bağlayın; ortaya çıkan çizgi, fonksiyonun grafiğidir.

Burada size biraz daha ayrıntılı olarak anlatılması gereken birkaç nokta var:

1. Kolaylık olması açısından tek bir segment seçersiniz, böylece her şey çizime güzel ve kompakt bir şekilde sığar

2. Eksenin soldan sağa, eksenin aşağıdan yukarıya doğru gittiği kabul edilir.

3. Dik açılarda kesişirler ve kesiştikleri noktaya orijin denir. Bir harfle belirtilir.

4. Bir noktanın koordinatlarını yazarken, örneğin, parantez içinde solda noktanın eksen boyunca ve sağda eksen boyunca koordinatları vardır. Özellikle, bu şu anlama gelir:

5. Herhangi bir noktayı belirlemek için koordinat ekseni koordinatlarını belirtmeniz gerekir (2 sayı)

6. Eksen üzerinde yer alan herhangi bir nokta için,

7. Eksen üzerinde yer alan herhangi bir nokta için,

8. Eksene x ekseni denir

9. Eksen y ekseni olarak adlandırılır

Şimdi bir sonraki adıma geçelim: iki noktayı işaretleyin. Bu iki noktayı bir doğru parçasıyla birleştirelim. Ve sanki noktadan noktaya bir doğru parçası çiziyormuşuz gibi oku koyacağız: yani parçamızın yönlendirilmesini sağlayacağız!

Başka bir yönlü segmentin ne dendiğini hatırlıyor musunuz? Doğru, buna vektör deniyor!

Yani noktayı noktaya bağlarsak, ve başlangıç ​​A noktası olacak ve son B noktası olacak, sonra bir vektör elde ederiz. Bu inşaatı 8. sınıfta da yapmıştın, hatırladın mı?

Noktalar gibi vektörlerin de iki sayı ile gösterilebileceği ortaya çıktı: bu sayılara vektör koordinatları denir. Soru: Bir vektörün koordinatlarını bulmak için başlangıç ​​ve bitiş koordinatlarını bilmemiz sizce yeterli midir? Görünüşe göre evet! Ve bu çok basit bir şekilde yapılır:

Böylece, bir vektörde nokta başlangıç ​​ve son da son olduğundan, vektör aşağıdaki koordinatlara sahiptir:

Örneğin, eğer öyleyse vektörün koordinatları

Şimdi bunun tersini yapalım, vektörün koordinatlarını bulalım. Bunun için neyi değiştirmemiz gerekiyor? Evet, başlangıcı ve bitişi değiştirmeniz gerekiyor: şimdi vektörün başlangıcı noktada olacak ve sonu da noktada olacak. Daha sonra:

Dikkatlice bakın, vektörler arasındaki fark nedir? Tek farkları koordinatlardaki işaretlerdir. Onlar birbirine zıttır. Bu gerçek genellikle şu şekilde yazılır:

Bazen, hangi noktanın vektörün başlangıcı ve hangisinin sonu olduğu özellikle belirtilmezse, vektörler iki büyük harfle değil, bir küçük harfle gösterilir, örneğin: , vb.

Şimdi biraz pratik kendiniz ve aşağıdaki vektörlerin koordinatlarını bulun:

Muayene:

Şimdi biraz daha zor bir problemi çözün:

Bir noktada başlangıcı olan bir vektörün co-or-di-na-you'su vardır. Abs-cis-su noktalarını bulun.

Yine de oldukça sıradan: Noktanın koordinatları olsun. Daha sonra

Sistemi vektör koordinatlarının ne olduğunun tanımına göre derledim. O halde noktanın koordinatları vardır. Apsisle ilgileniyoruz. Daha sonra

Cevap:

Vektörlerle başka neler yapabilirsiniz? Evet hemen hemen her şey aynı sıradan sayılar(Bölme yapamazsınız ancak iki şekilde çarpabilirsiniz; bunlardan birini biraz sonra burada tartışacağız)

  1. Vektörler birbirine eklenebilir
  2. Vektörler birbirinden çıkarılabilir
  3. Vektörler sıfırdan farklı bir sayıyla çarpılabilir (veya bölünebilir)
  4. Vektörler birbirleriyle çarpılabilir

Bütün bu operasyonların çok açık bir amacı var. geometrik gösterim. Örneğin, toplama ve çıkarma için üçgen (veya paralelkenar) kuralı:

Bir vektör bir sayıyla çarpıldığında veya bölündüğünde uzar, daralır veya yön değiştirir:

Ancak burada koordinatlara ne olacağı sorusuyla ilgileneceğiz.

1. İki vektörü toplarken (çıkarırken), bunların koordinatlarını öğe öğe ekleriz (çıkarırız). Yani:

2. Bir vektörü bir sayıyla çarparken (bölerken), tüm koordinatları bu sayıyla çarpılır (bölülür):

Örneğin:

· Yüzyıldan raya eş-or-di-nat miktarını bulun.

Önce vektörlerin her birinin koordinatlarını bulalım. İkisi de aynı kökene sahiptir; başlangıç ​​noktası. Bunların sonu farklıdır. Daha sonra, . Şimdi vektörün koordinatlarını hesaplayalım. O halde ortaya çıkan vektörün koordinatlarının toplamı eşittir.

Cevap:

Şimdi aşağıdaki sorunu kendiniz çözün:

· Vektör koordinatlarının toplamını bulun

Kontrol ediyoruz:

Şimdi şu problemi ele alalım: Koordinat düzleminde iki noktamız var. Aralarındaki mesafe nasıl bulunur? Birinci nokta ve ikincisi olsun. Aralarındaki mesafeyi ile gösterelim. Açıklık sağlamak için aşağıdaki çizimi yapalım:

Ne yaptım? Öncelikle bağlandım noktalar ve bir ayrıca bir noktadan eksene paralel bir çizgi çizdim ve bir noktadan da eksene paralel bir çizgi çizdim. Bir noktada kesişerek dikkat çekici bir şekil mi oluşturdular? Onun nesi bu kadar özel? Evet, sen ve ben neredeyse her şeyi biliyoruz dik üçgen. Elbette Pisagor teoremi. Gerekli bölüm bu üçgenin hipotenüsüdür ve bölümler bacaklardır. Noktanın koordinatları nelerdir? Evet, resimden bulmak kolaydır: Parçalar eksenlere paralel olduğundan ve sırasıyla uzunluklarını bulmak kolaydır: Parçaların uzunluklarını sırasıyla ile belirtirsek, o zaman

Şimdi Pisagor teoremini kullanalım. Bacakların uzunluklarını biliyoruz, hipotenüsü bulacağız:

Dolayısıyla iki nokta arasındaki mesafe, koordinatlardan olan farkların karelerinin toplamının köküdür. Veya - iki nokta arasındaki mesafe, onları bağlayan parçanın uzunluğudur.

Noktalar arasındaki mesafenin yöne bağlı olmadığını görmek kolaydır. Daha sonra:

Buradan üç sonuç çıkarıyoruz:

İki nokta arasındaki mesafeyi hesaplama konusunda biraz pratik yapalım:

Örneğin, eğer ve arasındaki mesafe şuna eşitse:

Veya başka bir yoldan gidelim: vektörün koordinatlarını bulun

Ve vektörün uzunluğunu bulun:

Gördüğünüz gibi aynı şey!

Şimdi biraz kendiniz pratik yapın:

Görev: Belirtilen noktalar arasındaki mesafeyi bulun:

Kontrol ediyoruz:

Kulağa biraz farklı gelse de, aynı formülü kullanan birkaç problem daha var:

1. Göz kapağı uzunluğunun karesini bulun.

2. Göz kapağı uzunluğunun karesini bulun

1. Bu da dikkat içindir) Vektörlerin koordinatlarını daha önce bulmuştuk: . O halde vektörün koordinatları vardır. Uzunluğunun karesi şuna eşit olacaktır:

2. Vektörün koordinatlarını bulun

O zaman uzunluğunun karesi

Karmaşık bir şey yok, değil mi? Basit aritmetik, başka bir şey değil.

Aşağıdaki sorunlar açıkça sınıflandırılamaz; genel bilgi ve basit resimler çizme yeteneği.

1. Noktayı apsis eksenine bağlayan kesimden gelen açının sinüsünü bulun.

Ve

Burada nasıl ilerleyeceğiz? Eksen ile arasındaki açının sinüsünü bulmamız gerekiyor. Sinüs'ü nerede arayabiliriz? Bu doğru, bir dik üçgende. Peki ne yapmamız gerekiyor? Bu üçgeni inşa edin!

Noktanın koordinatları ve olduğundan, segment eşittir ve segmenttir. Açının sinüsünü bulmamız gerekiyor. Size sinüsün bir oran olduğunu hatırlatmama izin verin karşı bacak o zaman hipotenüse

Bize yapacak ne kaldı? Hipotenüsü bulun. Bunu iki şekilde yapabilirsiniz: Pisagor teoremini kullanarak (bacaklar bilinir!) veya iki nokta arasındaki mesafe formülünü kullanarak (aslında ilk yöntemle aynı şeydir!). Ben ikinci yola gideceğim:

Cevap:

Bir sonraki görev size daha da kolay görünecek. Noktanın koordinatlarında.

Görev 2. Per-pen-di-ku-lyar'ın ab-ciss eksenine indirildiği noktadan itibaren. Nai-di-te abs-cis-su os-no-va-niya per-pen-di-ku-la-ra.

Bir çizim yapalım:

Bir dikmenin tabanı x eksenini (ekseni) kestiği noktadır, benim için bu bir noktadır. Şekil koordinatlara sahip olduğunu göstermektedir: . Apsisle yani “x” bileşeniyle ilgileniyoruz. O eşittir.

Cevap: .

Görev 3.Önceki problemin koşullarında, noktadan koordinat eksenlerine olan mesafelerin toplamını bulun.

Bir noktadan eksenlere olan mesafenin ne olduğunu biliyorsanız, görev genellikle basittir. Bilirsin? Umarım ama yine de şunu hatırlatırım:

Peki, hemen yukarıdaki çizimimde zaten böyle bir dik çizgi çizmiş miydim? Hangi eksendedir? Eksene. Peki uzunluğu ne kadardır? O eşittir. Şimdi eksene kendiniz dik bir çizgi çizin ve uzunluğunu bulun. Eşit olacak değil mi? O zaman toplamları eşittir.

Cevap: .

Görev 4. Görev 2 koşullarında noktanın koordinatını bulun, simetrik nokta apsis eksenine göre.

Simetrinin ne olduğu sizin için sezgisel olarak açık sanırım? Pek çok nesnede bu var: pek çok bina, masa, uçak, pek çok geometrik şekiller: top, silindir, kare, eşkenar dörtgen vb. Kabaca söylemek gerekirse simetri şu şekilde anlaşılabilir: bir şekil iki (veya daha fazla) özdeş yarıdan oluşur. Bu simetriye eksenel simetri denir. O halde eksen nedir? Bu tam olarak şeklin göreceli olarak eşit yarıya "kesilebileceği" çizgidir (bu resimde simetri ekseni düzdür):

Şimdi görevimize geri dönelim. Eksene göre simetrik olan bir nokta aradığımızı biliyoruz. O halde bu eksen simetri eksenidir. Bu, eksenin parçayı iki eşit parçaya keseceği bir noktayı işaretlememiz gerektiği anlamına gelir. Böyle bir noktayı kendiniz işaretlemeye çalışın. Şimdi benim çözümümle karşılaştırın:

Sizin için de aynı şekilde mi sonuçlandı? İyi! Bulunan noktanın koordinatıyla ilgileniyoruz. Eşittir

Cevap:

Şimdi söyleyin bana, birkaç saniye düşündükten sonra, ordinat eksenine göre A noktasına simetrik olan bir noktanın apsisi ne olur? Cevabınız nedir? Doğru cevap: .

Genel olarak kural şu ​​şekilde yazılabilir:

Apsis eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Ordinat eksenine göre bir noktaya simetrik bir noktanın koordinatları vardır:

Eh, şimdi tamamen korkutucu görev: orijine göre noktaya simetrik olan bir noktanın koordinatlarını bulun. Önce kendin düşün, sonra çizimime bak!

Cevap:

Şimdi paralelkenar problemi:

Görev 5: Noktalar ver-shi-na-mi pa-ral-le-lo-gram-ma olarak görünür. Bu noktada or-di'yi bulun.

Bu sorunu iki şekilde çözebilirsiniz: mantık ve koordinat yöntemi. Önce koordinat yöntemini kullanacağım, sonra size bunu nasıl farklı şekilde çözebileceğinizi anlatacağım.

Noktanın apsisinin eşit olduğu oldukça açıktır. (noktadan apsis eksenine çizilen dik üzerinde yer alır). Ordinatı bulmamız gerekiyor. Şeklimizin paralelkenar olmasından yararlanalım, bu şu anlama geliyor. İki nokta arasındaki mesafe formülünü kullanarak doğru parçasının uzunluğunu bulalım:

Noktayı eksene bağlayan dikmeyi indiriyoruz. Kesişme noktasını harfle belirteceğim.

Segmentin uzunluğu eşittir. (bu noktayı tartıştığımız yerde sorunu kendiniz bulun), sonra Pisagor teoremini kullanarak parçanın uzunluğunu bulacağız:

Bir parçanın uzunluğu tam olarak ordinatıyla çakışır.

Cevap: .

Başka bir çözüm (Sadece bunu gösteren bir resim vereceğim)

Çözüm ilerlemesi:

1. Davranış

2. Noktanın ve uzunluğun koordinatlarını bulun

3. Bunu kanıtlayın.

Bir tane daha bölüm uzunluğu sorunu:

Noktalar üçgenin üstünde görünür. Orta çizgisinin paralel uzunluğunu bulun.

Ne olduğunu hatırlıyor musun? orta hatüçgen? O zaman bu görev sizin için temeldir. Hatırlamıyorsan sana hatırlatayım: Üçgenin orta çizgisi, orta noktaları birleştiren çizgidir zıt taraflar. Tabana paralel ve yarısına eşittir.

Taban bir segmenttir. Uzunluğunu daha önce aramamız gerekiyordu, eşit. Daha sonra orta çizginin uzunluğu yarısı kadar büyük ve eşittir.

Cevap: .

Yorum Yap: Bu sorun, biraz sonra ele alacağımız başka bir şekilde çözülebilir.

Bu arada, işte size birkaç problem; onlarla pratik yapın, çok basitler ama koordinat yöntemini kullanmada daha iyi olmanıza yardımcı oluyorlar!

1. Noktalar tra-pe-tion'ların en üst noktasıdır. Orta çizgisinin uzunluğunu bulun.

2. Noktalar ve görünümler ver-shi-na-mi pa-ral-le-lo-gram-ma. Bu noktada or-di'yi bulun.

3. Noktayı birleştirerek kesimden itibaren uzunluğu bulun ve

4. Koordinat düzleminde renkli şeklin arkasındaki alanı bulun.

5. Merkezi na-cha-le ko-or-di-nat'ta olan bir daire bu noktadan geçiyor. Onun yarıçapını bulun.

6. Çemberin-di-te ra-di-us'unu bulun, dik açı hakkında-san-noy-no-ka'yı tanımlayın, bir şeyin üst kısımlarının bir ko-veya -di-na-varlığı var, o kadar sorumlusunuz ki

Çözümler:

1. Bir yamuğun orta çizgisinin tabanlarının toplamının yarısına eşit olduğu bilinmektedir. Taban eşittir ve taban. Daha sonra

Cevap:

2. Bu problemi çözmenin en kolay yolu (paralelkenar kuralı) olduğunu not etmektir. Vektörlerin koordinatlarını hesaplamak zor değildir: . Vektörleri eklerken koordinatlar eklenir. Sonra koordinatları var. Vektörün orijini koordinatların olduğu nokta olduğundan nokta da bu koordinatlara sahiptir. Ordinatla ilgileniyoruz. O eşittir.

Cevap:

3. Hemen iki nokta arasındaki mesafe formülüne göre hareket ediyoruz:

Cevap:

4. Resme bakın ve gölgeli alanın hangi iki şeklin arasına sıkıştırıldığını söyleyin? İki kare arasına sıkıştırılmıştır. Daha sonra istenen şeklin alanı, büyük karenin alanından küçük olanın alanına eşittir. Küçük bir karenin kenarı noktaları birleştiren bir doğru parçası olup uzunluğu

O zaman küçük karenin alanı

Aynısını büyük bir kareyle yapıyoruz: kenarı noktaları birleştiren bir segmenttir ve uzunluğu eşittir

O halde büyük karenin alanı

İstenilen şeklin alanını aşağıdaki formülü kullanarak buluyoruz:

Cevap:

5. Bir dairenin merkezi orijine sahipse ve bir noktadan geçiyorsa, yarıçapı tam olarak parçanın uzunluğuna eşit olacaktır (bir çizim yapın ve bunun neden açık olduğunu anlayacaksınız). Bu parçanın uzunluğunu bulalım:

Cevap:

6. Bir dikdörtgenin çevrelediği dairenin yarıçapının köşegeninin yarısına eşit olduğu bilinmektedir. İki köşegenden herhangi birinin uzunluğunu bulalım (sonuçta dikdörtgende bunlar eşittir!)

Cevap:

Peki her şeyin üstesinden geldin mi? Bunu anlamak çok zor olmadı değil mi? Burada tek bir kural var - görsel bir resim oluşturabilmek ve içindeki tüm verileri basitçe "okuyabilmek".

Çok az şeyimiz kaldı. Aslında tartışmak istediğim iki nokta daha var.

Bu basit sorunu çözmeye çalışalım. İki puan verelim. Doğru parçasının orta noktasının koordinatlarını bulun. Bu sorunun çözümü şu şekildedir: Nokta istenen orta olsun, o zaman koordinatları vardır:

Yani: parçanın ortasının koordinatları = parçanın uçlarının karşılık gelen koordinatlarının aritmetik ortalaması.

Bu kural çok basittir ve genellikle öğrenciler için zorluk yaratmaz. Hangi problemlerde ve nasıl kullanıldığını görelim:

1. Kesimden-di-te veya-di-na-tu se-re-di-ny'yi bulun, noktayı bağlayın ve

2. Puanlar dünyanın zirvesi gibi görünüyor. Dia-go-na-ley'in per-re-se-che-niya'sını bul.

3. Çemberin merkezini bulun, dikdörtgen-no-ka hakkında-san-noy'u tanımlayın, bir şeyin üstleri co-or-di-na-you-sorumlu bir şekilde-ama var.

Çözümler:

1. İlk sorun tam bir klasiktir. Segmentin ortasını belirlemek için hemen ilerliyoruz. Koordinatları var. Ordinat eşittir.

Cevap:

2. Bu dörtgenin bir paralelkenar (hatta eşkenar dörtgen) olduğunu görmek kolaydır. Kenar uzunluklarını hesaplayıp birbirleriyle karşılaştırarak bunu kendiniz kanıtlayabilirsiniz. Paralelkenarlar hakkında ne biliyorum? Köşegenleri kesişme noktasına göre ikiye bölünmüştür! Evet! Peki köşegenlerin kesişme noktası nedir? Bu herhangi bir köşegenin ortasıdır! Özellikle köşegeni seçeceğim. O zaman noktanın koordinatları vardır. Noktanın ordinatı eşittir.

Cevap:

3. Dikdörtgenin çevrelediği dairenin merkezi neyle çakışmaktadır? Köşegenlerinin kesişme noktasıyla çakışır. Dikdörtgenin köşegenleri hakkında ne biliyorsunuz? Eşittirler ve kesişme noktası onları ikiye böler. Görev bir öncekine indirildi. Örneğin köşegeni ele alalım. O zaman çevrel çemberin merkezi ise orta noktadır. Koordinatları arıyorum: Apsis eşittir.

Cevap:

Şimdi kendi başınıza biraz pratik yapın, kendinizi test edebilmeniz için her sorunun yanıtını vereceğim.

1. Çemberin yarıçapını bulun, üçgen açıyı tanımlayın-no-ka, bir şeyin üst kısımlarının sizin üzerinizde bir koordinatı veya di'si var

2. Çemberin merkezinde-di-te veya-di-bulun, üstleri koordinatlara sahip olan üçgen-no-ka hakkında-san-noy'u tanımlayın

3. Ab-ciss eksenine karşılık gelecek şekilde merkezi bir noktada olan bir dairenin yarıçapı nasıl olmalıdır?

4. Eksenin yeniden kesildiği noktayı bulun ve kesip noktayı birleştirin ve

Cevaplar:

Her şey başarılı mıydı? Gerçekten öyle umuyorum! Şimdi - son itiş. Şimdi özellikle dikkatli olun. Şimdi açıklayacağım materyal sadece konuyla doğrudan ilgili değil basit görevler B kısmındaki koordinat yöntemine göre değişir, ancak aynı zamanda C2 probleminin her yerinde bulunur.

Hangi sözlerimi henüz tutmadım? Vektörler üzerinde hangi işlemleri tanıtmaya söz verdiğimi ve hangilerini sonuçta tanıttığımı hatırlıyor musunuz? Hiçbir şeyi unutmadığıma emin misin? Unutmuş olmak! Vektör çarpımının ne anlama geldiğini açıklamayı unuttum.

Bir vektörü bir vektörle çarpmanın iki yolu vardır. Seçilen yönteme bağlı olarak farklı nitelikteki nesneler elde edeceğiz:

Çapraz çarpım oldukça akıllıca yapılmıştır. Bir sonraki makalede bunun nasıl yapılacağını ve neden gerekli olduğunu tartışacağız. Ve bunda skaler çarpıma odaklanacağız.

Bunu hesaplamamıza izin veren iki yol vardır:

Tahmin ettiğiniz gibi sonuç aynı olmalı! O halde önce ilk yönteme bakalım:

Koordinatlar aracılığıyla nokta çarpımı

Bul: - skaler çarpım için genel kabul görmüş gösterim

Hesaplama formülü aşağıdaki gibidir:

Yani skaler çarpım = vektör koordinatlarının çarpımlarının toplamı!

Örnek:

Bul-di-te

Çözüm:

Her bir vektörün koordinatlarını bulalım:

Skaler çarpımı aşağıdaki formülü kullanarak hesaplıyoruz:

Cevap:

Bakın kesinlikle karmaşık bir şey yok!

Peki, şimdi kendiniz deneyin:

· Yüzyılların skaler bir pro-iz-ve-de-nie'sini bulun ve

Başarabildin mi? Belki küçük bir yakalama fark ettiniz? Kontrol edelim:

Önceki problemde olduğu gibi vektör koordinatları! Cevap: .

Koordinat olana ek olarak, skaler çarpımı hesaplamanın başka bir yolu da vardır, yani vektörlerin uzunlukları ve aralarındaki açının kosinüsü aracılığıyla:

Ve vektörleri arasındaki açıyı belirtir.

Yani skaler çarpım, vektörlerin uzunlukları ile aralarındaki açının kosinüsünün çarpımına eşittir.

Madem ki çok daha basit olan birinci formüle sahibiz, en azından içinde kosinüs yok, bu ikinci formüle neden ihtiyacımız var? Ve birinci ve ikinci formüllerden vektörler arasındaki açıyı nasıl bulacağımızı çıkarabilmemiz için buna ihtiyaç var!

O zaman vektörün uzunluğunun formülünü hatırlayalım!

Daha sonra bu verileri skaler çarpım formülünde değiştirirsem şunu elde ederim:

Ama öte yandan:

Peki sen ve ben ne elde ettik? Artık iki vektör arasındaki açıyı hesaplayacak bir formülümüz var! Bazen kısa olması açısından şu şekilde de yazılır:

Yani, vektörler arasındaki açıyı hesaplamak için kullanılan algoritma aşağıdaki gibidir:

  1. Koordinatlar aracılığıyla skaler çarpımı hesaplayın
  2. Vektörlerin uzunluklarını bulun ve çarpın
  3. 1. noktanın sonucunu 2. noktanın sonucuna bölün

Örneklerle pratik yapalım:

1. Göz kapakları ile arasındaki açıyı bulun. Cevabı grad-du-sah'ta verin.

2. Önceki problemin koşullarında vektörler arasındaki kosinüsü bulun

Haydi şunu yapalım: İlk sorunu çözmenize yardım edeceğim ve ikincisini kendiniz yapmaya çalışın! Kabul etmek? O zaman başlayalım!

1. Bu vektörler bizim eski dostlarımızdır. Skaler çarpımlarını zaten hesaplamıştık ve eşitti. Koordinatları: , . Sonra uzunluklarını buluyoruz:

Sonra vektörler arasındaki kosinüsü ararız:

Açının kosinüsü nedir? Burası köşe.

Cevap:

Şimdi ikinci problemi kendiniz çözün ve sonra karşılaştırın! Çok kısa bir çözüm sunacağım:

2. Koordinatları vardır, koordinatları vardır.

Vektörler arasındaki açı olsun ve sonra

Cevap:

B kısmındaki problemlerin doğrudan vektörler ve koordinat yöntemi ile ilgili olduğuna dikkat edilmelidir. sınav kağıdı oldukça nadir. Ancak C2 problemlerinin büyük çoğunluğu bir koordinat sistemi getirilerek kolayca çözülebilir. Yani bu makaleyi, çözmemiz gereken oldukça akıllı yapılar yapacağımız temel olarak düşünebilirsiniz. karmaşık görevler.

KOORDİNATLAR VE VEKTÖRLER. ORTALAMA SEVİYE

Sen ve ben koordinat yöntemini incelemeye devam ediyoruz. Son bölümde bir seri elde ettik önemli formüller, aşağıdakilere izin verir:

  1. Vektör koordinatlarını bulun
  2. Bir vektörün uzunluğunu bulun (alternatif olarak: iki nokta arasındaki mesafe)
  3. Vektörleri ekleyin ve çıkarın. Bunları çarpın gerçek sayı
  4. Bir segmentin orta noktasını bulun
  5. Vektörlerin nokta çarpımını hesaplayın
  6. Vektörler arasındaki açıyı bulun

Elbette koordinat yönteminin tamamı bu 6 noktaya sığmıyor. Üniversitede aşina olacağınız analitik geometri gibi bir bilimin temelini oluşturur. Sorunları tek bir eyalette çözmenize olanak sağlayacak bir temel oluşturmak istiyorum. sınav. B bölümünün görevlerini ele aldık. Şimdi yüksek kaliteye geçme zamanı yeni seviye! Bu makale, koordinat yöntemine geçmenin mantıklı olacağı C2 problemlerini çözmeye yönelik bir yönteme ayrılacaktır. Bu makullük problemde neyin bulunması gerektiği ve hangi rakamın verildiği ile belirlenir. Dolayısıyla sorular şu şekildeyse koordinat yöntemini kullanırdım:

  1. İki düzlem arasındaki açıyı bulun
  2. Düz bir çizgi ile bir düzlem arasındaki açıyı bulun
  3. İki düz çizgi arasındaki açıyı bulun
  4. Bir noktadan bir düzleme olan mesafeyi bulun
  5. Bir noktadan bir çizgiye olan mesafeyi bulun
  6. Düz bir çizgiden bir düzleme olan mesafeyi bulun
  7. İki çizgi arasındaki mesafeyi bulun

Problem cümlesinde verilen şekil bir dönel cisim ise (top, silindir, koni...)

Koordinat yöntemi için uygun rakamlar şunlardır:

  1. Dikdörtgen paralel yüzlü
  2. Piramit (üçgen, dörtgen, altıgen)

Ayrıca deneyimlerime göre için koordinat yöntemini kullanmak uygun değildir.:

  1. Kesit alanlarını bulma
  2. Vücut hacimlerinin hesaplanması

Ancak şunu hemen belirtmek gerekir ki koordinat yöntemi için üç “olumsuz” durum pratikte oldukça nadirdir. Çoğu görevde, özellikle de iş konusunda çok güçlü değilseniz kurtarıcınız olabilir. üç boyutlu yapılar(bu bazen oldukça karmaşık olabilir).

Yukarıda listelediğim tüm rakamlar nelerdir? Artık örneğin bir kare, bir üçgen, bir daire gibi düz değiller, hacimlidirler! Buna göre iki boyutlu değil, iki boyutlu düşünmemiz gerekiyor. üç boyutlu sistem koordinatlar Oluşturulması oldukça kolaydır: apsis ve ordinat eksenine ek olarak başka bir eksen, uygulama ekseni tanıtacağız. Şekil şematik olarak göreceli konumlarını göstermektedir:

Hepsi birbirine dik ve koordinatların orijini diyeceğimiz bir noktada kesişiyor. Daha önce olduğu gibi, apsis eksenini, ordinat eksenini ve tanıtılan uygulama eksenini - göstereceğiz.

Daha önce düzlemdeki her nokta iki sayıyla (apsis ve koordinat) tanımlanıyorsa, uzaydaki her nokta zaten üç sayıyla (apsis, ordinat ve aplike) tanımlanıyordu. Örneğin:

Buna göre bir noktanın apsisi eşittir, ordinatı dır ve uygulaması dır.

Bazen bir noktanın apsisine, bir noktanın apsis eksenine izdüşümü, ordinat - bir noktanın ordinat eksenine izdüşümü ve uygulama - bir noktanın uygulama eksenine izdüşümü de denir. Buna göre bir nokta verilirse koordinatları olan bir nokta:

bir noktanın düzleme izdüşümüne denir

bir noktanın düzleme izdüşümüne denir

Doğal bir soru ortaya çıkıyor: İki boyutlu durum için türetilen tüm formüller uzayda geçerli midir? Cevap evet, adil ve aynı görünüme sahipler. Küçük bir detay için. Sanırım hangisi olduğunu zaten tahmin ettiniz. Tüm formüllerde uygulama ekseninden sorumlu bir terim daha eklememiz gerekecek. Yani.

1. Eğer iki puan verilirse: , o zaman:

  • Vektör koordinatları:
  • İki nokta arasındaki mesafe (veya vektör uzunluğu)
  • Segmentin orta noktasının koordinatları vardır

2. Eğer iki vektör verilmişse: ve, o zaman:

  • Bunların skaler çarpımı şuna eşittir:
  • Vektörler arasındaki açının kosinüsü şuna eşittir:

Ancak uzay o kadar basit değil. Anladığınız gibi, bir koordinat daha eklemek, bu alanda "yaşayan" figürlerin yelpazesine önemli bir çeşitlilik katıyor. Ve daha fazla anlatım için, kabaca konuşursak, düz çizginin bazı "genellemelerini" tanıtmam gerekecek. Bu “genelleme” bir düzlem olacaktır. Uçak hakkında ne biliyorsun? Uçak nedir sorusunu cevaplamaya çalışın. Bunu söylemek çok zor. Ancak hepimiz sezgisel olarak bunun neye benzediğini hayal ederiz:

Kabaca söylemek gerekirse, bu uzaya yapışmış bir tür sonsuz "çarşaftır". “Sonsuzluk”, düzlemin her yöne uzandığı, yani alanının sonsuza eşit olduğu anlaşılmalıdır. Ancak bu “uygulamalı” açıklama, uçağın yapısı hakkında en ufak bir fikir vermiyor. Ve bizimle ilgilenecek olan odur.

Geometrinin temel aksiyomlarından birini hatırlayalım:

  • Düz bir çizgi, düzlem üzerinde iki farklı noktadan geçer ve yalnızca bir tanesi:

Veya uzaydaki analogu:

Elbette, bir çizginin denklemini verilen iki noktadan nasıl çıkaracağınızı hatırlıyorsunuz; bu hiç de zor değil: eğer ilk noktanın koordinatları varsa: ve ikincisi, o zaman çizginin denklemi aşağıdaki gibi olacaktır:

Bunu 7. sınıfta almıştın. Uzayda bir çizginin denklemi şuna benzer: Bize koordinatları olan iki nokta verilse: o zaman bunlardan geçen çizginin denklemi şu şekilde olur:

Örneğin bir çizgi noktalardan geçer:

Bu nasıl anlaşılmalıdır? Bu şu şekilde anlaşılmalıdır: Koordinatları aşağıdaki sistemi sağlıyorsa, bir nokta bir çizgi üzerinde yer alır:

Doğrunun denklemiyle pek ilgilenmeyeceğiz ama en çok dikkat etmemiz gerekiyor. önemli kavram vektör düz çizgiyi yönlendiriyor. - belirli bir çizgi üzerinde veya ona paralel olan sıfırdan farklı herhangi bir vektör.

Örneğin, her iki vektör de bir düz çizginin yön vektörleridir. Bir doğru üzerinde uzanan bir nokta ve onun yön vektörü olsun. O zaman doğrunun denklemi aşağıdaki biçimde yazılabilir:

Bir kez daha söylüyorum, düz çizgi denklemiyle pek ilgilenmeyeceğim ama yön vektörünün ne olduğunu hatırlamanıza gerçekten ihtiyacım var! Tekrar: bu, bir doğru üzerinde veya ona paralel olan sıfırdan farklı HERHANGİ bir vektördür.

Geri çekilmek verilen üç noktaya dayalı bir düzlemin denklemi artık o kadar önemsiz değil ve genellikle bu konu kursta ele alınmıyor lise. Ama boşuna! Karmaşık sorunları çözmek için koordinat yöntemine başvurduğumuzda bu teknik hayati önem taşır. Ancak yeni bir şeyler öğrenmeye hevesli olduğunuzu varsayıyorum? Üstelik, genellikle analitik geometri derslerinde çalışılan bir tekniğin nasıl kullanılacağını zaten bildiğiniz ortaya çıktığında, üniversitedeki öğretmeninizi etkileyebileceksiniz. Öyleyse başlayalım.

Bir düzlemin denklemi, bir düzlem üzerindeki düz bir çizginin denkleminden çok farklı değildir, yani şu şekildedir:

bazı sayılar (tümü sıfıra eşit değildir), ancak değişkenler, örneğin: vb. Gördüğünüz gibi bir düzlemin denklemi düz bir çizginin denkleminden (doğrusal fonksiyon) çok farklı değildir. Ancak sen ve ben ne tartıştık hatırlıyor musun? Aynı doğru üzerinde yer almayan üç noktamız varsa, o zaman düzlemin denkleminin bunlardan benzersiz bir şekilde yeniden oluşturulabileceğini söyledik. Ama nasıl? Size bunu açıklamaya çalışacağım.

Düzlemin denklemi şu olduğundan:

Ve noktalar bu düzleme aitse, her noktanın koordinatlarını düzlem denkleminde yerine koyarken doğru kimliği elde etmeliyiz:

Bu nedenle, aynı sayıda bilinmeyene sahip üç denklemin çözülmesi gerekmektedir! İkilem! Ancak bunu her zaman varsayabilirsiniz (bunu yapmak için bölmeniz gerekir). Böylece üç bilinmeyenli üç denklem elde ederiz:

Ancak böyle bir sistemi çözmeyeceğiz, ondan çıkan gizemli ifadeyi yazacağız:

Verilen üç noktadan geçen bir düzlemin denklemi

\[\sol| (\begin(array)(*(20)(c))(x - (x_0))&((x_1) - (x_0))&((x_2) - (x_0))\\(y - (y_0) )&((y_1) - (y_0))&((y_2) - (y_0))\\(z - (z_0))&((z_1) - (z_0))&((z_2) - (z_0)) \end(array)) \right| = 0\]

Durmak! Bu nedir? Çok sıradışı bir modül! Ancak karşınızda gördüğünüz nesnenin modülle hiçbir ilgisi yoktur. Bu nesneye üçüncü dereceden determinant denir. Artık düzlemde koordinat yöntemiyle uğraştığınızda aynı determinantlarla çok sık karşılaşacaksınız. Üçüncü dereceden determinant nedir? İşin tuhafı, bu sadece bir sayı. Belirleyiciyle hangi belirli sayıyı karşılaştıracağımızı anlamak için kalır.

Önce üçüncü dereceden determinantı daha genel bir biçimde yazalım:

Bazı numaralar nerede? Ayrıca ilk indeks ile satır numarasını, indeks ile de sütun numarasını kastediyoruz. Örneğin şu anlama geliyor verilen numara ikinci sıra ile üçüncü sütunun kesiştiği noktada yer alır. Haydi giyelim sonraki soru: Böyle bir determinantı tam olarak nasıl hesaplayacağız? Yani, onunla hangi spesifik sayıyı karşılaştıracağız? Üçüncü dereceden determinant için buluşsal (görsel) bir üçgen kuralı vardır, şuna benzer:

  1. Ana köşegenin elemanlarının çarpımı (sol üst köşeden sağ alta kadar) ana köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı Ana köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ana diyagonal
  2. İkincil köşegenin elemanlarının çarpımı (sağ üst köşeden sol alta kadar) ikincil köşegene “dik” olan birinci üçgeni oluşturan elemanların çarpımı İkinci köşegene “dik” olan ikinci üçgeni oluşturan elemanların çarpımı ikincil diyagonal
  3. Daha sonra determinant farka eşit adımda elde edilen değerler ve

Bütün bunları rakamlarla yazarsak aşağıdaki ifadeyi elde ederiz:

Bununla birlikte, bu formdaki hesaplama yöntemini hatırlamanıza gerek yoktur; sadece üçgenleri kafanızda tutmanız ve neyin neye ekleneceği ve daha sonra neyin neyden çıkarılacağı fikrini aklınızda tutmanız yeterlidir).

Üçgen yöntemini bir örnekle açıklayalım:

1. Belirleyiciyi hesaplayın:

Ne eklediğimizi ve ne çıkardığımızı bulalım:

Artı ile gelen terimler:

Bu ana köşegendir: elemanların çarpımı eşittir

İlk üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

İkinci üçgen, "ana köşegene dik: elemanların çarpımı eşittir"

Üç sayıyı toplayın:

Eksi ile gelen terimler

Bu bir yan köşegendir: elemanların çarpımı eşittir

İlk üçgen, “ikincil köşegenlere dik: elemanların çarpımı şuna eşittir:

İkinci üçgen, “ikincil köşegenlere dik: elemanların çarpımı eşittir

Üç sayıyı toplayın:

Geriye kalan tek şey “artı” terimlerin toplamını “eksi” terimlerin toplamından çıkarmaktır:

Böylece,

Gördüğünüz gibi üçüncü dereceden determinantların hesaplanmasında karmaşık veya doğaüstü hiçbir şey yoktur. Üçgenleri hatırlamak ve aritmetik hatalar yapmamak önemlidir. Şimdi bunu kendiniz hesaplamaya çalışın:

Görev: Belirtilen noktalar arasındaki mesafeyi bulun:

  1. Ana köşegene dik olan ilk üçgen:
  2. Ana köşegene dik ikinci üçgen:
  3. Artı ile terimlerin toplamı:
  4. İkincil köşegene dik olan ilk üçgen:
  5. Yan köşegenlere dik olan ikinci üçgen:
  6. Eksili terimlerin toplamı:
  7. Artı olan terimlerin toplamı eksi eksi olan terimlerin toplamı:

İşte birkaç belirleyici daha: değerlerini kendiniz hesaplayın ve cevaplarla karşılaştırın:

Cevaplar:

Peki her şey çakıştı mı? Harika, o zaman devam edebiliriz! Zorluklar varsa, tavsiyem şu: İnternette determinantı çevrimiçi hesaplamak için birçok program var. İhtiyacınız olan tek şey, kendi determinantınızı bulmak, onu kendiniz hesaplamak ve ardından onu programın hesapladığıyla karşılaştırmaktır. Ve sonuçlar çakışmaya başlayana kadar böyle devam eder. Bu anın gelmesinin uzun sürmeyeceğinden eminim!

Şimdi üç noktadan geçen bir düzlemin denkleminden bahsederken yazdığım determinant konusuna geri dönelim. verilen puanlar:

İhtiyacınız olan tek şey, değerini doğrudan hesaplamak (üçgen yöntemini kullanarak) ve sonucu sıfıra ayarlamaktır. Doğal olarak bunlar değişken olduğundan onlara bağlı bazı ifadeler elde edersiniz. Aynı düz çizgi üzerinde yer almayan üç noktadan geçen bir düzlemin denklemi olacak olan bu ifadedir!

Bunu basit bir örnekle açıklayalım:

1. Noktalardan geçen bir düzlemin denklemini oluşturun

Bu üç nokta için bir determinant derliyoruz:

Basitleştirelim:

Şimdi bunu doğrudan üçgen kuralını kullanarak hesaplıyoruz:

\[(\left| (\begin(array)(*(20)(c))(x + 3)&2&6\\(y - 2)&0&1\\(z + 1)&5&0\end(array)) \ sağ| = \left((x + 3) \right) \cdot 0 \cdot 0 + 2 \cdot 1 \cdot \left((z + 1) \right) + \left((y - 2) \right) \cdot 5 \cdot 6 - )\]

Böylece noktalardan geçen düzlemin denklemi şu şekildedir:

Şimdi bir sorunu kendiniz çözmeye çalışın, sonra tartışacağız:

2. Noktalardan geçen düzlemin denklemini bulun

Şimdi çözümü tartışalım:

Bir determinant oluşturalım:

Ve değerini hesaplayın:

O halde düzlemin denklemi şu şekildedir:

Veya azaltarak şunu elde ederiz:

Şimdi kendi kendini kontrol etmek için iki görev:

  1. Üç noktadan geçen bir düzlemin denklemini oluşturun:

Cevaplar:

Her şey çakıştı mı? Yine bazı zorluklar varsa o zaman tavsiyem şudur: Kafanızdan üç puan alın (ile büyük ölçüde büyük olasılıkla aynı düz çizgide uzanmayacaklardır), bunlara dayanarak bir uçak inşa edersiniz. Daha sonra kendinizi çevrimiçi olarak kontrol edersiniz. Örneğin sitede:

Ancak determinantların yardımıyla sadece düzlemin denklemini oluşturmayacağız. Hatırlayın, size vektörler için sadece nokta çarpımının tanımlanmadığını söylemiştim. Karışık çarpımın yanı sıra vektör çarpımı da vardır. Ve eğer iki vektörün skaler çarpımı bir sayı ise, o zaman iki vektörün vektör çarpımı bir vektör olacak ve bu vektör verilenlere dik olacaktır:

Üstelik modülü olacak alana eşit vektörler üzerine inşa edilmiş paralelkenar ve. Bu vektör Bir noktadan çizgiye olan mesafeyi hesaplamak için buna ihtiyacımız olacak. Nasıl sayabiliriz? vektör çarpımı vektörler ve koordinatları verilmişse? Üçüncü dereceden determinant yine yardımımıza koşuyor. Ancak vektör çarpımını hesaplamak için kullanılan algoritmaya geçmeden önce küçük bir açıklama yapmam gerekiyor.

Bu arasöz temel vektörlerle ilgilidir.

Şekilde şematik olarak gösterilmiştir:

Neden bunlara temel denildiğini düşünüyorsunuz? Önemli olan şu:

Veya resimde:

Bu formülün geçerliliği açıktır çünkü:

Vektör çizimleri

Artık çapraz çarpımı tanıtmaya başlayabilirim:

İki vektörün vektör çarpımı bir vektördür ve aşağıdaki kurala göre hesaplanır:

Şimdi çapraz çarpımın hesaplanmasına ilişkin bazı örnekler verelim:

Örnek 1: Vektörlerin çapraz çarpımını bulun:

Çözüm: Bir determinant oluşturuyorum:

Ve bunu hesaplıyorum:

Şimdi temel vektörler üzerinden yazdıktan sonra olağan vektör gösterimine döneceğim:

Böylece:

Şimdi dene.

Hazır? Kontrol ediyoruz:

Ve geleneksel olarak iki kontrol için görevler:

  1. Aşağıdaki vektörlerin vektör çarpımını bulun:
  2. Aşağıdaki vektörlerin vektör çarpımını bulun:

Cevaplar:

Üç vektörün karışık çarpımı

İhtiyacım olan son yapı üç vektörün karışık çarpımıdır. Skaler gibi bir sayıdır. Bunu hesaplamanın iki yolu vardır. - bir determinant yoluyla, - bir karma çarpım aracılığıyla.

Yani bize üç vektör verilsin:

Daha sonra ile gösterilen üç vektörün karışık çarpımı şu şekilde hesaplanabilir:

1. - yani karışık çarpım bir vektörün skaler çarpımı ile diğer iki vektörün vektör çarpımıdır

Örneğin, üç vektörün karışık çarpımı şöyledir:

Vektör çarpımını kullanarak bunu kendiniz hesaplamaya çalışın ve sonuçların eşleştiğinden emin olun!

Ve yine bağımsız çözümler için iki örnek:

Cevaplar:

Koordinat sisteminin seçilmesi

Artık karmaşık stereometrik geometri problemlerini çözmek için gerekli tüm bilgi temeline sahibiz. Ancak bunları çözmek için doğrudan örneklere ve algoritmalara geçmeden önce şu soru üzerinde durmanın faydalı olacağını düşünüyorum: Tam olarak nasıl belirli bir şekil için bir koordinat sistemi seçin. Sonuçta bu bir seçim göreceli konum Uzaydaki koordinat sistemleri ve şekiller, sonuçta hesaplamaların ne kadar hantal olacağını belirleyecek.

Bu bölümde aşağıdaki rakamları dikkate aldığımızı hatırlatmama izin verin:

  1. Dikdörtgen paralel yüzlü
  2. Düz prizma (üçgen, altıgen...)
  3. Piramit (üçgen, dörtgen)
  4. Tetrahedron (üçgen piramit ile aynı)

Dikdörtgen paralel yüzlü veya küp için size aşağıdaki yapıyı öneririm:

Yani figürü “köşeye” yerleştireceğim. Küp ve paralel yüzlü çok iyi figürlerdir. Onlar için köşelerinin koordinatlarını her zaman kolayca bulabilirsiniz. Örneğin, eğer (şekilde gösterildiği gibi)

bu durumda köşelerin koordinatları aşağıdaki gibidir:

Elbette bunu hatırlamanıza gerek yok, ancak bir küp veya dikdörtgen paralel borunun en iyi nasıl yerleştirileceğini hatırlamanız tavsiye edilir.

Düz prizma

Prizma daha zararlı bir figürdür. Uzayda farklı şekillerde konumlandırılabilir. Ancak aşağıdaki seçenek bana en kabul edilebilir görünüyor:

Üçgen prizma:

Yani üçgenin kenarlarından birini tamamen eksenin üzerine yerleştiriyoruz ve köşelerden biri koordinatların orijini ile çakışıyor.

Altıgen prizma:

Yani köşelerden biri orijine denk gelir ve kenarlardan biri eksen üzerinde yer alır.

Dörtgen ve altıgen piramit:

Durum bir küpe benzer: tabanın iki tarafını koordinat eksenleriyle hizalıyoruz ve köşelerden birini koordinatların kökeniyle hizalıyoruz. Tek hafif zorluk noktanın koordinatlarını hesaplamak olacaktır.

Altıgen bir piramit için - altıgen prizmayla aynı. Ana görev yine tepe noktasının koordinatlarını bulmak olacaktır.

Tetrahedron (üçgen piramit)

Durum üçgen prizma için verdiğim duruma çok benziyor: bir köşe orijine denk geliyor, bir taraf koordinat ekseninde yatıyor.

Artık sen ve ben nihayet sorunları çözmeye başlamaya yaklaştık. Makalenin en başında söylediklerimden şu sonucu çıkarabilirsiniz: C2 problemlerinin çoğu 2 kategoriye ayrılır: açı problemleri ve mesafe problemleri. Öncelikle açı bulma problemlerine bakacağız. Bunlar sırasıyla aşağıdaki kategorilere ayrılır (karmaşıklık arttıkça):

Açı bulma problemleri

  1. İki düz çizgi arasındaki açıyı bulma
  2. İki düzlem arasındaki açıyı bulma

Bu problemlere sırasıyla bakalım: İki düz çizgi arasındaki açıyı bularak başlayalım. Peki, unutma, sen ve ben daha önce benzer örnekleri çözmemiş miydik? Hatırlıyor musunuz, buna benzer bir şeyimiz vardı zaten... İki vektör arasındaki açıyı arıyorduk. Hatırlatayım, eğer iki vektör verilirse ve aralarındaki açı bağıntıdan bulunursa:

Şimdi amacımız iki düz çizgi arasındaki açıyı bulmak. “Düz resme” bakalım:

İki düz çizgi kesiştiğinde kaç açı elde ettik? Sadece birkaç şey. Doğru, bunlardan sadece ikisi eşit değil, diğerleri ise onlara dikey (ve dolayısıyla onlarla çakışıyor). Peki iki düz çizgi arasındaki açıyı hangi açı olarak düşünmeliyiz: veya? Burada kural şudur: iki düz çizgi arasındaki açı her zaman dereceden fazla değildir. Yani iki açıdan her zaman en küçük olan açıyı seçeceğiz. derece ölçüsü. Yani bu resimde iki düz çizgi arasındaki açı eşittir. Kurnaz matematikçiler, her seferinde iki açıdan en küçüğünü bulma zahmetine girmemek için bir modül kullanmayı önerdiler. Böylece iki düz çizgi arasındaki açı aşağıdaki formülle belirlenir:

Dikkatli bir okuyucu olarak sizin şu soruyu sormanız gerekirdi: Bir açının kosinüsünü hesaplamak için ihtiyaç duyduğumuz sayıların aynısını tam olarak nereden alıyoruz? Cevap: Bunları doğruların yön vektörlerinden alacağız! Böylece iki düz çizgi arasındaki açıyı bulma algoritması aşağıdaki gibidir:

  1. Formül 1'i uyguluyoruz.

Veya daha ayrıntılı olarak:

  1. İlk düz çizginin yön vektörünün koordinatlarını arıyoruz
  2. İkinci düz çizginin yön vektörünün koordinatlarını arıyoruz
  3. Skaler çarpımlarının modülünü hesaplıyoruz
  4. İlk vektörün uzunluğunu arıyoruz
  5. İkinci vektörün uzunluğunu arıyoruz
  6. 4. noktanın sonuçlarını 5. noktanın sonuçlarıyla çarpın
  7. 3. noktanın sonucunu 6. noktanın sonucuna bölüyoruz. Doğrular arasındaki açının kosinüsünü alıyoruz
  8. Bu sonuç açıyı doğru bir şekilde hesaplamamıza izin veriyorsa, onu ararız.
  9. Aksi takdirde ark kosinüs yoluyla yazarız

Eh, şimdi sıra sorunlara geçiyor: İlk ikisinin çözümünü ayrıntılı olarak göstereceğim, diğerinin çözümünü ayrıntılı olarak sunacağım. kısaca ve son iki problem için sadece cevap vereceğim; onlar için tüm hesaplamaları kendiniz yapmalısınız.

Görevler:

1. Sağ tet-ra-ed-re'de, tet-ra-ed-ra'nın yüksekliği ile orta taraf arasındaki açıyı bulun.

2. Sağdaki altı köşeli pi-ra-mi-de'de yüz os-no-va-niya eşittir ve yan kenarlar eşittir, ve çizgileri arasındaki açıyı bulun.

3. Sağdaki dört kömürlü pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Düz çizgiler arasındaki açıyı bulun ve eğer kesimden itibaren - verilen pi-ra-mi-dy ile iseniz, nokta bo-co-ikinci kaburga üzerinde se-re-di-dir

4. Küpün kenarında düz çizgiler arasındaki açıyı bulacak şekilde bir nokta vardır.

5. Nokta - küpün kenarlarında Düz çizgiler arasındaki açıyı bulun.

Görevleri bu sıraya göre düzenlemem tesadüf değil. Koordinat yönteminde gezinmeye başlamak için henüz zamanınız olmasa da, ben en "sorunlu" rakamları kendim analiz edeceğim ve en basit küple uğraşmayı size bırakacağım! Yavaş yavaş tüm rakamlarla nasıl çalışılacağını öğrenmeniz gerekecek; Konudan konuya görevlerin karmaşıklığını artıracağım.

Sorunları çözmeye başlayalım:

1. Bir tetrahedron çizin ve daha önce önerdiğim gibi koordinat sistemine yerleştirin. Tetrahedron düzgün olduğundan tüm yüzleri (taban dahil) düzgün üçgenler. Kenarın uzunluğu verilmediğine göre bunu eşit alabilirim. Sanırım açının aslında tetrahedronumuzun ne kadar "gerildiğine" bağlı olmayacağını anladınız mı? Ayrıca tetrahedrondaki yüksekliği ve ortancayı da çizeceğim. Yol boyunca tabanını çizeceğim (bizim için de faydalı olacak).

ile arasındaki açıyı bulmam gerekiyor. Ne biliyoruz? Sadece noktanın koordinatını biliyoruz. Bu, noktaların koordinatlarını bulmamız gerektiği anlamına gelir. Şimdi şöyle düşünüyoruz: Bir nokta, üçgenin yüksekliklerinin (veya açıortaylarının veya kenarortaylarının) kesişme noktasıdır. Ve bir nokta yükseltilmiş bir noktadır. Nokta segmentin ortasıdır. O zaman nihayet şunu bulmamız gerekiyor: noktaların koordinatları: .

En basit şeyle başlayalım: bir noktanın koordinatları. Şekle bakın: Bir noktanın uygulamasının sıfıra eşit olduğu açıktır (nokta düzlem üzerindedir). Ordinatı eşittir (ortanca olduğu için). Apsislerini bulmak daha zordur. Ancak bu Pisagor teoremine dayanarak kolaylıkla yapılabilir: Bir üçgen düşünün. Hipotenüsü eşittir ve bacaklarından biri eşittir O halde:

Sonunda elimizde: .

Şimdi noktanın koordinatlarını bulalım. Uygulamasının yine sıfıra eşit olduğu ve koordinatının noktanınkiyle aynı olduğu açıktır. Apsisini bulalım. Bunu hatırlarsanız, bu oldukça önemsiz bir şekilde yapılır. yükseklikler eşkenar üçgen kesişme noktası orantılı olarak bölünür, üstten sayıyorum. Çünkü: , o zaman noktanın gerekli apsisi uzunluğa eşit segment şuna eşittir: . Buna göre noktanın koordinatları şöyledir:

Noktanın koordinatlarını bulalım. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Ve uygulama, segmentin uzunluğuna eşittir. - bu üçgenin bacaklarından biri. Bir üçgenin hipotenüsü bir segmenttir - bir bacak. Kalın harflerle işaretlediğim nedenlerle aranıyor:

Nokta segmentin ortasıdır. O zaman parçanın orta noktasının koordinatlarının formülünü hatırlamamız gerekiyor:

İşte bu kadar, şimdi yön vektörlerinin koordinatlarını arayabiliriz:

Her şey hazır: tüm verileri formüle yerleştiriyoruz:

Böylece,

Cevap:

Bu tür "korkutucu" yanıtlardan korkmamalısınız: C2 sorunları için bu yaygın bir uygulamadır. Bu bölümdeki “güzel” cevaba şaşırmayı tercih ederim. Ayrıca, fark ettiğiniz gibi, Pisagor teoremi ve eşkenar üçgenin yükseklik özelliği dışında pratikte hiçbir şeye başvurmadım. Yani stereometrik problemi çözmek için minimum stereometriyi kullandım. Bundaki kazanç oldukça hantal hesaplamalarla kısmen “söndürülmüştür”. Ama oldukça algoritmikler!

2. Doğru olanı çizelim altıgen piramit koordinat sistemi ve tabanıyla birlikte:

Çizgiler arasındaki açıyı bulmamız gerekiyor. Böylece görevimiz noktaların koordinatlarını bulmaktır: . Küçük bir çizim kullanarak son üçünün koordinatlarını bulacağız ve noktanın koordinatı üzerinden tepe noktasının koordinatını bulacağız. Yapılacak çok iş var ama başlamamız gerekiyor!

a) Koordinat: Uygulama ve ordinatının sıfıra eşit olduğu açıktır. Apsis'i bulalım. Bunu yapmak için bir dik üçgen düşünün. Ne yazık ki, burada sadece eşit olan hipotenüsü biliyoruz. Bacağını bulmaya çalışacağız (çünkü bacağın iki katı uzunluğunun bize noktanın apsisini vereceği açıktır). Onu nasıl arayabiliriz? Piramidin tabanında nasıl bir figür olduğunu hatırlayalım mı? Bu normal bir altıgen. Bu ne anlama gelir? Bu, tüm kenarların ve tüm açıların eşit olduğu anlamına gelir. Böyle bir açı bulmamız gerekiyor. Herhangi bir fikrin var mı? Pek çok fikir var ama bir formül var:

Düzenli bir n-gon'un açılarının toplamı .

Böylece düzgün altıgenin açılarının toplamı dereceye eşittir. O halde açıların her biri şuna eşittir:

Fotoğrafa tekrar bakalım. Doğru parçasının açınınortay olduğu açıktır. O halde açı dereceye eşittir. Daha sonra:

O zaman nereden.

Böylece koordinatları vardır

b) Artık noktanın koordinatını kolaylıkla bulabiliriz: .

c) Noktanın koordinatlarını bulun. Apsisleri segmentin uzunluğuna denk geldiğinden eşittir. Ordinatı bulmak da çok zor değil: Noktaları birleştirirsek ve çizginin kesişme noktasını örneğin olarak belirlersek. (basit inşaatı kendiniz yapın). O halde B noktasının ordinatı, parçaların uzunluklarının toplamına eşittir. Üçgene tekrar bakalım. Daha sonra

O zamandan bu yana noktanın koordinatları var

d) Şimdi noktanın koordinatlarını bulalım. Dikdörtgeni düşünün ve şunu kanıtlayın: Böylece noktanın koordinatları:

e) Geriye tepe noktasının koordinatlarını bulmak kalır. Apsis ve koordinatının noktanın apsis ve koordinatıyla örtüştüğü açıktır. Uygulamayı bulalım. O zamandan beri. Bir dik üçgen düşünün. Sorunun koşullarına göre yan kaburga. Bu benim üçgenimin hipotenüsü. O halde piramidin yüksekliği bir bacaktır.

O zaman noktanın koordinatları vardır:

İşte bu kadar, ilgimi çeken tüm noktaların koordinatları elimde. Düz çizgilerin yönlendirici vektörlerinin koordinatlarını arıyorum:

Bu vektörler arasındaki açıyı arıyoruz:

Cevap:

Yine, bu problemi çözerken, düzenli bir n-gon'un açılarının toplamı formülü ve ayrıca bir dik üçgenin kosinüs ve sinüs tanımı dışında herhangi bir karmaşık teknik kullanmadım.

3. Piramidin kenarlarının uzunlukları yine bize verilmediğinden, bunları bire eşit kabul edeceğim. Böylece, sadece yan kenarlar değil, TÜM kenarlar birbirine eşit olduğundan, piramidin tabanında ve bende bir kare var ve yan yüzler- düzenli üçgenler. Problem metninde verilen tüm verileri not ederek böyle bir piramidi ve tabanını bir düzlem üzerine çizelim:

ile arasındaki açıyı arıyoruz. Noktaların koordinatlarını araştırırken çok kısa hesaplamalar yapacağım. Bunları “deşifre etmeniz” gerekecek:

b) - segmentin ortası. Koordinatları:

c) Pisagor teoremini kullanarak bir üçgende doğru parçasının uzunluğunu bulacağım. Bunu bir üçgende Pisagor teoremini kullanarak bulabilirim.

Koordinatlar:

d) - segmentin ortası. Koordinatları

e) Vektör koordinatları

f) Vektör koordinatları

g) Açının aranması:

Küp - en basit şekil. Eminim bunu kendi başınıza çözeceksiniz. 4. ve 5. sorunun cevapları aşağıdaki gibidir:

Düz bir çizgi ile bir düzlem arasındaki açıyı bulma

Basit bulmacaların zamanı bitti! Şimdi örnekler daha da karmaşık olacak. Düz bir çizgi ile düzlem arasındaki açıyı bulmak için şu şekilde ilerleyeceğiz:

  1. Üç noktayı kullanarak düzlemin denklemini oluşturuyoruz
    ,
    üçüncü dereceden bir determinant kullanarak.
  2. İki nokta kullanarak düz çizginin yönlendirici vektörünün koordinatlarını ararız:
  3. Düz bir çizgi ile bir düzlem arasındaki açıyı hesaplamak için formülü uygularız:

Gördüğünüz gibi bu formül, iki düz çizgi arasındaki açıları bulmak için kullandığımız formüle çok benziyor. Sağ taraftaki yapı tamamen aynıdır ve solda artık daha önce olduğu gibi kosinüsü değil sinüsü arıyoruz. Buna kötü bir eylem daha eklendi: Düzlemin denklemini aramak.

Ertelemeyelim çözüm örnekleri:

1. Ana-ama-va-ni-em doğrudan prizma-biz sizin-fakir-ren-üçgeninin-takma adı ile eşitiz-ve-o prizma-biz eşitiz. Düz çizgi ile düzlem arasındaki açıyı bulun

2. Batıdan dikdörtgen bir par-ral-le-le-pi-pe-de'de Düz çizgi ile düzlem arasındaki açıyı bulun

3. Bir sağ altıgen prizmada tüm kenarlar eşittir. Düz çizgi ile düzlem arasındaki açıyı bulun.

4. Bilinen kaburgaların os-no-va-ni-em'i ile sağ üçgen pi-ra-mi-de'de Bir köşe bulun, ob-ra-zo-van -taban olarak düz ve düz, griden geçen kaburga ve

5. Tepe noktası olan dik dörtgensel pi-ra-mi-dy'nin tüm kenarlarının uzunlukları birbirine eşittir. Nokta pi-ra-mi-dy'nin kenarı tarafındaysa, düz çizgi ile düzlem arasındaki açıyı bulun.

Yine ilk iki problemi detaylı, üçüncüyü kısaca çözeceğim ve son ikisini kendi başınıza çözmenize bırakacağım. Ayrıca, zaten üçgenle uğraşmak zorundaydınız ve dörtgen piramitler, ancak prizmalarla - henüz değil.

Çözümler:

1. Bir prizmayı ve tabanını tasvir edelim. Bunu koordinat sistemiyle birleştirelim ve problem ifadesinde verilen tüm verileri not edelim:

Oranlara uymadığım için özür dilerim, ancak sorunu çözmek için bu aslında o kadar da önemli değil. Uçak, prizmamın basitçe "arka duvarı"dır. Böyle bir düzlemin denkleminin şu şekilde olduğunu basitçe tahmin etmek yeterlidir:

Ancak bu doğrudan gösterilebilir:

Bu düzlemde rastgele üç nokta seçelim: örneğin .

Düzlemin denklemini oluşturalım:

Kendiniz için egzersiz yapın: Bu determinantı kendiniz hesaplayın. Başarılı oldun mu? O zaman düzlemin denklemi şöyle görünür:

Veya sadece

Böylece,

Örneği çözmek için düz çizginin yön vektörünün koordinatlarını bulmam gerekiyor. Nokta koordinatların orijini ile çakıştığı için vektörün koordinatları noktanın koordinatlarıyla çakışacaktır. Bunu yapmak için önce noktanın koordinatlarını buluyoruz.

Bunu yapmak için bir üçgen düşünün. Tepe noktasından yüksekliği (medyan ve açıortay olarak da bilinir) çizelim. Çünkü noktanın ordinatı eşittir. Bu noktanın apsisini bulmak için doğru parçasının uzunluğunu hesaplamamız gerekir. Pisagor teoremine göre elimizde:

O zaman noktanın koordinatları vardır:

Nokta "yükseltilmiş" bir noktadır:

O zaman vektör koordinatları şöyledir:

Cevap:

Gördüğünüz gibi, bu tür sorunları çözerken temelde zor olan hiçbir şey yoktur. Aslında prizma gibi bir şeklin “düzlüğü” ile süreç biraz daha basitleştirilmiştir. Şimdi bir sonraki örneğe geçelim:

2. Bir paralel uçlu çizin, içine bir düzlem ve düz bir çizgi çizin ve ayrıca alt tabanını ayrı ayrı çizin:

İlk önce düzlemin denklemini buluyoruz: İçinde bulunan üç noktanın koordinatları:

(ilk iki koordinat net bir şekilde elde edilmiştir ve son koordinatı noktadan itibaren resimden rahatlıkla bulabilirsiniz). Daha sonra düzlemin denklemini oluştururuz:

Hesaplıyoruz:

Kılavuz vektörün koordinatlarını arıyoruz: Koordinatlarının noktanın koordinatlarıyla örtüştüğü açık değil mi? Koordinatlar nasıl bulunur? Bunlar, uygulanan eksen boyunca birer yükseltilmiş noktanın koordinatlarıdır! . Sonra istenen açıyı ararız:

Cevap:

3. Düzenli bir altıgen piramit çizin ve içine bir düzlem ve düz bir çizgi çizin.

Burada bir düzlem çizmek bile sorunlu, bu sorunu çözmekten bahsetmiyorum bile, ancak koordinat yöntemi umursamıyor! Çok yönlülüğü ana avantajıdır!

Uçak üç noktadan geçer: . Koordinatlarını arıyoruz:

1). Son iki noktanın koordinatlarını kendiniz bulun. Bunun için altıgen piramit problemini çözmeniz gerekecek!

2) Düzlemin denklemini oluşturuyoruz:

Vektörün koordinatlarını arıyoruz: . (Üçgen piramit problemine tekrar bakın!)

3) Bir açı arıyorum:

Cevap:

Gördüğünüz gibi bu görevlerde doğaüstü derecede zor olan hiçbir şey yok. Sadece köklere çok dikkat etmeniz gerekiyor. Sadece son iki sorunun cevabını vereceğim:

Gördüğünüz gibi problemleri çözme tekniği her yerde aynıdır: Asıl görev, köşelerin koordinatlarını bulmak ve bunları belirli formüllerde değiştirmektir. Açıları hesaplamak için hala bir sınıf problemi daha ele almamız gerekiyor:

İki düzlem arasındaki açıların hesaplanması

Çözüm algoritması şu şekilde olacaktır:

  1. Üç noktayı kullanarak ilk düzlemin denklemini ararız:
  2. Diğer üç noktayı kullanarak ikinci düzlemin denklemini ararız:
  3. Formülü uyguluyoruz:

Gördüğünüz gibi formül, düz çizgiler arasındaki ve düz çizgi ile düzlem arasındaki açıları aradığımız önceki iki formüle çok benziyor. Bu yüzden bunu hatırlamanız sizin için zor olmayacak. Görevlerin analizine geçelim:

1. Sağ üçgen prizmanın tabanının kenarı eşittir ve yan yüzün köşegeni eşittir. Düzlem ile prizmanın eksen düzlemi arasındaki açıyı bulun.

2. Tüm kenarları eşit olan sağdaki dört köşeli pi-ra-mi-de'de, kalem-di-ku- noktasından geçen düzlem ile düzlem kemiği arasındaki açının sinüsünü bulun. lyar-ama düz.

3. Normal bir dört köşeli prizmada tabanın kenarları eşittir ve yan kenarlar eşittir. Benden-che-on'un kenarında bir nokta var ki. Düzlemler arasındaki açıyı bulun ve

4. Bir dik dörtgen prizmada tabanın kenarları eşit ve yan kenarlar eşittir. Bu noktadan itibaren kenarda bir nokta var ve böylece düzlemler arasındaki açıyı bulun.

5. Bir küpte düzlemler ile düzlemler arasındaki açının kosinüsünü bulun.

Sorun çözümleri:

1. Doğru olanı çiziyorum (tabanında eşkenar üçgen var) üçgen prizma ve problem ifadesinde görünen düzlemleri işaretleyin:

İki düzlemin denklemlerini bulmamız gerekiyor: Tabanın denklemi önemsizdir: karşılık gelen determinantı üç noktayı kullanarak oluşturabilirsiniz, ancak denklemi hemen oluşturacağım:

Şimdi denklemi bulalım Noktanın koordinatları vardır Nokta - Üçgenin ortancası ve yüksekliği olduğundan, üçgende Pisagor teoremi kullanılarak kolayca bulunur. O zaman noktanın koordinatları vardır: Noktanın uygulamasını bulalım. Bunu yapmak için bir dik üçgen düşünün.

Daha sonra aşağıdaki koordinatları elde ederiz: Düzlemin denklemini oluştururuz.

Düzlemler arasındaki açıyı hesaplıyoruz:

Cevap:

2. Çizim yapmak:

En zor şey, noktadan dik olarak geçen bu gizemli düzlemin ne olduğunu anlamaktır. Peki, asıl mesele şu ki, bu nedir? Önemli olan dikkat! Aslında çizgi diktir. Düz çizgi aynı zamanda diktir. O halde bu iki doğrunun içinden geçen düzlem, doğruya dik olacak ve bu arada, noktadan geçecektir. Bu düzlem aynı zamanda piramidin tepesinden de geçer. Sonra istenen uçak - Ve uçak zaten bize verildi. Noktaların koordinatlarını arıyoruz.

Noktanın koordinatını noktadan geçerek buluyoruz. İtibaren küçük çizim Noktanın koordinatlarının şu şekilde olacağı sonucunu çıkarmak kolaydır: Piramidin tepesinin koordinatlarını bulmak için şimdi ne bulunacak? Ayrıca yüksekliğini de hesaplamanız gerekir. Bu, aynı Pisagor teoremi kullanılarak yapılır: önce bunu kanıtlayın (önemsiz olarak tabanda bir kare oluşturan küçük üçgenlerden). Koşullu olarak elimizde:

Artık her şey hazır: köşe koordinatları:

Düzlemin denklemini oluşturuyoruz:

Belirleyicileri hesaplama konusunda zaten uzmansınız. Zorluk yaşamadan şunları alacaksınız:

Veya aksi takdirde (her iki tarafı da ikinin köküyle çarparsak)

Şimdi düzlemin denklemini bulalım:

(Düzlem denklemini nasıl elde ettiğimizi unutmadınız değil mi? Bu eksi birin nereden geldiğini anlamıyorsanız, o zaman düzlem denkleminin tanımına geri dönün! Her zaman ondan önce ortaya çıktı. uçağım kökene aitti!)

Belirleyiciyi hesaplıyoruz:

(Düzlemin denkleminin noktalardan geçen doğrunun denklemiyle örtüştüğünü fark etmişsinizdir! Nedenini bir düşünün!)

Şimdi açıyı hesaplayalım:

Sinüs bulmamız gerekiyor:

Cevap:

3. Zor soru: nedir bu? dikdörtgen prizma, Sizce nasıl? Bu sadece iyi bildiğiniz bir paralelyüzlü! Hemen bir çizim yapalım! Tabanı ayrı ayrı tasvir etmenize bile gerek yok; burada çok az faydası var:

Daha önce belirttiğimiz gibi düzlem bir denklem biçiminde yazılmıştır:

Şimdi bir uçak oluşturalım

Hemen düzlemin denklemini yaratıyoruz:

Bir açı arıyorum:

Şimdi son iki sorunun cevapları:

Artık biraz ara vermenin zamanı geldi çünkü sen ve ben harikayız ve harika bir iş çıkardık!

Koordinatlar ve vektörler. İleri seviye

Bu yazıda sizinle koordinat yöntemi kullanılarak çözülebilecek başka bir problem sınıfını tartışacağız: mesafe hesaplama problemleri. Yani aşağıdaki durumları ele alacağız:

  1. Kesişen çizgiler arasındaki mesafenin hesaplanması.

Bu görevleri artan zorluk derecesine göre sıraladım. Bulmak en kolayı gibi görünüyor noktadan düzleme uzaklık ve en zor şey bulmaktır geçiş çizgileri arasındaki mesafe. Tabii ki hiçbir şey imkansız değildir! Ertelemeyelim ve hemen birinci sınıf sorunları ele almaya başlayalım:

Bir noktadan bir düzleme olan mesafenin hesaplanması

Bu sorunu çözmek için neye ihtiyacımız var?

1. Nokta koordinatları

Gerekli tüm verilere sahip olduğumuzda şu formülü uygularız:

Bir düzlemin denklemini nasıl oluşturduğumuzu zaten biliyor olmalısınız. önceki görevler Geçen bölümde tartıştığım şey. Hemen görevlere geçelim. Şema şu şekildedir: 1, 2 - Karar vermenize yardımcı oluyorum ve biraz ayrıntılı olarak 3, 4 - yalnızca cevap, çözümü kendiniz gerçekleştirip karşılaştırıyorsunuz. Haydi başlayalım!

Görevler:

1. Bir küp verildi. Küpün kenar uzunlukları eşittir. Se-re-di-na'dan kesimden düzleme olan mesafeyi bulun

2. Sağdaki dört kömür pi-ra-mi-evet verildiğinde, tarafın tarafı tabana eşittir. Noktadan kenarlarda - se-re-di-olan düzleme olan mesafeyi bulun.

3. Os-no-va-ni-em ile sağ üçgen pi-ra-mi-de'de, yan kenar eşittir ve os-no-vania'daki yüz-ro-eşittir. Üstten düzleme olan mesafeyi bulun.

4. Bir sağ altıgen prizmada tüm kenarlar eşittir. Bir noktadan bir düzleme olan mesafeyi bulun.

Çözümler:

1. Tek kenarlı bir küp çizin, bir doğru parçası ve bir düzlem oluşturun, parçanın ortasını bir harfle belirtin

.

Öncelikle kolay olanla başlayalım: noktanın koordinatlarını bulun. O zamandan beri (segmentin ortasının koordinatlarını hatırlayın!)

Şimdi üç noktayı kullanarak düzlemin denklemini oluşturuyoruz

\[\sol| (\begin(array)(*(20)(c))x&0&1\\y&1&0\\z&1&1\end(array)) \right| = 0\]

Artık mesafeyi bulmaya başlayabilirim:

2. Tüm verileri işaretlediğimiz bir çizimle yeniden başlıyoruz!

Bir piramit için tabanını ayrı ayrı çizmek faydalı olacaktır.

Pençesiyle tavuk gibi çizim yapmam bile bu sorunu kolaylıkla çözmemize engel olmayacak!

Artık bir noktanın koordinatlarını bulmak çok kolay

Noktanın koordinatları olduğundan,

2. a noktasının koordinatları doğru parçasının ortası olduğuna göre,

Düzlemdeki iki noktanın daha koordinatlarını sorunsuz bir şekilde bulabiliriz. Düzlem için bir denklem oluşturup onu basitleştiriyoruz:

\[\sol| (\left| (\begin(array)(*(20)(c))x&1&(\frac(3)(2))\\y&0&(\frac(3)(2))\\z&0&(\frac( (\sqrt 3 )(2))\end(array)) \right|) \right| = 0\]

Noktanın koordinatları: olduğundan mesafeyi hesaplarız:

Cevap (çok nadir!):

Peki anladın mı? Bana öyle geliyor ki burada her şey bir önceki bölümde incelediğimiz örneklerdeki kadar teknik. Bu yüzden eminim ki, eğer bu materyale hakim olduysanız, kalan iki problemi çözmeniz sizin için zor olmayacaktır. Size sadece cevapları vereceğim:

Düz bir çizgiden düzleme olan mesafenin hesaplanması

Aslında burada yeni bir şey yok. Düz bir çizgi ve bir düzlem birbirine göre nasıl konumlandırılabilir? Tek bir olasılıkları var: kesişmek ya da düz bir çizginin düzleme paralel olması. Sizce bir düz çizgi ile bu doğrunun kesiştiği düzlem arasındaki mesafe nedir? Bana öyle geliyor ki burada böyle bir mesafenin sıfıra eşit olduğu açık. İlginç bir durum değil.

İkinci durum daha çetrefilli: burada mesafe zaten sıfır değil. Ancak doğru düzleme paralel olduğundan, doğrunun her noktası bu düzleme eşit uzaklıktadır:

Böylece:

Bu, görevimin bir öncekine indirgendiği anlamına geliyor: Düz bir çizgi üzerindeki herhangi bir noktanın koordinatlarını arıyoruz, düzlemin denklemini arıyoruz ve noktadan düzleme olan mesafeyi hesaplıyoruz. Aslında Birleşik Devlet Sınavında bu tür görevler oldukça nadirdir. Yalnızca bir sorun bulmayı başardım ve içindeki veriler öyleydi ki koordinat yöntemi buna pek uygulanamadı!

Şimdi başka bir şeye geçelim, çok daha fazlası önemli sınıf görevler:

Bir noktanın bir çizgiye olan mesafesini hesaplama

Neye ihtiyacımız var?

1. Mesafeyi aradığımız noktanın koordinatları:

2. Bir doğru üzerinde bulunan herhangi bir noktanın koordinatları

3. Düz çizginin yönlendirici vektörünün koordinatları

Hangi formülü kullanıyoruz?

Bu kesrin paydasının ne anlama geldiği sizin için açık olmalıdır: bu, düz çizginin yönlendirici vektörünün uzunluğudur. Bu çok zor bir paydır! İfadesi, vektörlerin vektör çarpımının modülünü (uzunluğunu) ifade eder ve vektör çarpımının nasıl hesaplanacağını çalışmanın önceki bölümünde inceledik. Bilgilerinizi tazeleyin, artık buna çok ihtiyacımız olacak!

Böylece, problem çözme algoritması aşağıdaki gibi olacaktır:

1. Mesafeyi aradığımız noktanın koordinatlarını arıyoruz:

2. Mesafeyi aradığımız doğru üzerindeki herhangi bir noktanın koordinatlarını arıyoruz:

3. Bir vektör oluşturun

4. Düz bir çizginin yönlendirici vektörünü oluşturun

5. Vektör çarpımını hesaplayın

6. Ortaya çıkan vektörün uzunluğunu ararız:

7. Mesafeyi hesaplayın:

Yapacak çok işimiz var ve örnekler oldukça karmaşık olacak! O halde şimdi tüm dikkatinizi odaklayın!

1. Tepesi olan dik üçgen bir pi-ra-mi-da verilmiştir. Pi-ra-mi-dy temelinde yüz-ro-eşittir, sen eşitsin. Gri kenardan, ve noktalarının gri kenarlar olduğu düz çizgiye ve veterinere olan mesafeyi bulun.

2. Kaburgaların uzunlukları ve düz açılı par-ral-le-le-pi-pe-da buna göre eşittir ve üstten düz çizgiye olan mesafeyi bulun

3. Bir sağ altıgen prizmada tüm kenarlar eşittir; bir noktadan düz bir çizgiye olan mesafeyi bulun

Çözümler:

1. Tüm verileri işaretlediğimiz düzgün bir çizim yapıyoruz:

Yapacak çok işimiz var! Öncelikle neyi arayacağımızı ve hangi sırayla araştıracağımızı kelimelerle anlatmak istiyorum:

1. Noktaların koordinatları ve

2. Nokta koordinatları

3. Noktaların koordinatları ve

4. Vektörlerin koordinatları ve

5. Çapraz çarpımları

6. Vektör uzunluğu

7. Vektör çarpımının uzunluğu

8. Uzaklık

Neyse, önümüzde çok işimiz var! Hadi kolları sıvamış olarak işe başlayalım!

1. Piramidin yüksekliğinin koordinatlarını bulmak için noktanın koordinatlarını bilmemiz gerekir. Uygulaması sıfıra eşittir ve koordinatı apsisine eşit olduğundan parçanın uzunluğuna eşittir. Bir eşkenar üçgenin yüksekliği, tepe noktasından itibaren buradan sayılan orana bölünür. Sonunda koordinatları aldık:

Nokta koordinatları

2. - segmentin ortası

3. - segmentin ortası

Segmentin orta noktası

4. Koordinatlar

Vektör koordinatları

5. Vektör çarpımını hesaplayın:

6. Vektör uzunluğu: Değiştirmenin en kolay yolu, parçanın üçgenin orta çizgisi olması, yani tabanın yarısına eşit olmasıdır. Bu yüzden.

7. Vektör çarpımının uzunluğunu hesaplayın:

8. Son olarak mesafeyi buluyoruz:

İşte bu! Size dürüstçe söyleyeyim: Bu sorunu geleneksel yöntemlerle (inşaat yoluyla) çözmek çok daha hızlı olacaktır. Ama burada her şeyi hazır bir algoritmaya indirgedim! Çözüm algoritmasının sizin için açık olduğunu düşünüyorum? Bu nedenle geri kalan iki sorunu kendiniz çözmenizi isteyeceğim. Cevapları karşılaştıralım mı?

Tekrar ediyorum; bu sorunları inşaat yoluyla çözmek, inşaatlara başvurmaktan daha kolaydır (daha hızlıdır). koordinat yöntemi. Bu çözüm yöntemini yalnızca size "hiçbir şey inşa etmeyi bitirmemenize" olanak tanıyan evrensel bir yöntem göstermek için gösterdim.

Son olarak, son sınıftaki sorunları ele alalım:

Kesişen çizgiler arasındaki mesafenin hesaplanması

Burada problem çözme algoritması öncekine benzer olacaktır. Elimizde ne var:

3. Birinci ve ikinci çizginin noktalarını birleştiren herhangi bir vektör:

Çizgiler arasındaki mesafeyi nasıl buluruz?

Formül aşağıdaki gibidir:

Pay, karışık çarpımın modülüdür (bunu önceki bölümde tanıtmıştık) ve payda, önceki formülde olduğu gibi (düz çizgilerin yön vektörlerinin vektör çarpımının modülü, aralarındaki mesafe) arıyoruz).

sana şunu hatırlatacağım

Daha sonra mesafe formülü şu şekilde yeniden yazılabilir::

Bu bir determinantın bir determinantla bölünmesidir! Gerçi dürüst olmak gerekirse burada şaka yapacak vaktim yok! Bu formül aslında çok hantaldır ve oldukça karmaşık hesaplamalar. Senin yerinde olsaydım, buna yalnızca son çare olarak başvururdum!

Yukarıdaki yöntemi kullanarak birkaç sorunu çözmeye çalışalım:

1. Tüm kenarları eşit olan bir dik üçgen prizmada, düz çizgiler arasındaki mesafeyi bulun.

2. Bir dik üçgen prizma verildiğinde, tabanın tüm kenarları gövde kaburgasından geçen kesite eşittir ve se-re-di-well kaburgalar bir karedir. Düz çizgiler arasındaki mesafeyi bulun ve

Birincisine ben karar veririm ve buna göre ikincisine sen karar verirsin!

1. Bir prizma çiziyorum ve düz çizgiler çiziyorum ve

C noktasının koordinatları: o halde

Nokta koordinatları

Vektör koordinatları

Nokta koordinatları

Vektör koordinatları

Vektör koordinatları

\[\left((B,\overrightarrow (A(A_1)) \overrightarrow (B(C_1)) ) \right) = \left| (\begin(array)(*(20)(l))(\begin(array)(*(20)(c))0&1&0\end(array))\\(\begin(array)(*(20) (c))0&0&1\end(array))\\(\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \frac(1) (2))&1\end(array))\end(array)) \right| = \frac((\sqrt 3 ))(2)\]

Vektörler arasındaki vektör çarpımını hesaplıyoruz ve

\[\overrightarrow (A(A_1)) \cdot \overrightarrow (B(C_1)) = \left| \begin(array)(l)\begin(array)(*(20)(c))(\overrightarrow i )&(\overrightarrow j )&(\overrightarrow k )\end(array)\\\begin(array )(*(20)(c))0&0&1\end(array)\\\begin(array)(*(20)(c))(\frac((\sqrt 3 ))(2))&( - \ frac(1)(2))&1\end(array)\end(array) \right| - \frac((\sqrt 3 ))(2)\overrightarrow k + \frac(1)(2)\overrightarrow i \]

Şimdi uzunluğunu hesaplıyoruz:

Cevap:

Şimdi ikinci görevi dikkatlice tamamlamaya çalışın. Bunun cevabı şu olacaktır: .

Koordinatlar ve vektörler. Kısa açıklama ve temel formüller

Bir vektör yönlendirilmiş bir bölümdür. - vektörün başlangıcı, - vektörün sonu.
Bir vektör veya ile gösterilir.

Mutlak değer vektör - vektörü temsil eden parçanın uzunluğu. Olarak belirtildi.

Vektör koordinatları:

,
\displaystyle a vektörünün uçları nerede?

Vektörlerin toplamı: .

Vektörlerin çarpımı:

Vektörlerin nokta çarpımı:



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!